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Abstract— Fall detection and prevention is a key issue for
healthcare in older adults since it prevents the development
of multiple cognitive and physical disorders. This study aims
to evaluate multiple falls and near-fall detection algorithms to
be integrated into a smart walker, which usually comes with
an increased risk for falls in case of improper use. A six-
axis IMU worn at the user’s waist extracts trunk inclination,
angular velocity and acceleration. The study employs various
fall detection algorithms, such as Kangas and Vertical Velocity,
tailored for fall detection, Triangular Feature, Vertical Angle
and a Modified Vertical Velocity for pre-fall detection. The ex-
perimental protocol involved various Activities of Daily Living
(ADLs) and simulated falls, emphasizing participant safety and
data usability. The results from this study provide insights into
the effectiveness and reliability of the integrated fall detection
system in scenarios involving a smart walker.

I. INTRODUCTION

According to the World Health Organization [1], it is
estimated that 684.000 individuals die from falls, and 37.3
million falls are severe enough to require medical attention
every year. In this scenario, older adults over 60 years old
face the highest risk of falls, with 1 in 3 over 65 affected
by at least one fall annually, and this increases to 50% for
older adults over 80 [2]. The costs of fall-related injuries are
consistent [3]. In America, the overall medical costs related
to non-fatal fall injuries are 50 billion USD annually [3].

Injuries resulting from falls can range from non-fatal to
fatal, with hip fractures being particularly severe among the
non-fatal outcomes. Hip fractures are closely associated with
a loss of independence, psychological disorders, and an ele-
vated one-year mortality rate [4]. Other non-fatal fall-related
injuries include those affecting wrists and the head. Fall
risk factors are typically classified as intrinsic or extrinsic.
The causes of a fall are often multiple and interconnected
[5]. Biological risk factors, in the pathological aspect, play
a crucial role. The presence of one or more pathologies
elevates the risk of falling [2]. Cognitive and neurological
diseases, such as Parkinson’s disease or dementia, exert a
substantial influence on the falling rates among the elderly,
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2Sergio D. Sierra M., Marcela Múnera, and Carlos Cifuentes are with
the Bristol Robotics Laboratory, University of the West of England, Bris-
tol, UK. sergio.sierramarin@uwe.ac.uk, marcela.munera@uwe.ac.uk, car-
los.cifuentes@uwe.ac.uk

akin to the physical impairments stemming from both normal
ageing and specific pathologies [2].

It is important to understand that the consequences of
falling are not only related to the mere potential physical dis-
abilities but also to the rise of psychological problems such as
fear of falling, anxiety, and depression [6]. In particular, the
fear of falling is part of the post-fall syndrome, which leads
to severe psycho-motor inhibition, high anxiety symptoms,
activity avoidance, loss of self-confidence, and a loss in the
general quality of life [6]. Most of the categorizations of
falls are related to the factors responsible for them. Other
categorizations are linked to the direction of the fall [7] or
the position before the fall [8].

Regarding fall detection, especially for older people, the
demand for technologies supporting this population has
rapidly risen [9]. This can be seen as a shield for the sub-
outcomes from falls, such as the financial costs, the demand
for medical personnel, and the burden for the patient’s care-
givers. In this sense, the purpose of a fall detection system is
the automatic detection of falls and the enabling of assistance
by caregivers if required [8]. A fall detection system should
be able to minimize privacy intrusion and obtrusiveness with
heavy wearable devices, distinguish between falls and near-
fall events from other activities of daily living (ADLs), and
minimize false alarms [10].

In this sense, it is important to highlight the difference
between falls and near-fall events. Near-falls usually are
more frequent and may occur before falls [11]. They can be
considered a fall risk prediction parameter when analyzing
the fall history for risk assessment. The traditional definition
of a near-fall is “A stumble event or loss of balance that
would result in a fall if sufficient recovery mechanisms were
not activated” [11], [12].

In addition to falls detection, walking aids are also re-
quired, as they provide cognitive and physical support during
ageing [13]. Walking aids can increase safety, maintain
walking ability and support balance. The most common
devices include canes, crutches, and walkers, and depending
on the patient’s needs, clinicians might prescribe one for
daily use [14], [15]. However, improper use of walking aids
is recognized as a potential fall risk factor. This, in turn,
contributes to an escalation in the user’s fear of falling and
exacerbates the spatiotemporal gait pattern [4], [16]. In fact,
in 2009, more than 47.000 adults over 65 years old with
fall injuries related to walking aids were treated in the US,
87.3% of such falls associated with walkers, 12.3% to canes
and 0.4% to both [17]. In particular, the use of a walker not



only can increase the risk of falls but also modifies the gait
biomechanics, and it is important to assess the performance
of the fall detection system during walker-assisted gait.

