
Computers & Security 143 (2024) 103903

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Vulnerability detection through machine learning-based fuzzing: A
systematic review
Sadegh Bamohabbat Chafjiri ∗, Phil Legg, Jun Hong, Michail-Antisthenis Tsompanas
University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK

A R T I C L E I N F O

Keywords:
ML fuzzing
TML fuzzing
DNN fuzzing
RL fuzzing
DRL fuzzing

A B S T R A C T

Modern software and networks underpin our digital society, yet the rapid growth of vulnerabilities that are
uncovered within these threaten our cyber security posture. Addressing these issues at scale requires automated
proactive approaches that can identify and mitigate these vulnerabilities in a suitable time frame. Fuzzing
techniques have emerged as crucial methods to preemptively tackle these risks. However, traditional fuzzing
methods encounter various challenges, such as a lack of strategy for deep bug identification, time-intensive bug
analysis, quality of inputs, seed scheduling and others. To overcome these challenges, diverse Machine Learning
(ML) models and optimisation techniques have been employed, including advanced feature engineering,
optimised seed selection, refined predictive/fitness models, and Gradient-based optimisation. Furthermore,
the use of ML architectures such as Long Short-Term Memory (LSTM), Generative Adversarial Network
(GAN), Sequence-to-Sequence (Seq2Seq), and Generative Randomised Unit (GRU), have demonstrated greater
effectiveness within ML-based fuzzing. In this paper, we delve into this paradigm shift, aiming to address
fundamental challenges across different ML categories. We survey popular ML categories such as Traditional
Machine Learning (TML), Deep Learning (DL), Reinforcement Learning (RL), and Deep Reinforcement Learning
(DRL), to investigate their potential for enhancing traditional fuzzing approaches. We explore the respective
advantages in each category of ML-based fuzzing, while also analysing the challenges unique to each category.
Our work provides a comprehensive survey across the fuzzing domain and how machine learning techniques
have been utilised, that we believe will be of use to future researchers in this domain.
1. Introduction

Fuzzing is the process of automated software testing to assess how
a given system, whether it be an application or a network tool, handles
various forms of input, including unexpected and random data inputs
generated automatically.

The process of software testing is both part of the established
development lifecycle and a key component of software security test-
ing to uncover potential vulnerabilities caused by bugs that could
be further exploited by an adversary. Software vulnerabilities such
as Heartbleed (Carvalho et al., 2014), Shellshock (Anon, 2014), and
log4j (Anon, 2021) are good examples of these vulnerabilities that have
been widely reported and are known to have had devastating impact
on many organisations. Hence, the identification of software vulnera-
bilities using fuzzing analysis is vital for maintaining a strong cyber
security posture. The traditional concept of fuzzing was introduced by
Miller back in 1988 and also through his work in the early 1990s (Miller
et al., 1990, 1995). Fuzzing methods have since evolved to cover a
range of white-box (Molnar et al., 2008), grey-box (Böhme et al., 2017)

∗ Corresponding author.
E-mail address: sadegh2.bamohabbatchafjiri@uwe.ac.uk (S. Bamohabbat Chafjiri).

and black-box (Abdelnur et al., 2007) methods, giving full, partial
and zero access to software details respectively. A variety of fuzzing
techniques have since been proposed (Takanen, 2009; Miller and Pe-
terson, 2007; Felderer et al., 2016) including generation-based fuzzing,
mutation-based fuzzing and evolution-based fuzzing, including Genetic
Algorithms (She et al., 2020) and the popular American Fuzzing Lop
(AFL) (Zalewski, 2020). Most recently, and as the motivation for this
systematic review, Traditional Machine Learning (TML), Deep Learning
(DL), Reinforcement Learning (RL), and Deep Reinforcement Learning
(DRL) techniques are now popular methods amongst the research com-
munity (Saavedra et al., 2019; Wang et al., 2020a; Miao et al., 2022;
Mallissery and Wu, 2023; Daniele et al., 2024) that have been used to
help address some of the most pressing fuzzing challenges that exist
today:

• Bug Identification and Prioritisation: Whilst fuzzing may re-
port crashes, it remains challenging to identify and distinguish
different types of bugs, especially on a large scale. Furthermore,
vailable online 19 May 2024
167-4048/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cose.2024.103903
Received 17 December 2023; Received in revised form 11 April 2024; Accepted 15
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

May 2024

https://www.elsevier.com/locate/cose
https://www.elsevier.com/locate/cose
mailto:sadegh2.bamohabbatchafjiri@uwe.ac.uk
https://doi.org/10.1016/j.cose.2024.103903
https://doi.org/10.1016/j.cose.2024.103903
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103903&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.

l
k
t
D
e
g
p
c

p
s
a
e
L
t
t
r
i
c

2

s
2
D
M
a
o
a
h
i
c
f
t
f
b
a
T
s
c
a
f
c
a
l
s
a
m
v

deciding which crashes should be given higher priority for resolu-
tion is complex. ML is effective for classification tasks, and so can
be used to classify and prioritise bugs effectively (Tripathi et al.,
2017).

• Time-Consuming Bug Analysis: Conducting in-depth analysis
of identified bugs, and identifying suitable mitigations through
patching, can be time-consuming. ML can assist in automating
bug analysis to identify suitable patching processes earlier (Zhang
and Thing, 2018).

• Seed Scheduling: Since some fuzzing techniques rely on seed-
ing (for randomisation), researchers are interested in develop-
ing heuristic rules for predicting the scheduling of seed inputs.
ML models can provide insights into optimising seed selection
strategies for efficient fuzzing (Chen et al., 2020).

• Data Flow Interpretation: Current fuzzing techniques rely on in-
terpreting data flow to extract specifications of models. However,
there is a need for more complex models that can capture both
control flow and data flow features, especially when analysing
different protocol specifications automatically. ML can assist in
developing more accurate models for this purpose (Lin et al.,
2020; Huang et al., 2022a).

• Syntactic and Semantic Property Prediction: Predicting both
syntactic and semantic properties of a program is a challenging
task. ML algorithms can be used to build models that can predict
these properties effectively, enhancing fuzzing capabilities (Ray-
chev et al., 2015).

• Ambiguity in Analysing Defects: Ambiguity in identifying de-
fects within language interpreters poses a challenge for traditional
fuzzers. ML can aid in developing techniques to handle this
ambiguity and improve the effectiveness of fuzzing (Sun et al.,
2018).

• Deep Bugs and Input Generation: Deep bugs often occur during
the execution of software processing structured inputs, making
them hard to identify and address, particularly in stateful sys-
tems. Creating test inputs to trigger these deep bugs automati-
cally is complex. ML can help in generating effective test inputs
and addressing deep bugs. Additionally, ML can assist in reduc-
ing the rejection rate during the initial syntax parsing stage of
mutation-based fuzzing, enhancing its efficiency (Wang et al.,
2017).

• Mutation Operator Selection: Choosing suitable mutation op-
erators for fuzzing poses a significant challenge, particularly in
cases where a uniform distribution of mutators is employed.
Additionally, the phenomenon of saturation, as outlined in litera-
ture (Groß et al., 2022), exacerbates this challenge by generating
inputs that predominantly traverse paths already explored, while
neglecting others. ML can assist in making more informed deci-
sions about mutation operator selection, increasing the likelihood
of generating interesting inputs (Karamcheti et al., 2018).

In this paper, we conduct a systematic review of the academic
iterature for ML-based fuzzing. We structure our review around four
ey types of machine learning: traditional Machine Learning (TML)
echniques, Deep Learning (DL), Reinforcement Learning (RL), and
eep Reinforcement Learning (DRL). In this way, we also study the
volution of fuzzing across these four types, with deeper models gained
reater traction in recent years as computing power has increased. As
art of our review, we highlight four key contributions that this survey
an provide for the academic research community:

• Enriching Traditional Models: Our survey shows how ML tech-
niques can enhance fuzzing across different stages, such as test-
case generation, execution of Software Under Test (SUT), runtime
state checking, and analysis of vulnerabilities. Within traditional
models, we show the application of feature-based, predictive, fit-
ness, and long-input correlation tracing models. These techniques
demonstrate promising results for improving fuzzing effectiveness
2

in detecting vulnerabilities. w
• Expanding DL Techniques: Our survey explores frequently used
exploration and optimisation approaches using DL; specifically,
dynamic information prioritisation and gradient-guided optimi-
sation, along with different architectures, such as standard or
bidirectional LSTM networks, GANs, and hybrid models combined
with seq2seq and GRU models. Our survey also explores tech-
niques deployed against complex targets, such as Kernel and File
System (FS) fuzzing, and suitable datasets for Operating System
(OS) fuzzing, to emphasise the role of DL models in identifying
complex bugs and vulnerabilities.

• RL and Hybrid Approaches: Our survey explores how RL can be
combined with various techniques, such as LSTM and dynamic
mutation analysis, seed scheduling, and Kernel fuzzing. This syn-
thesis of RL along with other techniques illustrates the potential
for achieving advanced fuzzing outcomes, such as uncovering
bugs in a reduced time frame.

• Enhancing DRL Landscape: Our survey illustrates the enrich-
ment of DRL through the integration of a Curiosity-driven model,
deep Q-learning (DQL), and frameworks combining DNN and
RL. This integration not only expands the landscape of DRL, but
also introduces novel approaches for improving the efficiency of
fuzzing techniques.

The remainder of the paper is organised as follows. Section 2
rovides further motivation for why this review is necessary to the re-
earch community. Section 3 outlines our data collection methodology
nd criteria for how we have conducted the systematic review of the
xisting academic literature. Section 4 discussed traditional Machine
earning techniques in application to fuzzing, followed by Section 5
hat discusses Deep Learning techniques. Sections 6 and 7 explore
he use of Reinforcement Learning and Deep Reinforcement Learning
espectively. Finally, Section 8 discusses the current research landscape,
dentifying key limitations and areas of further research, and Section 9
oncludes the survey.

. Motivation

There are several survey papers that have previously addressed the
ubject of machine learning-based fuzzing, including (Saavedra et al.,
019; Wang et al., 2020a; Miao et al., 2022; Mallissery and Wu, 2023;
aniele et al., 2024). These studies explore the diverse applications of
L techniques in areas such as seed or test case generation and program

nalysis. For example, Saavedra et al. (2019) surveyed the application
f ML in fuzzing, discussing its utilisation in the generation of inputs
nd the analysis of interesting program states post-fuzzing. They also
ighlighted challenges such as the limited use of supervised learn-
ng techniques and issues related to training data and computational
omplexity. In Daniele et al. (2024), Daniele et al. surveyed state-
ul systems and offered a systematic comparison and classification of
hese fuzzers. In Mallissery and Wu (2023), Mallissery et al. categorise
uzzing methods by application domains and techniques, differentiate
etween source code-independent and static analysis-based approaches,
nd explore symbolic and concolic execution through a case study.
hey also examine target fuzzing domains like firmware/kernel is-
ues and instrumentation error-focused fuzzers, and address associated
hallenges in fuzzing. In another study by Miao et al. (2022), the
uthors conducted a thorough investigation of deep learning within
uzzing methodologies, emphasising the role of deep learning in test
ase creation, monitoring, scheduling, and program analysis. The work
lso addresses current issues and potential future directions in deep
earning-based fuzzing research, underlining its ongoing importance in
ecurity research. Similarly, Wang et al. (2020a) presented a system-
tic survey offering a comprehensive overview of distinct ML-based
ethodologies, investigating supervised, semi-supervised, and unsuper-

ised techniques. They assess the prevalence of ML across published

orks, with a particular focus on vulnerability analysis.