In general, walkers are easy to use while leveraging the
user’s remaining locomotion capability. However, to over-
come the risk of falls associated with walkers and prevent fall
events, different technologies have been integrated into con-
ventional walkers. Particularly, advances in robotics make it
possible to develop more intelligent/smart walkers by adding
sensors, actuators, and high-level processing algorithms for
Human-Robot interaction [18]. Smart walkers often provide
sensory assistance, cognitive assistance, and health moni-
toring. Some walkers also focus on sit-to-stand transfers,
navigation help, obstacle avoidance, and fall detection [19].

This study aims to integrate an efficient and accurate fall
detection system into a smart walker based on a conventional
wheeled walking frame. The system is designed as a multi-
sensor system composed of a wireless IMU sensor attached
to the back of the user and a sensing system designed on the
smart walker. This study compares different threshold-based
algorithms for fall detection applied to wearable inertial
sensors to find the most suitable application on walkers.

II. RELATED WORKS

A small literature review was conducted. The article search
was conducted across three databases (Pubmed, Scopus, and
Ovid MD) during April 2023. To this end, the following
search equation was used, along with additional search filters
including only articles in English and only articles from the
last ten years.

• \fall detection" OR \falls" OR \fall risk"

OR \fall prevention" OR \fall prediction"

OR \pre-fall detection" OR \fall-alarm" OR

\accidental falls") AND
• (\smart walker" OR \smart mobility aid" OR

\smart rollator")

According to this, 14 studies of fall detection systems
integrated with walkers revealed that only a limited subset,
namely five studies, employed traditional walkers equipped
with sensors dedicated to fall detection [9], [10], [20]–
[30]. The predominant use of inertial sensors, encompassing
IMUs, accelerometers, or gyroscopes, was evident in these
investigations, applied strategically to both the user and the
walker [21]–[23]. These sensors adeptly extracted nuanced
differentials in acceleration and angular velocity. Notably,
a prevalent practice emerged involving integrating force
sensors into walker handles [10], [20], [23]–[25], [27], [29].
This strategic placement facilitated the analysis of pressure
variations on the handles, presenting a pragmatic approach
to acquiring dependable data on falls directly from the
walker. These methodologies, distinguished by their cost-
effectiveness and minimal impact on the user’s daily life,
contrast the imposition of wearable sensors. While Laser
Rangefinder (LRF) sensors were sparingly employed, they
emerged as a promising and economical alternative to depth
cameras [20]. Their potential extended beyond fall detec-
tion, offering insights into leg positioning and user-walker

distance. This dual functionality proved instrumental in de-
tecting falls and identifying precursors to loss of balance,
thereby enabling the implementation of near-fall detection
and preventive measures.

Furthermore, among the studies examined, a diverse array
of sensing technologies was employed for fall detection, in-
cluding seven studies utilizing inertial sensors, two incorpo-
rating cameras, 6 deploying pressure sensors, six leveraging
LRFs, 1 employing ultrasonic sensors, 1 integrating a smart
insole, and 1 utilizing odometry as a distinctive modality
for fall detection. In this sense, enhancing the precision of
fall detection systems involves the integration of various
sensor types, which can be classified as either ”homoge-
neous,” utilizing a uniform sensor type such as inertial or
ambient sensors, or ”heterogeneous,” incorporating diverse
data sources in a multimodality-based fall detection system.
Research findings underscore the substantial advancements
achieved by combining multiple sensor types, as this fusion-
based approach furnishes comprehensive information on
human activities and gait balance characteristics [10], [23],
[31].

Systems reliant on a single sensor technology often grap-
ple with accuracy and reliability issues. For instance, ambient
and video-based systems face limitations in monitoring field
size, installation complexities, maintenance challenges, and
adjustments, contributing to increased costs [32]. Wearable-
based systems, while providing data over wireless channels,
may prove intrusive for users due to prolonged wear periods
and potential unreliability. A multisensor-based system offers
distinct advantages, permitting adjustments tailored to sens-
ing scenarios (indoor/outdoor), enhancing flexibility to meet
user needs, and bolstering reliability by harnessing diverse
information sources. Given fall circumstances’ intricate and
varied nature, the fusion of disparate information emerges as
a highly effective strategy.