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
The literature survey reveals that ML encompasses an array of
supervised, semi-supervised, and unsupervised techniques, facilitating
the automated acquisition and modelling of complex systems. The
surveyed papers involve diverse fuzzers based on the specific steps
at which the designated ML technique is applied. Furthermore, they
analyse the prevalence distribution of ML techniques across the spec-
trum of published works. The authors categorise these algorithms into
three general classes (Wang et al., 2020a): TML, DL, and RL, while
concurrently examining their role in vulnerability analysis.

Nevertheless, there remains the opportunity for further exploration
of diverse papers with a level of detail and under various criteria that
have not yet been comprehensively examined in preceding surveys of
the literature. For instance, the comparison tables in the referenced
paper (Wang et al., 2020a) could benefit from clearer organisation.
By providing a concise compilation of the various fuzzing techniques,
inputs, outputs and SUTs, researchers will be able to assign algorithms
to specific sub-categories much easier. This clearer structure would
enhance the understanding of the strengths and weaknesses of each
technique, enabling researchers and practitioners to make more in-
formed decisions about which approach best suits their needs. For
instance, in a scenario where a fuzzer is associated with a specific
architecture, such as LSTM, the connection between the architecture
and the literature employing that specific architecture is absent in
previous surveys such as Wang et al. (2020a). Examining the number
of studies that have utilised the specific architecture is not possible
in previous surveys. Consequently, it remains unclear whether the
literature aligns with a standard or a hybrid model of the specific
architecture mentioned.

As a result, researchers may face challenges in establishing connec-
tions between the names or structural attributes of different fuzzers, or
in being able to replicate previous studies for further experimentation.
This difficulty extends to identifying and categorising papers into dif-
ferent models based on corresponding fuzzer categories, subcategories,
and underlying classifiers. Our work aims to help resolve these issues
to aid future researchers who are exploring this topic, and to aid
reproducibility of scientific experimentation.

3. Data collection methodology

We outline our methodology for data collection, including eligi-
bility criteria of works and methods for catergorisation, to give a
comprehensive review of the existing literature and identified gaps.
Our selection approach follows that of the PRISMA framework (the
Preferred Reporting Items for Systematic Meta-Analysis) (Page et al.,
2021). Fig. 1 illustrates the detailed selection process that we have
adopted for this survey.

3.1. Eligibility criteria and search terms

To ensure a comprehensive literature review, we carefully reviewed
previous systematic literature reviews and then crafted some search
terms to identify the most pertinent articles. Search terms, listed in
Table 1, were determined to capture relevant research in our topic
areas. Additionally, we utilised a bibliography of systematic survey pa-
pers published in the past and received personalised recommendations
based on our most recent signed-in activity on the databases listed in
Section 3.2.

We aimed to achieve broad coverage of relevant literature using
these search queries. As a result, we made a deliberate choice to include
works found on different platforms.

After collating the search results, we eliminated any duplicate en-
tries, which were available on other well-known databases. The search
encompassed various databases, and it was conducted up to October
2023. Subsequently, we screened each paper by reviewing the title
and abstract, applying inclusion criteria based on the relevance of
the article in ML-oriented fuzzing, particularly focusing on the four
categories outlined in Table 1.
3

Table 1
Topics and corresponding search terms utilised in this study.

Topic Search query

Traditional Machine Learning Fuzzing Fuzzing, Machine Learning
Deep Learning Fuzzing Fuzzing, Deep Learning,

Deep Neural Network
Reinforcement Learning Fuzzing, Reinforcement Learning
Deep Reinforcement Learning Fuzzing, Deep Reinforcement Learning
Survey Literature in Fuzzing Survey on ML-based Fuzzing

3.2. Database selection

We chose several databases with a significant computer science
component to conduct our literature searches and retrieve relevant
publications. The selected databases were ScienceDirect, ACM Digital
Library, IEEE Xplore, SpringerLink, and Arxiv. ArXiv is not a peer-
reviewed platform; thus, any works referred to from ArXiv must be
carefully assessed with a greater level of scrutiny. We selected papers
that appear to have been impactful on the fuzzing domain, as judged
by further citation in peer-reviewed journal articles, or that have been
submitted to the pre-print server only within the last year (i.e. 2023).
The growing popularity of releasing pre-print work early on platforms
such as ArXiv demonstrates the fast pace of technology and enables
inclusion of state-of-the-art techniques in this survey.

3.3. Methodology for categorisation

In light of the escalating significance of robust fuzzing techniques
for bolstering software security, our paper presents a pivotal contribu-
tion through an exhaustive survey of research literature. Unlike prior
surveys, our study delves comprehensively into the employed tech-
niques, input–output mechanisms, and models or architectures across
various fuzzing methodologies. By offering an in-depth analysis, we aim
to provide a more nuanced understanding of the evolving landscape of
fuzzing methodologies, thereby facilitating informed decision-making
for researchers and practitioners in the field of software security. We
aim to provide a holistic view of the various categories and subcate-
gories within the realm of fuzzing, particularly emphasising the role of
ML-based methodologies. A sample representation of ML-based fuzzing
is depicted in Fig. 2. Building on the model presented by Cheng et al.
(2019), we extend this to encompass all ML-based fuzzing models to
provide a general representation of the relationship between input data
and the target. The figure illustrates a comprehensive model of ML-
based fuzzing. The learning stage from the target may utilise either
supervised or unsupervised models, with the choice depending on the
specific requirements and the nature of the software being tested.

In this paper, we surveyed research papers from different perspec-
tives where we have four categories listing the most popular techniques
used in the fuzzing domain as TML, DL, RL and DRL. We discuss our
research approach in the field of ML-based fuzzing, which is detailed
in subsequent sections.

4. TML techniques for fuzzing

TML techniques rely on predetermined feature techniques and
mathematical calculations to handle Regression and Classification prob-
lems. In TMLs, a supervised model is trained on labelled data. It
generates predictions based on discovered patterns in different ways
and improves the fitness function that can discover high-quality test
cases. In multiple pieces of research, to make predictions or cate-
gorise input data, ML techniques rely on predetermined features and
mathematical functions that can guide the input. In this section, we
introduce three different approaches to TML models: Feature-based
Models, predictive/Fitness Models, and long-input correlation tracing

models. Each approach highlights specific characteristics of the input



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Fig. 1. Review findings utilising the PRISMA framework.
file and test cases or applies a new model to guide the fuzzing process or
optimises current models. In Table 2 we introduced each TMLs model’s
Specifications. A feature-based protocol model evaluates characteristics
and features to aid decision-making using a predefined set of features.
On the other hand, predictive or fitness models emphasise the optimal
relationship between input and output by predicting the behaviour of
the target program using various techniques. Additionally, optimisation
models assess the quality of generated inputs across different fuzzer
structures and evaluate their impact on code coverage.

4.1. Feature-based models

Feature-based models make decisions about selecting, generating,
or modifying inputs based on predefined input variables. They are con-
structed using training data, allowing them to correlate input attributes
with predicted outputs. Techniques like linear regression, decision
4

Table 2
Different types of TML models.

Model type Description

Feature-based Models Evaluates features for
decision-making.
Uses a predefined set of features.

Predictive/Fitness Models Predicts target program
behaviour.
Focuses on the input–output
relationship.

Long Input Correlation Tracing Models Assesses the quality of generated
inputs by long input correlation
checking.
Evaluate its impact on code
coverage.



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Fig. 2. A sample model of ML-based fuzzing structure.
trees, support vector machines, and neural networks fall under this
category.

Innovations in this domain, such as Exniffer (Tripathi et al., 2017),
utilise SVM and runtime features to identify security-critical crashes
and analyse their exploitability. What sets modern approaches apart is
their flexible online learning, departing from traditional offline meth-
ods and allowing model updates without complete retraining. Another
example of this method is MEUZZ (Chen et al., 2020) embodies hybrid
features for real-time and offline learning by dynamically adjusting
seed schedules based on past decisions. This significantly enhances
fuzzing outcomes, focusing on achieving greater accuracy compared to
heuristic methods while maintaining fuzzing efficiency.

Feature-based models also excel in reverse engineering. For exam-
ple, Lin et al. (2020) used clustering and Extended Finite State Ma-
chines for effective protocol evaluation. Huang et al. (2022a) employed
predefined features in protocol reverse-engineering, addressing security
and privacy concerns. Additionally, Feng et al. (2020) proposed the use
of techniques such as exception field positioning and employed field
attribute set models to pinpoint vulnerabilities in the Modbus protocol,
demonstrating the effectiveness of feature-based fuzzing.

In summary, feature-based models prove to be potent tools in
fuzzing, leveraging predefined input attributes for better decision-
making. Notably, they excel in security analysis and protocol reverse
engineering, showcasing their versatility and effectiveness.

4.2. Fitness functions and predictive models

In this section, we present two distinct techniques that utilise ef-
ficient models over feature functions, namely fitness functions and
predictive models for sophisticated codes. The differences between
fitness functions and predictive models in the context of fuzzing are dis-
tinct yet complementary. Fitness functions primarily serve to evaluate
the quality of test cases by assigning scores based on specific criteria
like code coverage or crash detection, helping to prioritise the most
promising testcases. In contrast, predictive models aim to simulate the
behaviour of the target application when subjected to various inputs,
aiding in the identification of inputs more likely to trigger vulnerabil-
ities. Also, predictive models identify various input file characteristics
using an approximate algorithm, combining unknown and known prop-
erties. This approach slightly differs from feature-based models that
rely on the classic method of predefined features for predictions. In
5

this context, predictive models and fitness functions concentrate on
probabilistic models approximating complex behaviours in big codes
to enhance optimisation efficiency compared to feature-based models
using a less complex model.

One notable early model is JSNICE, utilising Conditional Random
Fields (CRFs) to predict program properties in JavaScript (Raychev
et al., 2015). It transforms input programs into a suitable representation
and leverages structured prediction with machine learning, employing
graphical models like Conditional Random Fields (CRFs). This approach
is essential since both the context and the sequence of blocks and fea-
tures are important. Additionally, it utilises the Structured Support Vec-
tor Machine (SSVM) classifier, optimised through gradient descent, to
handle the relationship between structured and interdependent inputs
and outputs.

To address uncommonness, Sun et al. developed the Naturalness
Heuristic for Fuzzing (NHF), a fitness function for language fuzzing
using genetic programming and geometric mean (Sun et al., 2018). NHF
computes script probabilities based on the Markov-Chain Probabilistic
Context-Free Grammar (MPCFG Model), minimising the influence of
script length on the coverage metric and fitness value.

In summary, these models represent advancements in predictive
modelling and fitness functions, showcasing the effectiveness and ver-
satility of ML in dynamically predicting program properties through
predictive models or optimising the fuzzing process through fitness
functions.

4.3. Long input correlation tracing models

The Long Input Correlation Tracing Models for Seed Generation
discussed in this section effectively allocate resources in scenarios with
multiple choices or options, particularly in decision-making amidst un-
certainty, such as selecting well-distributed seed samples and filtering
testcases for fuzzing to expose software vulnerabilities (Wang et al.,
2017). For example, the length of a script influences the fitness value,
where Probabilistic Context-Free Grammars (PCFG) introduced in the
previous subsection are only suitable for basic fuzzing tasks, while
Probabilistic Context-Sensitive Grammars (PCSG models) are powerful
tools for discovering complex dependencies. They enable the fuzzer
to generate highly realistic inputs based on both syntax and semantic
validation. Skyfire’s (Wang et al., 2017) data-driven approach leverages
PCSG to generate diverse and well-distributed inputs, tracing longer



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Fig. 3. Frequency of reviewed literature in three subcategories of TML models.
correlations than previously explained. It offers advantages in optimis-
ing resources, particularly for fuzzing a closed-source target by using
fit test cases compared to PCFG. In the realm of Multi-armed Bandit
problems, Thompson Sampling optimisation has been employed in the
AFL to adaptively learn mutator distributions and dynamically change
resource allocation based on the observed results from earlier test
cases, thereby maximising computational efficiency (Karamcheti et al.,
2018). Ultimately, this optimisation technique generates diverse and
well-distributed inputs, traces longer input correlations, and maximises
valuable results, while, optimising computational efficiency.

4.4. Assessment of TML techniques

By examining the pie chart and the distribution of each TML model
depicted in Fig. 3, it is evident that most studies have concentrated
on fitness models. In comparison, predictive/fitness and Long Input
Correlation Tracing Models have a smaller share compared to feature-
based models, despite demonstrating potential in enhancing automated
capabilities and scalability for fuzzing sophisticated targets. This pref-
erence could be attributed to the simplicity of feature-based models,
which allows experts in fuzzing to work with relative ease without
needing in-depth knowledge or skills required for other supervised
learning techniques. Fitness models allow testers to concentrate on
specific goals and contexts within the fuzzing process, thus highlighting
their advantages in feature selection, adaptability, and customisation.
The feature-based model can potentially detect vulnerabilities earlier,
reducing the time and resources needed for testing. Nonetheless, pre-
dictive/fitness and long input correlation tracing models offer more
opportunities for adapting the fuzzing process based on feedback from
fuzzing output and previous attempts. Automated fuzzing can thus
become more effective over time, especially when employing sophis-
ticated algorithms like genetic algorithms, which are well-suited for
maximising code coverage and efficiently allocating resources in the
automated fuzzing of complex bugs over a longer duration.

Also, we summarised TML techniques that were surveyed in this
study in Table 3. As can be seen, seed file generation is the most
common output of different fuzzing techniques and the SVM family
as the classifier was the most frequently used in fuzzing. SVMs are
helpful when you have more types of data (features) than actual data
points (samples). This happens a lot in fuzzing, where you are dealing
with a big and complicated range of inputs. SVMs are good at saving
memory compared to other classifiers because they only use some of the
data points (called support vectors) to make decisions. This is great for
fuzzing, where handling lots of data is important. When you have way
more types of data than data points, SVMs are less likely to overfit, or
6

get too tuned to the specific data you have, especially if you adjust the
controls (regularisation) well. Also, SVMs work well when one type of
outcome (like finding a vulnerability) is much rarer than others, which
is a common situation in fuzzing.

4.5. Challenges in TML models

While the TML model is effective, its practical use is limited by
constraints such as limited code coverage caused by poor datasets.
Additionally, TML struggles with complex, high-dimensional data de-
spite its broad applicability. The ability to adapt fuzzing methods
to new vulnerabilities or targets is also limited. The choice of TML
models depends on the testing environment, the nature of the software,
and the availability of domain-specific expertise. This can lead to
inefficiency in unfamiliar fuzzing environments. Moreover, the balance
between exploration and exploitation (Wang et al., 2021b) in the search
space, and the selection of a fuzzing model, depend on the context
and requirements of the software, data quality, and implementation
complexity. Ensuring the reliability and effectiveness of various fuzzers
across different targets remains a significant challenge. In these sce-
narios where a company lacks this expertise, there is a heightened
risk of misallocating resources by focusing on skills or approaches
that are not essential. This misdirection can result in inefficiencies,
particularly in unfamiliar fuzzing environments, where resources might
be better utilised on more critical and relevant tasks. Such a mismatch
in resource allocation underscores the importance of aligning expertise
with the specific requirements of the TML models and the testing
context and highlights the role of automated testing by the integration
of semi-supervised and unsupervised learning such as DL, underpinned
by the architecture of DNNs, has emerged as a promising solution which
is explained in the following section.

5. Deep neural network techniques for fuzzing

The application of DNN techniques is motivated by the challenges
encountered in TML methodologies (see Section 4.5). DNNs utilise
interconnected nodes across multiple layers to automatically extract
hierarchical representations from raw data, allowing for efficient han-
dling of complex predictive and discriminative tasks. Additionally,
integrating grey-box fuzzing has shown promise in bug identifica-
tion across various applications, enhancing the capabilities of DNNs.
Specifically, when dealing with complex and high-dimensional data,
DNNs outperform TML methods due to their ability to discern intricate
patterns and dependencies.

Therefore, in the second category of our systematic survey, we
delve into the factors that drive the widespread integration of DNNs



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Table 3
Examples of Different Fuzzers Using Different Learning Techniques in the TML Category. C1: Seed File Generation, C2: Message Ready to Send to the SUT, C3: Grammar.

Fuzzer
Name/Structure

Technique Classifier/Clustering Input Output SUT

C1 C2 C3

Exniffer
(Tripathi et al.,
2017)

Analysing run-time
information such as LBR
register, and core-dump

SVM Real world
benchmark (LAVA,
C/C++ test cases)

✓ Real-world apps

MEUZZ (Chen
et al., 2020)

Features extracted through
code reachability and
dynamic analysis

Random Forest for
offline learning and
linear model for
online learning

Real-world
benchmark

✓ Real-world apps

Compact
dynamic
fingerprints and
incremental
learning (Zhang
and Thing,
2018)

Online learning algorithm
and n-gram analysis and
feature hashing

PA classifier VDiscovery dataset ✓ ✓ VDiscover real-world
apps

Feature-based
Models

ReFSM/PRE
clustering (Lin
et al., 2020)

Extended Finite State
Machines (EFSM)

Apriori and K-mean Real-world network
traffic traces

✓ 4 Real-world network
protocols: FTP, SMTP,
BitTorrent and PPLive

Exception field
positioning
(Feng et al.,
2020)

Dimensionality reduction
based on discernibility
matrix and feature
hashing, using decision
tables, discernibility
matrix, and mutation
probability function

Clustering of similar
packets based on
attribute reduction

Modbus protocol
packets

✓ Vulnerabilities of
CNVD/PLC module as
hardware

PRE Methods
(Survey paper)
(Huang et al.,
2022a)

Network trace (NetT) and
Execution trace (ExeT)

Feature-based
protocol classifier

Network traces or
execution traces

✓ Network protocols

Predictive
and Fitness
Models

JSNICE (Raychev
et al., 2015)

Conditional Random Fields
(CRFs)

SSVM JavaScript ✓ ✓ ✓ Javascript programs

NHF (Sun et al.,
2018)

Integrating Markov-Chain
and PCFG

NHF fitness function Java scripts, POC
test cases of
bug-reports from
SpiderMonkey’s
bugzilla

✓ ✓ JavaScript interpreter

Long Input
Correlation
Tracing
Models

Skyfire (Wang
et al., 2017)

Probabilistic
Context-Sensitive Grammar
(PCSG)

Not Applied XSL, XML, and
JavaScript

✓ XSLT and XML engines
(i.e., Sablotron, libxslt,
and libxml2)

Thompson
Sampling
(Karamcheti
et al., 2018)

Fine-tuning mutation Not Applied 75 DARPA Cyber
Grand Challenge
(CGC) dataset

✓ Real world apps such
as Mozilla Firefox,
Adobe Flash, and
OpenSSL
in fuzzing. We present a comprehensive survey encompassing opti-
misation features in DNN models, architectures, complex targets, and
advancements using various DNN models, as prevalent in the existing
literature. The survey provides insights into two state-of-the-art fea-
tures, two baseline architectures and some hybrid models, as well as
a survey on complex targets within the field of integrating DNN with
fuzzing.

5.1. Exploration and optimisation approaches

The robust processing and learning capabilities of DNNs enable
effective fuzzing, facilitating comprehensive exploration and learning
from vast datasets. DNNs enable fuzzing models to effectively prioritise
dynamic information and employ gradient-guided optimisation. These
features, essential for leveraging large and complex search spaces,
were not feasible with TML models. The limitations of TML models
arise from their lack of deep hierarchical learning, limited optimisation
techniques, and their structure, which relies on predefined feature sets.
Therefore, in this section, we highlight two notable advantages of DNN-
based exploration: prioritising dynamic information and leveraging
7

gradient-guided optimisation.
5.1.1. Prioritising dynamic information
In this method, the baseline process of DNN facilitates the extraction

of complex patterns and distinctive characteristics related to defect
occurrence based on dynamic execution. A good example of this ap-
proach is NeuFuzz (Wang et al., 2019), drawing from the principles
of PTfuzz (Zhang et al., 2018), which entails the prioritisation of
pathways with a heightened likelihood of harbouring vulnerabilities.
This model applies LSTM’s distinctive memory function making it well-
suited for managing extended dependencies, as instances of code linked
to vulnerabilities might be situated at considerable distances within the
path. One of the challenges is that the interconnections and interactions
between different code components might spread across wide distances
as software systems get large and complicated. Therefore, the scaling
of symbolic execution, a technique that involves running a program
with symbolic inputs instead of actual values, thereby allowing the con-
current exploration of multiple program paths, assumes a pivotal role
in overcoming the aforementioned challenge. Certain scholarly works
delve into strategies aimed at enhancing the scalability of symbolic
execution to aid in addressing vulnerabilities and navigating expanded
dependencies. For instance, challenges of Scaling Symbolic Execution

motivated the utilisation of a neural network model to learn an effective



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
and fast fuzzer ‘‘expert policy’’ from symbolic execution and generate a
large number of quality inputs in He et al. (2019). They utilise a Markov
Decision Process (MDP) in conjunction with an Imitation Learning-
based Fuzzer (ILF system) that incorporates a combination of a Fully
Connected Network, a GRU, and a Graph Convolutional Network.

However, generating high-quality seed inputs for fuzzing poses a
challenge, and identifying correlations between seed files and program
execution requires contextually relevant, and potentially impactful in-
put sequences for software testing. In Cheng et al. (2019), Cheng et al.
worked on this issue and introduced a generative model built on a
recurrent neural network (RNN) framework to provide high-quality
sequences for PDF-based program targets. They utilise a Seq2seq-based
transition model to effectively translate inputs into valid PDF files. Dee-
pHunter was another coverage-guided fuzzing framework focused on
mutation strategy by employing a metamorphic mutation to generate
new valid tests while maintaining semantics, thereby boosting coverage
and defect identification (Xie et al., 2019). However, its approach has
limitations, restricting multiple transformations and resulting in invalid
inputs. To address this, a mixed and constrained mutation (MCM)
approach with DeepHunter as the baseline of DL fuzzing was proposed
in Park et al. (2022), significantly enhancing fuzzing performance by
discovering more seeds and generating diverse adversarial examples.
The need to overcome efficiency challenges ultimately led to the de-
velopment of Tzer (Liu et al., 2022), a practical DL fuzzing technique
introduced by Liu et al.. Tzer leverages the low-level Intermediate Rep-
resentation (IR) of the Tensor Virtual Machine (TVM) tensor compiler,
along with a general-purpose mutator, to enhance fuzzing efficiency.