III. MATERIALS AND METHODS

A. The BRL Smart Walker

For this study, a conventional four-wheeled walker was
used and empowered with multiple sensors and actuators to
extract information from the user and the environment. The
proposed BRL Smart Walker (SW) uses encoders (AS5600
Magnetic, Osram, Germany) on the rear wheels to estimate
the device’s movement. An Inertial Measurement Unit (IMU)
(BNO080, SparkFun, USA) at the bottom of the seat es-
timates the SW’s orientation. These two sensors provide
SW’s odometry. The onboard Raspberry Pi 3 Model B 64GB
(Raspberry Pi Foundation, UK) runs Debian with the Robotic
Operation System (ROS) framework. A camera (Astra S,
ORBECC, China) on the backrest records the user’s gaze
during experiments. The box in the middle of the walker
holds all the electronics.

Additionally, from the related works, three additional
sensors were chosen for the fall detection system. A wireless
IMU sensor (MetaMotionRL - MBIENTLAB) positioned on
the waist [10], [23], [33]. A pair of Force Sensing Resistors
(FSRs) (Interlink Electronics FSR 402) for each handlebar
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Fig. 1. Illustration of the BRL Smart Walker and the proposed sensors [34].

of the walker [9], [10], [20]. An LRF (URG-04LX-UG01)
facing the user legs mounted over the walker [10], [20]. Fig.
1 illustrates the smart walker and the main sensors on it.

B. The Fall Detection System

The system is composed of a wireless IMU sensor, which
will be attached to the user’s back using a waistband,
and the smart walker’s sensing system. The sensing system
comprises sensing handlebars (on which force sensors are
applied to detect the differences in the user’s grip force) and
an LRF sensor, which can detect the distance between the
user and the walker and analyze the gait.

First, the system checks if the handlebars are being held
using FSRs. If both are gripped, it moves to the IMU sensor
on the user’s back, which looks for signs of falls or near-falls
based on body movements. Simultaneously, the LRF on the
walker focuses on the legs. It checks if they are in a safe
position and if the stride length is normal. A warning is sent
if the legs are not in a safe position or the stride is unusual.
Generally, the handlebars start the check, the back sensor
looks for overall body movements, and the walker’s sensor
watches the legs for any issues. Together, they help detect
and warn about potential falls.

From the 6-axis IMU sensor, the acceleration and the
angular velocity on the three axes were extracted at a
sampling frequency of 100 Hz. The data was analysed using
MATLAB R2023a (MathWorks Inc., Natick, MA, USA). The
acceleration data has been filtered with a 4-order Butterworth
low-pass filter with a cutoff frequency of 10 Hz, and a tilt
correction has been applied due to the potential misalignment
with the anatomical planes. The angular velocity data instead
has been filtered with a 2-order Butterworth low-pass filter
with a cutoff frequency of 20 Hz.

The acceleration was then used to calculate the sagittal
and coronal plane trunk inclination to decide the detection
algorithm. In case of trunk inclinations lower than 60°, pre-
fall detection algorithms are applied. In contrast, for trunk
inclinations equal to or greater than 60°. Fall detection

algorithms are applied. Following the steps of Ahn et al.
algorithm, the sum vector of the acceleration and the sum
vector of the angular velocity was extracted [35].

Fall Detection Algorithms
1) Kangas Algorithm: The algorithm was adapted by

incorporating thresholds specific to the waist application
and enforcing the trunk inclination restriction of greater
than 60°. Initially, the algorithm checks if the vertical axis
acceleration is below 0.75 g (first threshold). If met, it
identifies the maximum acceleration norm in the subsequent
samples, verifying if it exceeds 2g (second threshold). If
this condition is satisfied, the algorithm examines the lying
posture, assuming that the person will likely stay lying on
the floor or other surfaces post-fall. This is determined by
evaluating the vertical acceleration within a 2-second interval
starting from the sample after the identified impact. A fall is
detected if it is below 0.5 g (third threshold). The algorithm
demonstrates a sensitivity of 97.5%, and a specificity of
100% [36].