Another challenge during fuzzing is imbalanced, unreachable inputs
that arise early on. The lack of balanced labelled data leads to model
overfitting. Consequently, the newly generated reachable inputs can
differ significantly from those in the training set, causing model predic-
tion failure. These results from novel inputs follow unobserved paths to
buggy code, and as a result, training on a single path will not predict
the new input’s reachability. In Zong et al. (2020), Zong et al. studied
this challenge and introduced directed grey-box fuzzing (DGF) called
FuzzGuard, a deep-learning-based approach based on accelerating and
prioritising techniques such as step-forwarding and representative data
selection to handle unbalanced labelled data and limited training time.
In addition to the above solution, to enhance coverage and mitigate
overfitting, Wang et al. introduced a Fusion neural network named
TCNN-BiGRU (Wang et al., 2023), amalgamating TextCNN and Bidi-
rectional Gated Recurrent Unit (BiGRU). This innovative technique
incorporates dimensionality reduction to capture both local and global
features from vulnerability descriptions. By integrating dropout and
early stopping methods, along with weighted word vectors and a
Softmax classifier, it effectively combats overfitting, resulting in an
enhanced overall performance and increased accuracy.

Using dynamic information collected from small pieces of code
extracted from a system is another methodology applied in FreeFuzz
which automatically captured dynamic information from code snippets,
developer tests, and extensive exploration of open-source DL models,
including prominent frameworks like PyTorch 1.8 and TensorFlow 2.4.
This approach enables the execution of comprehensive fuzzing on DL
libraries (Wei et al., 2022). Notably, the proposed approach presents
a robust resolution to address several pivotal challenges, including
the constraints posed by limited sources available for generating test
inputs, the intrinsic limitations related to the diversity of generated test
inputs, and the efficacy bottlenecks observed in the testing processes.
This stands in marked contrast to the comparatively constrained capa-
bilities of existing methodologies such as CRADLE (Pham et al., 2019)
and LEMON (Wang et al., 2020b) in navigating these complex chal-
lenges. However, ensuring DL system quality through systematic testing
is crucial and as a solution coverage-guided fuzzing, with its neu-
ron selection strategy, has shown promising results. However, current
strategies do not utilise neuron output distributions. DLRegion (Tao
8

et al., 2023) resolves this issue by a seed selection strategy based on
input classification confidence and region-based neuron selection to
activate valuable neurons for improved coverage of internal states.

In addition, DNNs are increasingly utilised to mitigate evolving
network attacks such as DDoS, botnets, and ransomware by uncovering
concealed patterns in data streams. To effectively address adversarial
ML, the fuzzing approach possesses the capability to generate more
comprehensive and nuanced representations of hidden states. Adv-
Fuzzer and LocalFuzzer (Qin and Yue, 2022) provide good examples
of employing this solution to defend against black-box attacks on ML
models by constructing adversarial scenarios and generating a set of ad-
versarial examples locally. It enables the model to effectively mitigate
adversarial ML, which poses a significant security threat to networks.

In addition, Liu and Patras introduce NetSentry, an innovative
Network Intrusion Detection System (NIDS) based on Bidirectional
Asymmetric LSTM (Bi-ALSTM) with manageable computational over-
head and resistance to evasion attacks (Liu and Patras, 2022). Using
Bi-ALSTM allows bidirectional capture of dynamic information in tem-
poral sequences. The advantage of this model is that unlike traditional
LSTM, which captures context up to a specific time step, Bi-LSTM
mitigates this limitation with separate forward and backward LSTM
units. These units generate hidden states, merged before input into the
function.

A summary of fuzzers utilising various techniques for prioritising
dynamic information is presented in Table 4. It is evident that seed file
generation and grammar constitute the most prevalent outputs of vari-
ous fuzzing techniques, while DNN-based models prove instrumental in
enhancing the effectiveness of fuzzing for autonomous driving camera
technology.

5.1.2. Gradient-guided optimisation
Another well-known approach to optimisation in DNN fuzzing has

encountered various forms of vanishing gradient problems (Hochreiter,
1998) during the training of recurrent neural networks. By utilising gra-
dients and employing smooth neural networks, such as gradient-guided
algorithms in fuzzing, researchers were able to achieve performance im-
provements in the process of generating fuzzing inputs. Some literature
has sought to improve gradient-based optimisation through leveraging
gradient information to guide the fuzzing process towards regions of
interest in the input space.

In She et al. (2019), NEUZZ is proposed using a gradient-guided
input generation scheme with a program smoothing technique where
the neural network learns to make smooth approximations. In Li et al.
(2022a), Li et al. designed a fuzzer called V-Fuzz with a vulnerability-
oriented prediction model based on using an attributed control flow
graph (ACFG) and optimise the training process with a stochastic
gradient descent (SGD) method to find bugs in binary programs within
a limited time-frame. In She et al. (2020), She et al. proposed MTFuzz,
a multi-task neural network, to tackle the challenges of collecting
numerous diverse samples for training the model. It learns a compact
embedding of the input space from various training samples across
related tasks (e.g., different coverage predictions). This compact em-
bedding directs the mutation process by emphasising high-gradient
areas within the embedding. PreFuzz (Wu et al., 2022), a Neural
program-smoothing-based fuzzing proposed, improves gradient guid-
ance and mutation effectiveness compared to Neuzz and MTFuzz on
a large-scale benchmark suite. It is based on a resource-efficient edge
selection mechanism that identifies ‘‘sibling’’ edges enabling a more fo-
cused, resource-efficient, and effective fuzzing approach for large-scale
fuzzing.

Existing coverage-guided DNN fuzzers mostly fail to offer high crash
diversity, quantity and fast fuzzing, crucial for effective adversarial
training. As a solution GradFuzz uses new gradient vector coverage
for this purpose, uniquely applying gradients to coverage metrics for
efficient and effective fuzzing. GradFuzz a new DNN fuzzer identifies

diverse errors on MNIST and CIFAR-10 datasets, aiding adversarial



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.

.

Table 4
Various DNN-Based Exploration and Optimisation Models Based on Prioritising Dynamic Information. C1: Seed File Generation, C2: Message Ready to Send to the SUT, C3: Grammar

Name/Structure Technique Input Output SUT

C1 C2 C3

NeuFuzz (Wang
et al., 2019)

Vulnerability patterns analysis
using a 4-layer LSTM

Real world corpus for
LAVA-M and different
applications

✓ LAVA-M and nine real-world
applications (libtiff, binutils,
libav, podofo, bento4, libsndfile,
audiofile, nasm)

ILF system (He
et al., 2019)

Integrating Fully Connected,
Gated Recurrent, and Graph
Convolutional Networks and
Using Markov Decision
Making

Effective Seed Integers
(SIs) selected by the
symbolic expert and
through a process of
careful selection over a
pool of seed integers

✓ Smart contracts including Solidity
code adapted from the
OpenZeppelin library

Seq2seq-based
transition model
(Cheng et al.,
2019)

Generative built on RNN
identifying correlations
between seed files and
program execution.

PDF files ✓ MuPDF

DeepHunter (Xie
et al., 2019)

Recency-aware and
Frequency-aware Seed
Prioritisation and
metamorphic mutation

MNIST, CIFAR-10,
ImageNet

✓ ✓ Real world app for autonomous
driving camera (image)
technology

MCM (Park
et al., 2022)

Mixed and Constrained
Mutation with baseline of
DeepHunter

MNIST, STL-10, and
ImageNet

✓ ✓ Real world app for autonomous
driving camera (image)
technology

Tzer (Liu et al.,
2022)

Pass mutation alongside
low-level IR mutation of TVM
tensor compiler

Intermediate
Representation Files

✓ Tensor compilers, TVM v0.8-dev
(9b034d7) with LLVM-12 (also
known as DL compilers)

FuzzGuard (Zong
et al., 2020)

Prioritising certain datapoints
on unbalanced dataset

Generated input from
AFLGo’s seed corpus

✓ ✓ Bento4, Ettercap, GraphicsMagick,
ImageMagick, Jasper, Libming,
Libtiff, Libxml2, Podofo,
Tcpreplay.

FreeFuzz (Wei
et al., 2022)

Traces dynamic information
from code snippets, developer
tests

Adversarial examples,
utilising information
gathered from code
snippets from the library
documentation, library
developer tests, and deep
learning models in the
wild, cause crashes

✓ Deep Learning libraries (PyTorch,
TensorFlow)

NetSentry (Liu
and Patras,
2022)

A NIDS based on Bi-ALSTM
with affordable computational
overhead

Two datasets:
CIC-IDS-2017
CSE-CIC-IDS2018 and
Self-collected traffic

✓ Basic ML/DL structures and three
Bi-LSTM variants and
State-of-the-art anomaly/intrusion
detectors

DLRegion (Tao
et al., 2023)

Region-based neuron selection
strategies

MNIST, CIFAR-10, SVHN
under three models
LeNet-1 ResNet-20,
VGG-16

✓ ✓ Real world app for autonomous
driving camera (image)
technology or medical diagnoses

TCNN-BiGRU
model (Wang
et al., 2023)

Fusion neural network and
dimensionality reduction with
dropout and early stopping for
overfitting suppression
through weighted word vector
and Softmax classifier

National Vulnerability
Database dataset (NVD)

✓ National Vulnerability Database
(NVD) including Multiple SQL
injection vulnerabilities in CARE,
Cross Site Scripting, and etc
training without sacrificing crash quantity and fuzzing efficiency (Park
et al., 2023).

In Cummins et al. (2018), Cummins et al. present DeepSmith which
employs a forget gate with a linear activation operation to model the
vocabulary distribution over the encoded corpus and is trained by using
SGD that accelerates compiler validation by inferring generative models
for compiler inputs and uses where Voting Heuristics for Differential
Testing uncovers miscompilations.

Nichols et al. utilised GAN models in conjunction with AFL for a
novel seed file initialisation technique, termed ‘‘Faster Fuzzing’’. Their
objective was to uncover unexplored code paths within a specified
time frame (Nichols et al., 2017). The advantage of the GAN model
applied in this research is its utilisation of a binary cross-entropy loss
function via SGD for training, a 2-layer DNN with ReLU non-linearity as
the inner activation, and a tanh output activation function to discover
unexplored code paths within a specified time frame.
9

In the work presented in Hu et al. (2018), a fuzzer named GANFuzz
combines GAN and LSTM architectures to assess implementations of
industrial network protocols (INPs), such as the Modbus-TCP protocol.
The Training and Message-Generating Module (TMGM) in GANFuzz
uses TensorFlow and SGD with a batch size of 64 and implements
dropout and L2 regularisation to prevent overfitting during DL training
and test case generation. After training, it exports the model parameters
to checkpoint files for later use in generating test cases. This model
employs an LSTM layer with 32 hidden states for the generator and a
convolutional, max-pooling, and softmax layer for its discriminator to
generate well-structured input data sequences.

To facilitate large-scale vulnerability discovery in OS systems,
Grieco et al. introduce a neural network called VDiscover based on SGD
algorithm that utilises static and dynamic features, combined with an
ML technique for the classification problem and improving imbalanced
dataset called random oversampling, that identifies programs with



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Fig. 4. Frequency of reviewed literature in two subcategories of DNN models.
memory corruptions through a lightweight approach in Grieco et al.
(2016).

5.2. Assessment of DNN features

We have compiled a summary of the most prevalent techniques
used in DNNs, which are frequently applied in various DNN models.
These features are detailed in Tables 4 and 5. Notably, two features
stand out as commonly recurring in the literature: prioritising dynamic
information and leveraging gradient-guided optimisation techniques.
The observation is visually represented in Fig. 4, where it is evident
that prioritising dynamic information is more frequently encountered
than the use of gradient-guided optimisation. In addition, regarding
the summary of fuzzers utilising various techniques for prioritising
dynamics in Table 4, it is clear that among the diverse methods of
fuzzing, the generation of seed files and the development of grammars
are the most commonly observed outcomes.

5.3. Applied architectures in DNN

In this section, we provide an overview of popular DNN architec-
tures i.e. LSTM and GAN as well as hybrid architectures derived from
LSTM, Seq2seq and GAN.

5.3.1. Long short-term memory (LSTM) network
LSTM is a type of recurrent neural network (RNN) architecture that

addresses the issue of vanishing gradients (Cummins et al., 2018). It im-
proves upon the standard RNN design by introducing a specialised cell
for data storage and three gates that regulate the flow of information
in and out of the cell. LSTM, due to its inherent memory functions,
brings advantages to fuzzing particularly relevant in scenarios where
program paths closely resemble statements in natural language, and the
determination of code vulnerability is context-dependent. In addition,
the advantage of LSTM lies in its adeptness at processing sequential
data.

NeuFuzz (Wang et al., 2019) is an early example of this arcitecture
working with two layers of bidirectional LSTM (stacked LSTM), each
layer with 64 LSTM units. DeepSmith (Cummins et al., 2018) applies a
2-layer Neural-Network LSTM model with 512 nodes per layer to model
the vocabulary distribution over the encoded corpus, where Voting
Heuristics for Differential Testing uncovers miscompilations. In Zakeri
Nasrabadi et al. (2021), Zakeri et al. discuss IUST-DeepFuzz based on
the Deep neural language model using deep recurrent neural networks
using up to two layers of unidirectional and bidirectional LSTMs with
10
128 and 256 bits of each layer to learn the structure of complex inputs
and to achieve higher coverage by distinguishing between data and
metadata, targeting both parsing and rendering stages.

5.3.2. Generative adversarial network
The initial idea of deploying a DNN model based on the GAN archi-

tecture involves generating format-undefined data by applying muta-
tion operations to the sequence data, and further improving the data’s
diversity through augmentation techniques. In their work referenced
as (Li et al., 2019), Li and colleagues leverage Wasserstein Generative
Adversarial Networks (WGANs) to produce fuzzing data for testing
industrial control systems (ICSs), specifically targeting the Modbus-TCP
and EtherCAT protocols by sending messages to the system.

SmartSeed is another WGAN based model designed to generate
efficient seed files, as introduced by Lyu et al. in their work (Lyu
et al., 2019). The system leverages the WGAN to create effective seed
files and understand the characteristics of valuable files. WGAN offers
two significant advantages: self-learning capabilities and flexibility in
model selection. In their study, the authors compared two generative
models—Multi-Layer Perception (MLP) and Convolutional Neural Net-
work (CNN)—and favoured MLP due to its efficiency and emphasis
on quantitative values. Given MLP’s superior performance and quicker
training time, SmartSeed utilises this model to generate beneficial
seed files, employing the acquired knowledge to effectively train the
generative model for fuzzing 12 open-source applications listed in Lyu
et al. (2019), which work with input formats such as mp3, bmp, or flv.

Ye et al. introduce RapidFuzz (Ye et al., 2021), a GAN-based fuzzer
that efficiently generates synthetic test cases and increases capturing
data structure features to fuzz real-world libraries and libraries such
as image libraries, GNU, Libxml2 and Libjson. The GAN generates
similar but distinct numerical distributions, enhancing the mutation
process. An algorithm locates GAN-generated hot points. It succeeds in
facilitating faster identification of structural features and Fuzzer’s test
cases significantly improve American Fuzzy Lop’s (AFL) performance in
speed, coverage, and map size.

5.3.3. LSTM and Seq2Seq
Another approach studied in Augmented-AFL (Blum et al., 2017)

involves mutation at optimal locations within input files such as ELF,
PNG, PDF, and XML. This approach includes generating appropriate
input grammars and guiding input based on the input probability
distribution using standard Bidirectional LSTM models with up to two
layers. Additionally, it employs two different chunk sizes, namely 64



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Table 5
Various DNN-Based Gradient-Guided Optimisation Techniques. C1: Seed File Generation, C2: Message Ready to Send to the SUT, C3: Grammar.

Name/Structure Technique/Structure Input Output SUT

C1 C2 C3

NEUZZ (She et al., 2019) Smooth neural network
approximation

LAVA-M and DARPA CGC
bug datasets

✓ Readelf -a, libjpeg, libxml, mupdf
benchmarks

V-Fuzz (Li et al., 2022a) Attributed Control Flow Graph
(ACFG) and SGD

Juliet Test Suite ✓ ✓ 10 real-word Linux applications
(pdftotext, pdffonts, pdftopbm, pdf2svg
plus libpoppler, MP3Gain, mpg321,
xpstopng, xpstops, xpstops, xpstojpeg,
cflow) and three programs of the
popular fuzzing benchmark LAVA-M
(uniq, base64,who)

MTFuzz (She et al., 2020) Compact Embedding of the Input
Space

LAVA-M ✓ Harfbuzz, strip, size, libjpeg, zlib,
readelf, objdump, nm, libxml, mupdf

PreFuzz (Wu et al., 2022) Resource-efficient edge selection
mechanism

A dataset including 28
real-world projects

✓ ✓ Bison, xmlwf, mupdf, pngimage, pngfix,
pngtest, tcpdump, nasm, tiff2pdf, tiff2ps,
tiffdump, tiffinfo, libxml, listaction,
listaction_d, libsass, jhead, readelf, nm,
strip, size, objdump, libjpeg, harfbuzz,
base64, md5sum, uniq, who

GradFuzz (Park et al., 2023) Gradual guidance to misclassified
categories based on the gradient
vector coverage

MNIST, CIFAR-10 ✓ ✓ Autonomous technologies like
autonomous cars’ apps

VDiscover (Grieco et al., 2016) SGD model using static and
dynamic features and
classifications

1039 test cases taken from
the Debian Bug Tracker

✓ VDiscovery (Debian programs)

DeepSmith (Cummins et al., 2018) Modelling the vocabulary
distribution over the encoded
corpus and is trained by using
SGD that accelerates compiler
validation

Real-world examples in
OpenCL kernels

✓ OpenCL compilers

Faster Fuzzing (Nichols et al., 2017) Using Adam optimiser and SGD
for training and 2-layer DNN with
a ReLU non-linearity as the inner
activation and a tanh output
activation

Seed files from native AFL,
Rand, LSTM and GAN

✓ Financial system such as ethkey in the
Ethereum code base

GANFuzz (Hu et al., 2018) Training and MSG Generating
Module using a combined model
of GAN and LSTM and SGD
optimisation

Real world Random
Payloads by capturing the
context information for
Industrial network and
control systems

✓ ✓ Industrial network protocols(INPs) and
Industrial control systems(ICS) such as
Modbus-TCP simulators
and 128 bits, and utilises Seq2Seq models with Attention mechanisms
(Attn) to effectively handle and generate variable-length inputs.

A generative model-based algorithm called Samplefuzz (Wang et al.,
2019) utilises a learned distribution, along with user-defined param-
eters to sample with Fuzzing. It generates an output sequence by
sampling characters from the PDF parser based on the learned model
which predicts a character with high confidence and substitutes it with
a different character of minimum probability from the distribution. The
algorithm is evaluated with unsupervised training using epochs and
employing a 2-layer seq2seq LSTM model with 128 hidden states for
each layer to create test cases while also generating flaws to exercise
error-handling code in (Peleg et al., 2017).

In Zhao et al. (2019), Zhao et al. proposed SeqFuzzer, a fuzzing
framework with a technique similar to Blum et al. (2017) that employs
DL to learn protocol frame structures. This allows for the analysis of
not only the actual data being transmitted but also control information
when fuzzing the communication traffic. It uses the Seq2seq technique
with three-layer deep LSTMs in the encoder–decoder model for network
traffic fuzzing. However, the text does not explicitly mention the size
of the chunk for the LSTM model used in the Seq2seq training process.

In the publication (Fan and Chang, 2018), Fan et al. introduce a
generative black-box fuzzing approach utilising a seq2seq model. This
technique employs a 2-layer LSTM, with each layer comprising 128
hidden states, to acquire a generative input model from protocol traffic.
This model enables the generation of new network messages for fuzzing
protocols such as WarFTPD and Serv-U.
11
5.3.4. LSTM and GRU
To generate high-quality test cases for web browser testing utilising

HTML tags, a fuzzing approach based on sampling from predictive
distributions was proposed. This approach employs a Character-level
Recurrent Neural Network (Char-RNNs) language model to discern
SQL injection vulnerabilities by generating HTML tags and testing
the browser’s rendering engine through fuzzing. It deploys up to 6
recurrent layers of LSTM and 2 layers of GRU (Sablotny et al., 2019)
All models are trained using a batch size of 512. The LSTM and GRU
cell dimensions are standardised at 256 for all trained models, while
the layer count ranges from 1 to 6, which are well-suited for scenarios
involving variable-length and textual input data.

5.3.5. LSTM and GAN
In accordance with Section 5.1.2, Faster Fuzzing employs both

GAN and LSTM models. In this study, GAN and LSTM models are
not integrated; rather, they are compared to one another. The GAN
architecture utilises a binary cross-entropy loss function optimised
through SGD during training, and incorporates novel input and output
activation functions within a specified time frame, as described by
Nichols et al. (2017), and an LSTM model, trained on AFL-generated
seed files, creates 40-character seed files using a 128-wide initial layer,
dense layer, and softmax activation. Training uses RMS propagation
and categorical cross-entropy loss, with a diversity-adjusting temper-
ature parameter. Notably, the GAN architecture outperforms the LSTM
architecture. Conversely, in the work presented by Hu et al. (2018), a
fuzzer named GANFuzz combines GAN and LSTM architectures using an



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Table 6
Different DNN-based architectures to mitigate fuzzing inefficiencies in software and libraries.

Architecture Name/Structure Technique

Standard LSTM DeepSmith (Cummins et al., 2018) Two layers LSTMs for modelling the vocabulary distribution
over the encoded corpus

NeuFuzz (Wang et al., 2019) Vulnerability patterns analysis using a 4-layer LSTM
IUST-DeepFuzz (Zakeri Nasrabadi et al., 2021) One/two layers(s) LSTM distinguishing between data and

metadata

GAN WGAN (Li et al., 2019) Applying mutation operations to the sequence data, and
through augmentation techniques

Smartseed (Lyu et al., 2019) Two generative models—Multi-Layer Perceptron (MLP) and
Convolutional Neural Network (CNN)—and favoured MLP
due to its efficiency

RapidFuzz (Ye et al., 2021) Using numerical distributions to locate GAN-generated
hot-points

LSTM+Seq2Seq Augmented-AFL (Blum et al., 2017) Guiding input based on input probability distribution using
Seq2Seq model with one/two-layer(s) LSTM

Samplefuzz (Peleg et al., 2017) A generative model-based fuzzing using LSTM (standard and
bidirectional) Seq2Seq and Attn

SeqFuzzer (Zhao et al., 2019) Seq2seq technique with three-layer deep LSTM in the
encoder–decoder model for network traffic fuzzing

A generative Seq2Seq with 2-layer LSTM
black-box fuzzing (Fan and Chang, 2018)

LSTM+GRU Char-RNN (Sablotny et al., 2019) Generating test cases for HTML fuzzing utilising sampling
from predictive distributions through a Char-RNN language
model with Two layers GRU and Six layers LSTM

LSTM+GAN Faster fuzzing (Nichols et al., 2017) 3 layer LSTM, Gradient decent (Adam optimiser) for training
and 2-layer DNN with a ReLU non-linearity as the inner
activation and a tanh output activation

GANFuzz (Hu et al., 2018) Training and MSG Generating Module using an LSTM layer
and SGD

Bi-ALSTM+GAN NetSentry (Liu and Patras, 2022) An innovative NIDS based on Bidirectional Asymmetric LSTM
(Bi-ALSTM) with affordable computational overhead
Fig. 5. Frequency of reviewed literature in multiple architecture of DNN models.
LSTM layer with 32 hidden states for the generator and a convolutional,
max-pooling, and softmax layer for the discriminator.