2) Vertical Velocity Algorithm: The Vertical Velocity
(VV) feature is determined by numerically integrating the
acceleration along the y-axis. A fall is identified if the
VV falls below the designated threshold of -1.3 m/s. The
algorithm initiates only when the trunk inclination exceeds
60°. In the original study, utilizing the IMU on the trunk, the
algorithm demonstrated 100% accuracy, detecting an average
of 323 ms before the impact on the trunk [37].

Pre-Fall Detection Algorithms
3) Triangular Feature Algorithm: The Triangular Feature

(TF) is determined as the area of the triangle formed by
the vector sum of acceleration along the three axes. During
standing, the acceleration along the y-axis is 1 g, while the
others are 0, resulting in a TF value of 0. Similarly, when
lying down, it is the acceleration along the z-axis that is 1
g, leading to a TF value of 0. Thresholds were established
by evaluating sensitivity, specificity, and accuracy across
various possibilities for acceleration (Anorm < 0.9g),
angular velocity (AV norm > 47.3 °/s) vector sums, and
TF (TF > 0.19). The algorithm demonstrated a sensitivity
of 100%, specificity of 83.9%, and accuracy of 90.3% on
the SisFall dataset. On the study dataset, accuracy reached
100% with a lead time of 427 ± 45.9 ms. Upon visual
analysis of data, a modified Triangular Feature Algorithm
was implemented, adjusting the threshold to accommodate
the specific conditions of the study (i.e., Anorm < 0.85g,
AV norm > 35 °/s, and TF > 0.15). [35].

4) Vertical Angle Algorithm: The Vertical Angle Feature
is derived from sagittal or coronal trunk inclination (trunk),
with thresholds applied as follows: Anorm < 0.9g, then
(AV norm > 47.3 °/s), and finally trunk <°. The algorithm
was tested on the SisFall dataset, revealing a sensitivity of
100%, specificity of 78.3%, and accuracy of 86.9%. On
the study dataset, the accuracy reached 100% with a lead
time of 401±46.9 ms. Similarly, for the Vertical Angle
Algorithm, thresholds were adjusted to align with the specific
characteristics of the current study (i.e., Anorm < 0.85g,
AV norm > 35 °/s, and trunk <°) [35].



5) Pre-Fall Vertical Velocity Algorithm: The Bourke et
al. Vertical Velocity Algorithm underwent modification to
identify pre-falls rather than actual falls. The constraints
applied to trunk inclination, acceleration norm, and angular
velocity norm in the previous algorithms were incorporated
into this one as well, with the addition of the Vertical Veloc-
ity feature, calculated through numerical integration of the
acceleration along the y-axis. The Vertical Velocity threshold
was adjusted from -1.3 m/s to -0.3 m/s, determined through
manual analysis of data obtained from the experiments [37].
The final pre-fall vertical velocity threshold underwent a
second modification to a more constrained version with a
threshold of -0.25 m/s.

Note that the proposed pre-fall algorithms have initial and
modified thresholds. This is in the light of finding the best
configuration for near-fall events.

C. Experimental Protocol

Initially, an analysis of studies involving fall detection with
wearable sensors (EMG electrodes, pressure sensors, and
IMUs) was conducted. Protocols in related works focused
on two main trial groups: Activities of Daily Life (ADLs)
and falls. Common ADLs included standing, sitting, standing
up, walking at different paces, and stair ascents and descents.
Falls encompassed forward, backwards, left, and right side
falls, slipping, and tripping. Safety measures often included
the use of mattresses. However, when examining protocols
specifically designed for walkers, the number of studies
diminished significantly, with unclear protocols often lacking
safety measures. Based on the analysis of various studies, an
ad hoc protocol was devised, prioritizing both safety and data
usability.

The research ethics committee of the University of the
West of England Bristol approved the experimental protocol.
All experiments were conducted at the BRL laboratory.
Participants were briefed on experiment procedures through
a participant sheet and practical demonstrations at the labora-
tory. Participants wore a MetaMotionRL wearable sensor on
their back using an instrumented walker. To ensure safety,
a Body Weight Support (BWS) system, comprising a vest
(RgoSling Ambulating Vest) attached to a mobile suspension
(Molift AIR 205), was employed. The BWS or harness
served as a critical safety measure. Various ADLs were
performed, each for three repetitions, taking approximately
10-15 minutes. The activities included walking at a normal
pace, walking fast, stand-to-sit transfer, sit-to-stand transfer,
picking up an object from the floor, and standing still.