5.3.6. Bi-ALSTM and GAN

NetSentry which was introduced earlier in Section 5.1, uses a Bidi-
rectional Asymmetric LSTM (Bi-ALSTM) (Liu and Patras, 2022), utilises
two distinct LSTM units with 48-bit hidden states, one for forward
and one for backward processing. Initially, the hidden states from
these units are combined and processed using an activation function.
This brings some advantages to evaluating dynamic information bi-
directionally across the temporal sequence, aiming to capture a wider
range of temporal contexts.
12
5.4. Assessment of DNN architectures

A summary of fuzzers utilising various DNN-based Architectures
deployed in fuzzing is presented in Table 6 illustrating the popular
architectures employed in DNN-based fuzzing. As depicted in Fig. 4,
nearly half of the literature emphasises prioritising dynamic informa-
tion as the frequently used subcategory in deploying DNN. A frequently
used discriminator in DNN-based fuzzing is the softmax layer which
offers benefits like multi-class classification, probabilistic output, and
fine-grained analysis. These advantages enhance input classification
and assessment, improving fuzzing quality for vulnerability identifi-
cation in various scenarios. Furthermore, the LSTM combined with
Seq2Seq was the most applicable hybrid architecture in DNN mod-
els presented in Fig. 5 and the LSTM family was the most popular



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Fig. 6. Frequency of reviewed literature in three subcategory of complex targets.
architecture not only in DNN-based models but also in all four cate-
gories of TML, DNN, RL, and DRL when compared to other available
architectures.

5.5. Operating system and file system fuzzing

In this section, we discuss models that enabled DNN architecture
to fuzz complex targets like Kernel and File systems and review an
appropriate dataset customised for kernel fuzzing.

5.5.1. OS fuzzing
Operating Systems and more specifically kernel components are

challenging due to the lack of easily applicable feedback mechanisms,
non-determinism, and performance issues after kernel crashes during
self-fuzzing. In addition, with the sustained growth of software com-
plexity, finding security vulnerabilities in operating systems has also
become an important necessity. Nowadays, OS is shipped with thou-
sands of binary executables, but methodologies and tools for OS-scale
program testing within a limited time budget are still missing. Also, OS
fuzzing faces challenges. The primary challenge of OS fuzzing lies in
the unsuitability of formal checkers for identifying bugs in Operating
systems due to their extensive size and complexity, making it unlikely
for OS systems to be entirely free of bugs. To address these challenges
in Kernel, syzkaller (Anon, 2016) utilises system call data from the
Syzlang description to produce sets of system calls that confirm the
parameter structure limitations and partial semantic constraints. By re-
peatedly executing these generated sequences of calls to induce kernel
crashes, it identifies kernel bugs.

In pursuit of enhancing large-scale vulnerability detection in op-
erating systems, Grieco et al. introduced a neural network named
VDiscover, as previously mentioned in Section 5.1.2. To tackle classi-
fication challenges, it employs random oversampling to rectify imbal-
anced datasets. This approach enables the identification of programs
with memory corruptions in a resource-efficient manner, as detailed
in their work in Grieco et al. (2016). KAFL (Schumilo et al., 2017)
was another approach which was an OS-independent and hardware-
assisted coverage-guided kernel fuzzing approach, enabling the fuzzer
to analyse the program flow during interrupts. Then, it blacklists non-
deterministic basic blocks by re-running inputs and skipping transitions
involving blacklisted blocks to enhance fuzzing efficiency and avoid
unpredictable paths. The main advantage of this approach is inter-
acting with the targeted OS, using a small user-space component,
resulting in minimal performance overhead. OS fuzzer relies heav-
ily on seed system call sequences to test OS kernel vulnerabilities.
13
However, generating effective seeds is challenging due to system call
dependencies. Moonshine (Pailoor et al., 2018) introduces a novel
strategy for distilling seeds from real-world program call traces, pre-
serving these dependencies. By leveraging lightweight static analysis,
MoonShine extends syzkaller and improves code coverage for the Linux
kernel compared to traditional hand-coded seed generation methods.
FastSyzkaller (Li and Chen, 2019) is another fuzzer that combines
the N-Gram model with syzkaller, an open-source fuzzer for Linux, to
enhance test case generation and fuzzing efficiency. HEALER (SunHao-
0, 2020) employs a similar approach to syzkaller. However, it includes
different architectural designs. It relies on an empirical choice table
but differs from syzkaller’s method of detecting influence relationships
between syscalls. These influence relationships are then utilised to
guide the generation and mutation of call sequences. TEEFuzzer (Duan
et al., 2023b) is another coverage-guided fuzzing framework for trusted
execution environments (TEEs). It targets the Open Portable Trusted
Execution Environment (OP-TEE) and utilises purpose-built compo-
nents, including seed generation and mutation modules, to enhance
coverage through a contribution-based seed mutation mechanism. It
also improves efficiency through a coverage collection module and an
automatic bug-reproducing module.

5.5.2. File system fuzzing
File systems, crucial to OS functionality, suffer from complexity-

induced bugs. Classical stress testing and checkers fall short of detecting
these issues. Fuzzing emerges as a practical and effective choice due
to its simplicity. Yet, fuzzing file systems face three main challenges:
performance degradation, image-dependent operations, and bug repro-
ducibility. JANUS (Xu et al., 2019), a feedback-driven fuzzer, addresses
these by exploring the two-dimensional input space of file systems,
using image-directed file operations, and relying on a library OS and
it outperforms syzkaller in finding and reproducing bugs.

5.5.3. Dataset for kernel fuzzing
However, kernel and FS fuzzing still face challenges in suitable

datasets. Regarding training Host-based intrusion detection systems
(HIDS), system call sequences are important as they are traditionally
used for HIDS training and existing datasets are not suitable for OS
kernel fuzzing. The first large-scale dataset for anomaly detection in
the Linux kernel has been introduced in Duan et al. (2023a) called
DongTing. It enables HIDs to effectively identify malicious applications
by learning from system events representing normal behaviours.



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Table 7
Fuzzing complex targets with DNN-based models. C1: seed file generation, C2: message ready to send to the SUT, C3: grammar.

Targets Name Technique Input Output SUT

C1 C2 C3

Kernel Fuzzing syzkaller (Anon, 2016) Generating System Call Sets from
Syzlang Data for Parameter
Structure Analysis

System call sequences ✓ Linux kernel

VDiscover (Grieco et al., 2016) Stochastic gradient descent (SGD)
using static and dynamic features
and classifications

1039 test cases taken from
the Debian Bug Tracker

✓ VDiscovery (Debian programs)

KAFL (Schumilo et al., 2017) Analyses program flow during
interrupts and blacklists
non-deterministic basic blocks by
re-running inputs and skipping
transitions

System calls through
simple driver that contains
a JSON parser based on
jsmn

✓ Linux, macOS, and Windows
kernel components

Moonshine (Pailoor et al., 2018) Distilling seeds preserving
dependencies and by leveraging
lightweight static analysis

System call sequences ✓ Linux Kernel

FastSyzkaller (Li and Chen, 2019) Combines the N-Gram model with
syzkaller

System call sequences ✓ Linux Kernel

HEALER (SunHao-0, 2020) Detecting influence relationships
between syscalls by empirical
choice-table

System call sequences ✓ ✓ Linux kernel

TEEFuzzer (Duan et al., 2023b) Contribution-based seed mutation System call sequences ✓ ✓ OP-TEE’s official Xtest and Sanity
Test Suite covering most
functionalities of the trusted OS

File system JANUS (Xu et al., 2019) It relies on a library OS and
explores the two-dimensional
input space of file systems

Seed image and system
calls

✓ A library OS and File systems of
upstream Linux kernel (ext4, XFS,
Btrfs, F2FS, GFS2, ReiserFS,
NTFS)

Dataset DongTing (Duan et al., 2023a) Large-scale dataset for anomaly
detection in the linux kernel

12116 abnormal system
calls including POCs
collected from kernel
fuzzing tools (e.g., syzbot),
and 6850 normal system
calls from four Linux test
suites

✓ 200 different Linux kernel
releases
5.6. Assessment of DNN model for complex targets and datasets

A summary of fuzzing complex targets with DNN-based model is
presented in Table 7. As illustrated in this table, kernel fuzzing receives
significant attention, particularly in Operating Systems and other intri-
cate targets like File Systems. Among the diverse methods employed in
fuzzing, the generation of seed files and the formulation of grammars
emerge as the most prevalent outcomes.

Approximately four-fifths of the papers, totalling 77.8%, of the pub-
lications are dedicated to this specific subcategory as depicted in Fig. 6.
Additionally, 11.1% of the research endeavours focus on developing
high-quality datasets for Kernel fuzzing, contributing significantly to
the advancement of Kernel fuzzing practices.

5.7. Persistent challenges in DNN

DNNs have challenges adjusting to new environments and may
overfit, which affects their performance in unexpected situations. In
contrast to RL’s flexibility in dynamic fuzzing environments, their static
nature demands periodic retraining for changing situations.

The field of fuzzing research continues to explore new opportunities.
The advancement of unsupervised fuzzing methodologies stands to
derive significant benefits from the remarkable strides achieved in the
field of artificial intelligence (AI). For instance, various techniques such
as RL and LSTM combined models, as well as the RL-Vulnerability-
guided model, are also applied in fuzzing to guide the exploration of
the input space by learning improved strategies within the context of
fuzzing. We discuss these techniques in more detail in Section 6.
14
6. RL techniques for fuzzing

In this section, we will delve into the promising domain of RL and
explore how it can effectively overcome challenges posed by tradi-
tional DNNs in a multitude of real-world applications. These challenges
encompass complex problems involving sequential decision-making,
exploration, addressing sparse rewards, adapting to dynamic environ-
ments, and numerous other scenarios where the conventional DNN
framework may not provide the most optimal solutions. We divide
these models into two categories: fuzzing general models of fuzzing
targets with lower dependencies (see Section 6.1), and fuzzing complex
targets with higher dependencies, such as Kernel fuzzing (see Sec-
tion 6.2). By the end of this section, readers will gain valuable insights
into the versatility and adaptability of RL, which enable it to excel in
diverse settings by learning from interactions with the environment.

6.1. General RL models

We conduct a comprehensive survey of various RL models and
techniques, highlighting their capabilities and advantages in address-
ing DNN challenges. The trend in combining RL with fuzzing has an
early background. A notable instance of early work in this area dates
back to 2010 (Becker et al., 2010) when Becker et al. presented an
algorithm based on RL. It involves several steps, including finite-state
machine modelling, fuzzing strategies, and RL, enabling the framework
to independently acquire knowledge about optimal fuzzing techniques
and automate the process of testing IPv6 for stability and reliability.

RL is also paired with LSTM architecture to handle sequential data
in RL contexts. While LSTMs are primarily associated with DL, they
can enhance RL systems by processing sequences. For instance, in a
study by Paduraru et al. (2021), they apply RiverFuzzRL, which offers



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
a ready-to-use RL implementation and customisation options for diverse
test targets in binary-level fuzzing. They employ an LSTM architecture
inspired by PySE (Koo et al., 2019) to represent fixed-size paths and
the longest execution paths of binary blocks, optimising the fuzzing
process. Scott et al. introduce ‘‘BanditFuzz’’ (Scott et al., 2021), which
leverages multi-agent RL guidance to enhance the performance of SMT
solvers. The core idea revolves around training a single agent explorer
or a group of agent explorers to maximise a reward signal indicating the
effectiveness of the generated inputs, particularly in terms of achiev-
ing high code coverage or identifying vulnerabilities. In their 2022
article, Su et al. introduce Reinforcement Learning-Guided Fuzzing
(RLF), a pioneering vulnerability-guided fuzzer that leverages DRL.
RLF conceptualises the fuzzing process as an MDP and incorporates a
reward system that takes into account both vulnerability identification
and code coverage improvement (Su et al., 2023). Binosi et al. have
introduced Rainfuzz, a dynamic analysis technique that involves the
generation of heat-maps from a trained Feed Forward Neural Network
(FFNN). These heat-maps are used to pinpoint specific bytes during
input mutation, facilitating the repeated execution of a program with
diverse inputs to trigger abnormal behaviour. The fundamental princi-
ple underlying Rainfuzz is to treat the selection of mutation positions
as an RL problem, as discussed in their work (Binosi et al., 2023).

Jha et al. introduce BertRLFuzzer, a novel approach that leverages
the Bidirectional Encoder Representations from Transformers (BERT)
model as a RL agent. This technique employs semi-supervised learning
with BERT to autonomously grasp the application’s grammar from a
pre-trained model. Subsequently, it utilises this learned knowledge to
launch attacks on the target application, all without the need for ex-
plicit user input. You can find more details in their research paper (Jha
et al., 2023). In Patil and Kanade (2018), Patil and Kanade adapt
AFL’s heuristics by framing them as a contextual bandit problem. They
employ a combination of LSTM encoding, FCNN extraction, and the
policy gradient method. This novel approach allows them to dynami-
cally adjust the multiplier for fuzzing iterations, which is based on the
characteristics of the test cases. Consequently, their algorithm continu-
ally refines the policy for generating intriguing test cases. Wang et al.
introduce AFL++-HIER as a solution to the complex task of efficiently
scheduling a larger set of seeds. This was achieved by incorporating
fine-grained coverage metrics, implementing a multi-level coverage
metric system, and employing a RL-based hierarchical scheduler, as de-
tailed in their work cited as Wang et al. (2021a). In Choi et al. (2023b),
Choi et al. introduce an innovative seed-scheduling method within CGF.
This method leverages RL to enhance crash detection performance,
irrespective of the specific characteristics of the target program. It
achieves this by intelligently determining the optimal sequence for test
case execution and efficiently allocating resources for seed mutation.

6.2. Kernel fuzzing

RL incorporates exploratory kernel fuzzing, which while sharing
some similarities with DNNs (see Section 5.5), boasts distinct character-
istics. Specifically, in the context of complex targets with interdepen-
dencies such as Kernel and Operating System Fuzzing, RL leverages RL
models. To highlight this distinction, we refer to work by Wang et al.
(2021b). They have introduced SYZVEGAS, a dynamic fuzzer to address
the challenge of parameter optimisation by autonomously adapting
task and seed selection via a reward assessment model, employing
multi-armed bandit algorithms.

Furthermore, Huang et al. introduce Anon (2016), which combines
multi-armed bandits with basic block weight computed through static
analysis. This integration allows for dynamic task and seed selec-
tion based on a machine model, further enhancing code coverage in
syzkaller and Syzvegas (Huang et al., 2022b).
15
6.3. Assessment of RL models

As demonstrated in Table 9, kernel fuzzing emerged as the pre-
eminent target among complex systems, notably fuzzed through the
application of RL adaptations and Furthermore, Vulnerability-guided
fuzzing (see Table 8), supported by two prominent literature sources,
emerged as the dominant approach over other subcategories.

6.4. Challenges in RL and other previous models: A comparative exploration

RL techniques significantly enhance the fuzzing process, boosting
both its effectiveness and efficiency. They empower the fuzzer to
progressively refine its behaviour by utilising more precise predictors
and discriminators. This, in turn, leads to notable improvements in code
coverage, bug detection, and the overall speed of the process, however,
it lacks the ability of complex decisions. DRL systems, designed for
complex decision-making tasks, learn behaviour by interacting with
environments. This dynamic development process differs significantly
from traditional software where logic is explicitly defined. DRL’s ab-
sence of explicit logic poses new testing challenges. Traditional fuzzing
generates random data, while DRL-focused fuzzing aims to explore
various state spaces systematically, addressing these unique DRL testing
needs Li et al. (2022d). Additionally, DRL systems differ from DL as
they learn through trial and error rather than fixed datasets, requiring
thorough environment understanding to prevent biased models (Li
et al., 2022d). We discuss further it in the Section 7.

7. DRL techniques

Addressing the challenge posed by the DL approach involves tack-
ling the requirement for a substantial volume of training data, a topic
we will explore further in the DRL. Specifically, it discusses the prob-
lem of frequent large rewards being given when two states are quite
different, which can lead to excessive exploration and jumping between
states, even if they have been explored extensively.

Also, the challenge that motivates the utilisation of DRL in the realm
of fuzzing is the need to manage the complex, dynamic, and uncertain
nature of fuzzing where traditional RL techniques may find it difficult
to adapt to the constantly evolving nature of fuzzing settings, which
makes them less efficient at finding vulnerabilities. DRL, on the other
hand, enables the fuzzer to learn complex policies and is better able to
tackle the difficulties brought on by fuzzing scenarios.

In fact, RL faces the issue of optimising an agent’s behaviour in a
dynamic system to maximise cumulative rewards and trying to learn
how to achieve the highest cumulative reward over time (Bottinger
et al., 2018; Pan et al., 2020).

Also, it is crucial to emphasise the significance of tackling challenges
related to Syntax and Semantics Validity. In this regard, DRL-based
solution stands out as a more adaptable approach when compared to
DNNs. For instance, when it comes to fuzzing compilers, a unique set
of difficulties arises, encompassing the requirement for valid inputs,
the necessity for input diversity, the detection of unusual behaviours,
code coverage analysis, performance considerations, handling exten-
sive codebases, and the management of false positives (as discussed
in Li et al. (2022c)). To effectively address these compiler-specific
challenges, specialised techniques and tools tailored to RL-based ap-
proaches prove more advantageous than those centred around DNNs.
These techniques often involve the application of a series of mutations,
which can potentially increase the likelihood of generating a wider
array of input programs. Consequently, this enhances the code coverage
of compilers by optimising the accumulated rewards throughout an
episode, which terminates at a specific step.

Additionally, there is an issue with exploring an invalid sample
space (Gong et al., 2022) and Significant resource consumption during
fuzzing (Liang and Xiao, 2022) particularly when seeking to iden-
tify deep-seated software defects in hybrid fuzzing (Jeon and Moon,



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Table 8
Different RL features. C1: seed file generation, C2: message ready to send to the SUT, C3: grammar.

Features Name Technique Input Output SUT

C1 C2 C3

Leveraging
reinforcement-based
fuzzing for IPV6

SARSA
Algorithm
(Becker et al.,
2010)

FSM modelling, fuzzing
strategies, and RL.

Applying various strategies
and decomposing message
types within an FSM
machine.

✓ ✓ Neighbour Discovery Protocol in
IPv6

RL and LSTM combined RiverFuzzRL
(Paduraru et al.,
2021) PySE (Koo
et al., 2019)

Both process sequential in
RL settings using LSTM
architecture

XML tags switch inside the
XML input buffer

✓ Python benchmark programs
(Biopython parewise2, GNU grep,
insertion sort, etc.)

RL-Vulnerability-guided
fuzzing

BanditFuzz
(Scott et al.,
2021)

Multi-agent RL-guided
fuzzing using a
satisfiability Modulo
Theories (SMT) solvers.

1,700 syntactically unique
inputs generated by
BanditFuzz, focusing on
floating-point and string
SMT theories

✓ State-of-the-art SMT solvers Z3,
CVC4, Colibri, MathSAT, and
Z3str3

RLF introduced
by Su (Su et al.,
2023)

A MDP using a reward
system and an LSTM layer
for training

Two datasets of smart
contracts and seed pools
similar to ILF fuzzer

✓ Real world smart contracts and
oracles for vulnerabilities

A dynamic analysis of
mutation positions
based on heatmap

Rainfuzz (Binosi
et al., 2023)

The selection of mutation
as a reinforcement-learning
problem using MDP model

JPEG ✓ libjpeg-turbo: file as a PUT, a
binary taken from FuzzBench

Semi-Supervised
Learning

BertRLFuzzer
(Jha et al.,
2023)

Using a Bidirectional
Encoder Representations
from Transformers model
as an RL agent to learn
the grammar from a
pre-trained model

Real world attack vectors
of SQL injection (SQLi),
Cross-site Scripting (XSS),
and Cross-Site Request
Forgery (CSRF) and etc

✓ ✓ A variety of real world
benchmark including 9 victim
websites with up to 16K lines of
code, PHP , MySQL, Java

AFL with contextual
bandits

AFL CB (Patil
and Kanade,
2018)

LSTM encoding, FCNN
extraction and the policy
gradient method, 100
recurrent units for the
LSTM, the default tanh
activation function and the
state size is of 128 bytes

Real world corpus for
applications

✓ A list of targets including binutils,
tcpdump, mpg, libpng, gif2png,
libxml, addr2line, cxxfilt, elfedit,
nm, objcopy, objdump, readelf,
size, strings, strip-new, gif2png,
libxml2, libpng, mpg321,
tcpdump

A reinforcement-
learning-based
hierarchical scheduler

AFL++-HIER
(Wang et al.,
2021a)

A multi-level coverage
metric and a
reinforcement-learning-
based hierarchical
scheduler

Real world corpus for
applications (CGC DARPA
dataset)

✓ A prototype on DARPA CGC

Seed scheduling with
reinforcement-learning
method

Reinforcement
Seed Scheduling
Algorithm in
CGF (Choi et al.,
2023b)

Determine the optimal
order of test case execution
and resource allocation for
seed mutation

Binutuls, LAVA-M ✓ nm,objdump,cxxfilt, as, ld,
readelf, size, string, uniq, who,
md5sum, base64
Table 9
RL for complex targets. C1: seed file generation, C2: message ready to send to the SUT, C3: grammar.