Near-fall events were conducted, including falls while
standing still, falls while walking, and free-falling, each
performed with and without the walker. The participants were
asked to recover balance without falling to the floor, ensuring
a flexed knee and using the walker as support. The partici-
pants were asked to conduct the falls in 5 directions (i.e., left,
right, forward, backwards, and downward), repeating each
fall three times. The time required for near-fall events was ap-
proximately 30 minutes. The study recruited young, healthy
participants (20-60 y.o.) randomly from both genders, with

TABLE I
METRICS COMPARING FREE FALLS VS. FALLS WITH SMART WALKER

Algorithms
Sensitivity

[%]
Specificity

[%]
Accuracy

[%]

SW Free SW Free SW Free

Kangas 100 100 100 100 100 100

Vertical Velocity 100 100 100 100 100 100

Triangular Feature 27.5 9.5 100 100 58.8 52.6

Vertical Angle 41.4 69.4 100 100 64.8 67.6

Pre-Fall Vertical Vel. 28.9 39.5 100 100 58.1 62.9

exclusion/inclusion criteria including no cerebrovascular or
neurological diseases, no cardiovascular diseases, no motor
impairments, no relevant medical history, and no medication
use.

A total of 6 participants were selected as case studies
(30 ± 8.29 y.o., 173 ± 6.66 cm, and with IMU located
at 106.33 ± 3.32 cm). All agreed and gave signed consent
to take part in the study. Finally, to assess the performance
of the algorithms, sensitivity, specificity, and accuracy were
calculated as [38]:

Sensitivity =
TP

TP + FN
(1)

Sensitivity =
TN

TN + FN
(2)

Sensitivity =
TP + TN

TP + TN + FP + FN
(3)

True positive (TP) is the number of participants correctly
identified as fallers. False positive (FP) is the number of
participants incorrectly identified as fallers, True negative
(TN) is the number of participants correctly identified as non-
fallers, and False negative (FN) is the number of participants
incorrectly identified as non-fallers.

IV. RESULTS

An inter-case study analysis was conducted for the six
participants, analyzing the performance of the proposed algo-
rithms between free falls conditions and falls during walker-
assisted gait1. Table I describes the sensitivity, specificity,
and accuracy metrics for the proposed falls and pre-falls
with the original thresholds. Table II describes the sensitivity,
specificity, and accuracy metrics for the proposed falls and
pre-falls with the modified thresholds.

All the algorithms were applied to a public dataset com-
prising eight participants, evenly split between males and
females, all in good health and young age. The participants
exhibit an average height of 1.7 meters with minimal vari-
ability (±0.1 meters), an average weight of 65.4 kilograms
with a slight fluctuation (±9.2 kilograms), and an average
age of 25.1 years with a range of ±2.9 years. The experimen-
tal setup involves a 200x100x40 cm mattress strategically

1Raw data is available here

https://figshare.com/articles/dataset/Data_for_Integrating_Fall_Detection_and_Prevention_into_a_Smart_Walker/25992250


TABLE II
METRICS COMPARING FREE FALLS VS. FALLS WITH SMART WALKER

WITH MODIFIED THRESHOLDS.

Modified
Algorithms

Sensitivity
[%]

Specificity
[%]

Accuracy
[%]

SW Free SW Free SW Free

Triangular Feature 31.2 31.6 100 100 59.2 63.7

Vertical Angle 43.3 83.3 100 100 65.9 74.9

Pre-Fall Vertical Vel. 28.3 68.9 100 100 59.2 77.9

TABLE III
METRICS FOR MODIFIED ALGORITHMS APPLIED ON THE DATASET

Algorithm
on Dataset

Sensitivity
[%]

Specificity
[%]

Accuracy
[%]

Confidence
Interval

Kangas 86.1 100 92.2 [89.69%, 96.31%]
Vertical Velocity 100 39.3.6 73.4 [56.23%, 72.24%]
Triangular Feature 72.2 44.6 60.1 [47.89%, 67.24%]
Vertical Angle 100 28.6 68.7 [49.97%, 74.73%]
Pre-Fall Vertical Velocity 100 14.3 62.5 [55.90%, 71.77%]

positioned on a 40 cm tall wooden structure, with sensors
securely attached to the lower back using a belt for precise
and consistent placement. The dataset incorporated three
distinct protocols: (1) static simulated falls, (2) dynamic
simulated falls, and (3) activities of daily living. This dataset
was retrieved from an online repository. Table III shows
metrics for all algorithms and average confidence intervals
for 95% confidence.

V. DISCUSSION

The deployment of fall detection systems incorporating
IMU sensors represents a common safety measure for the
elderly, with reported statistics typically ranging from 95-
99% in existing studies [39], [40]. However, the outcomes of
this study reveal notably lower statistics, prompting a critical
examination of the limitations introduced by the use of the
Smart Walker and the safety system.

The walker’s presence during experiments introduces in-
herent challenges, particularly when simulating falls, creating
potentially hazardous scenarios. The bulky design of the
walker not only hinders the smooth execution of experimen-
tal procedures but also raises safety concerns. Despite the
incorporation of a body weight support system, simulating
falls induces anxiety in participants, exacerbated by the
presence of the walker. These findings align with those of
Pereira et al., Irgenfried et al., and Taghvaei et al., [10],
[27], [30] were the effects of a young population, and the
difference to real scenarios might hinder generalization.

While the harness enhances participant safety, it concur-
rently imposes significant movement restrictions, introducing
more noise and affecting signal detection. Simulating falls
or balance loss becomes challenging due to the limitations
imposed by the harness, necessitating a delicate balance
between safety and the facilitation of natural movements. No-
tably, the acceleration signal derived from the IMU exhibits
considerable noise, potentially stemming from both the use

of the walker and constrained body movements. Understand-
ing these nuances in signal characteristics is imperative for
refining fall detection algorithms and enhancing the system’s
reliability, particularly in scenarios involving walker usage.

The metrics analysis concerning simulated falls reveals a
substantial reduction in accuracy, specificity, and sensitivity
when the walker is present compared to using only the
body weight support. This suggests potential challenges or
limitations introduced by the walker in the experimental
setup, necessitating adjustments for optimal performance.
Comparing results between algorithms with original thresh-
olds and their modified versions indicates an increase in
metrics attributed to optimized thresholds based on the first
participant. Particularly, sensitivity and accuracy increased
for all modified algorithms for free and walker falls. Person-
alizing the system and addressing anxiety during pre-falls
could improve performance across different cases.

Testing algorithms on a dataset containing real falls and
Activities of Daily Living (ADLs) shows that statistics align
with expectations for algorithms designed for real falls. How-
ever, despite an overall increase, desired levels have not been
attained for other algorithms, potentially due to constraints
introduced during fall simulations. A closer examination
of implemented constraints is necessary to optimise algo-
rithms for real conditions. Analyzing how these constraints
influence algorithm performance can guide modifications,
enhancing the system’s accuracy and reliability in identifying
real falls.

With the proposed modifications to the pre-fall vertical ve-
locity algorithm, the system is able to attain accuracies higher
than 70%, which might be complemented with triggered
signals from additional sensors such as LRFs and FSRs,
during walker-assisted gait. The effects of the walker on the
user biomechanical chain affect the measured accelerations
at the user waist, and thus lead to lower metrics compared
to free-fall scenarios.

VI. CONCLUSIONS AND FUTURE WORKS

This article’s proposed fall detection system aims to dis-
cern between various scenarios, encompassing Activities of
Daily Life (ADLs) like walking or retrieving objects from
the floor, pre-falls, and actual falls. The primary objective
is to develop a highly reliable system that detects falls and
pre-falls to deliver valuable feedback.

Upon detecting an actual fall, the fall detection system
should trigger different alarms, such as notifying the care-
giver’s phone, emitting an acoustic alarm to alert individuals
in proximity, and automatically activating the brakes. In
the case of pre-fall detection, two distinct scenarios are
envisioned: the user momentarily losing balance but recov-
ering, or the loss of balance serving as a precursor to an
impending fall or potential injury. In response to the first
scenario, the initial feedback entails automatically activating
the brakes. Subsequently, the system may display a button
on the interface, prompting the user to press it within a
designated time frame; failure to do so could result in the

https://doi.org/10.6084/m9.figshare.25146284.v2


activation of alarms associated with an actual fall, including
the acoustic alarm and caregiver notification.

Furthermore, the system contemplates integrating a daily
pre-fall count feature, allowing for the continuous monitoring
of the user’s status. This functionality enables the system to
notify caregivers of any noteworthy changes in the user’s
routine, such as a sudden increase in instances of balance
loss during specific time intervals throughout the day.
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