Approach Name Technique Input Output SUT

C1 C2 C3

Kernel Fuzzing Syzvegas (Wang et al., 2021b) Parameter optimisation by reward
assessment of seed selection and tasks
through multi-armed-bandit algorithms

561 seed programs and a total of
8127 system call sequences

✓ ✓ Linux Kernel

Syzballer (Huang et al., 2022b) Multi-armed bandits with basic block
weight

System call sequences ✓ Linux Kernel
2022). The challenges revolve around the complex and uncertain na-
ture of the environment, the complexity of the agent’s model, and the
non-deterministic behaviour of both the agent and the environment
particularly in the game testing, all of which make it difficult to
evaluate the performance of trained agents effectively (Tappler et al.,
2022). The challenges pertain to the significant speed gap between RL-
based neural network evaluation and the rapid execution of fuzzing
actions (Drozd and Wagner, 2018). As a result, traditional fuzzing,
DL-based fuzzing and RL-based fuzzing face challenges in finding the
optimised solution when compared to DRL-based testing.
16
7.1. DRL models

DRL has emerged as a transformative technology, offering both
automation and adaptability within the realm of software testing. This
technology’s distinctiveness becomes evident when applied to critical
areas, such as test case prioritisation within Continuous Integration
(CI) pipelines and game testing. In the study by Nouwou Mindom
et al. (2023) various DRL frameworks in software testing, including
fuzzing, were comprehensively examined. Their findings unequivocally
demonstrate the efficacy of DRL frameworks, with select frameworks
surpassing the performance of contemporary approaches. However, it



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
is worth noting that this paper primarily focused on surveying the
landscape of software testing in CI and game testing, with an implicit
review of multiple software testing frameworks and not specifically
on fuzzing techniques for general random testing concepts applied to
various targets. As a result, further empirical evaluations on benchmark
problems are warranted when selecting DRL frameworks for fuzzing
to ensure that algorithmic performance aligns seamlessly with specific
requirements and objectives.

In this section, our main focus shifts from the aforementioned
survey paper. We survey different DRL techniques applied to fuzzing,
including Curiosity-driven RL, Deep Q-learning, and the integration of
DNNs with RL frameworks, encompassing game testing as well.

7.1.1. Curiosity-driven learning
Curiosity-driven Learning RL is a distinctive approach of DRL started

by ‘‘Q-testing’’ in the domain of fuzzing. Q-testing is an approach based
on Q-learning in automated software testing that combines random and
model-based techniques introduced in Pan et al. (2020). It paired Q-
learning with a curiosity-driven strategy employing principles from RL
or DRL to guide the exploration of unfamiliar software functionalities.
It is important to note that Q-testing is not synonymous with Q-
learning; instead, it adopts the concept of Q-values and the essence of
RL to formulate a testing strategy. In other words, Q-testing entails the
process of deciding which test cases are generated based on Q-values,
which stand for the speculated effectiveness or usefulness of a specific
task in a given programme state through Curiosity-driven RL.

As a practical example of Q-testing combined with a curiosity-
driven approach, Pan et al. introduced LSTM-based Q-testing in their
research (Pan et al., 2020), treating Android testing as an MDP. This
approach, grounded in RL, combines random and model-based tech-
niques for automated testing of Android apps using Siamese LSTM.
It leverages a state comparison module to improve the exploration of
unfamiliar app functionalities. Zheng et al. (2021) also introduced an
MDP model based on curiosity-driven RL called WebExplor to create
effective test cases and to build an automaton for guidance, enhancing
testing efficiency. Extensive evaluations show its superiority in failure
detection, code coverage, and efficiency.

7.1.2. Deep Q-learning
The Deep Q-learning method involves storing experiences, compris-

ing state, action, reward, and next state, in a buffer. During training,
random batches are sampled from this buffer to disrupt the corre-
lation between consecutive experiences. Q-learning, originally intro-
duced by Watkins in Watkins (1989) and Watkins and Dayan (1992),
has seen significant advancements through its integration with DNN-
based fuzzing techniques, a concept outlined in Bottinger et al. (2018).
This combination has proven to be exceptionally effective when con-
fronted with the complex challenges posed by vast state spaces in
the domain of fuzzing with complex targets. One of the most notable
successes in this area was achieved by Bottinger et al. (2018), who
constructed a Q-network RL model based on MDP, leveraging deep
Q-learning to optimise fuzzing action selection, ultimately resulting in
superior policy mastery and remarkable performance.

In a separate endeavour described in Li et al. (2022c), Xiaoting Li
and colleagues introduced an innovative model called FuzzBoost, which
approaches compiler fuzzing as a RL problem. This framework incor-
porates deep Q-learning, facilitating multi-step code mutations and
utilising a reward policy grounded in testing coverage, all underpinned
by deep Q-learning principles (Li et al., 2022c).

However, DRL encompasses a broader class of algorithms beyond
deep Q-learning. DRL refers to the combination of DL techniques, such
as DNN, with RL methods to solve complex tasks which is explained in
17

the following.
7.1.3. Integration of DNN with RL framework
In the realm of integrating DNN with RL frameworks, several inno-

vative approaches have been proposed, each with a unique focus and
contribution. The integration of DNN with RL frameworks encompasses
various methods aimed at directly mapping the state to the action
probabilities.

In Li et al. (2022d), Li et al. introduce Agentfuzz, a novel testing
framework designed to generate diverse test cases to identify failures
in DRL systems. This framework leverages gradient-guided mutators,
providing a unique approach to test case diversity and failure detection.
Gong et al. present DRLFCfuzzer, a methodology outlined in Gong
et al. (2022), which addresses data boundary segmentation and data
block selection using DRL. This approach aims to enhance fuzzing
efficiency and reduce the exploration of invalid sample spaces, thereby
optimising the testing process. Liang and Xiao (2022) propose a di-
rected fuzzing approach based on DRL. Their method employs a DRL
network to optimise the selection of test samples and utilises program
instrumentation for determining execution paths and distances from the
target. This targeted approach improves the effectiveness of the fuzzing
process. Jeon and Moon introduce ‘‘Dr. PathFinder’’ in their work (Jeon
and Moon, 2022), a concolic execution engine that combines DRL
with a hybrid fuzzing approach employing LSTM. This combination
of techniques addresses limitations associated with traditional fuzzing
methods, especially in bug discovery scenarios where prior knowledge
of the target program is lacking. Dr.PathFinder combines ‘‘deeper path
first concolic execution’’ with mutational coverage-based fuzzing, in-
corporating Q-learning to progressively minimise gradient differences,
ultimately enhancing the fuzzing process. In Li et al. (2022b), Li et al.
introduce ALPHAPROG, which employs multiple reward functions to
guide the generation of valid programs for compiler testing. This model
balances validity and diversity, increasing the likelihood of identifying
vulnerabilities and flaws in the compiler by generating programs that
compile successfully while covering a wide range of language patterns.

Tappler et al. address the safety and performance evaluation of DRL
agents using a search-based testing framework, as described in Tappler
et al. (2022). Their framework combines backtracking-based depth-
first search for safety testing and genetic algorithm-based fuzzing for
performance testing, creating a tailored testing approach to ensure
the safety, robustness, and performance of RL agents in various envi-
ronments and tasks. In their work (Drozd and Wagner, 2018), Drozd
and Wagner introduced Fuzzergym by integrating OpenAI Gym with
libFuzzer, connecting LLVM Sanitizers’ program monitors with a neural
network. They employ asynchronous buffers to facilitate coordination
between the fuzzing process and ML, using RL within an asynchronous
architecture for intelligently selecting mutations in software testing.

Each of these contributions represents a unique approach to the
integration of DNN with RL frameworks, focusing on diverse aspects
of testing, efficiency optimisation, and targeted fuzzing. Together, they
offer a comprehensive landscape of innovative techniques and method-
ologies in this evolving field.

7.2. Assessment of DRL models

A variety of DRL models, including Curiosity-driven RL, Deep Q-
learning, and Integration of DNN with RL Framework, have been
extensively investigated in the literature, as documented in Table 10.
Notably, integration of DNN with RL Framework emerges as the most
prevalent technique as depicted in Fig. 7, constituting 63.6% of the
explored approaches. This dominance underscores its paramount sig-
nificance within this domain. Moreover, seed file generation and gram-
mar formulation consistently emerge as the predominant anticipated

outputs of different fuzzing techniques.



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Table 10
Different deep RL approaches to address fuzzing inefficiencies in software, kernel, and other libraries.

Subcategories Name Technique Input Output SUT

C1 C2 C3

Curiosity Driven
RL

Q-testing on
Android (Pan et al.,
2020)

Applying Q-testing based on
Siamese LSTM with two
single-layer networks with 100
hidden neurons using a
curiosity-driven strategy

Real world corpus ✓ 50 open-source real world
applications

WebExplor (Zheng
et al., 2021)

a MDP model based on
curiosity-driven RL

Real world corpus ✓ ✓ on six real-world projects
and 50 web applications

Deep Q-learning Q-net RL (Bottinger
et al., 2018)

Using MDP based on deep
Q-learning that learns to choose
highly rewarded fuzzing actions

A 168 kByte seed file with
101 PDF objects

✓ PDF parser in the Edge
browser, Linux command
line converters

FuzzBoost (Li et al.,
2022c)

Automatic code synthesis
framework to resolve compiler
fuzzing as a RL problem based on
multi-step code mutations, MDP
and a reward policy

OpenSSL.1.0.1u
OpenSSL.1.0.1f
busybox.1.21.stable

✓ ✓ GCC test suites

Integration of
DNN with RL
Framework

Agentfuzz (Li et al.,
2022d)

Gradient-based mutators Initial states of RL system
as test cases

✓ Deep reinforcement
learning system

DRLFCfuzzer (Gong
et al., 2022)

Segmenting data boundaries and
selecting data blocks

Jpg, png, jpg, bmp, gz, png ✓ ✓ Fuzzer-Test-Suite (guetzil,
libpng, libjpeg), Real-world
apps(CImg, gzip, pngquant)

RLF introduced by
Ling (Liang and
Xiao, 2022)

Directed fuzzing using program
instrumentation for execution
path and distance, and RL which
is modelled by MDP

LAVA-M dataset and PNG ✓ uniq, who, md5sum, and
base64, GNU Binutils,
LibPNG

Dr.PathFinder (Jeon
and Moon, 2022)

A concolic execution engine using
RL with a hybrid fuzzing
approach and Q-network
architecture and standard LSTM

Symbolic inputs generated
by SMT solver

✓ CB-multios dataset
(migrated set of CGC
binaries to Linux,
Windows, and OS X
environments)

ALPHAPROG (Li
et al., 2022b)

Sequential mutation rewards
using a LSTM layer with 128
neurons

Samples for BF compiler ✓ BF compiler

Backtracking-based
DFS (Tappler et al.,
2022)

Modeled by MDP Combining
backtracking-based DFS and
genetic-algorithm-based fuzzing

Safety test-suites based on
the backtracking states of
the search, called
boundary states

✓ Arcade Learning
Environment, OpenAI
Gym, Deepmind Control
Suite: SafetyGym

Fuzzergym (Drozd
and Wagner, 2018)

Employing OpenAI in LibFuzzer
using LSTM with w/64 units,
asynchronous buffers and
architecture and intelligently
selecting mutations through
Partially Observable Markov
Decision Process (POMDP)

Real world corpus ✓ Libjpeg, libpng, boringssl,
re2, sqllite
Fig. 7. Frequency of literature in three subcategory of DRL models.
8. Discussion and future work

After conducting a thorough literature review, it is evident that the
choice of ML-based fuzzing categories, such as TML, DNN, RL, and DRL,
18
hinges upon the specific target and the scale of the fuzzing task. In
other words, the applicability of each category varies depending on the
unique characteristics and requirements of the fuzzing scenario. This
insight underscores the need for a nuanced approach in selecting the



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Table 11
Frequency of mathematical framework or techniques in research literature.

Mathematical frameworks or techniques Frequently utilised
methods across the
literature

List of References

Gradient-based optimisation or Mutation 13 Raychev et al. (2015) She et al. (2019) Li et al. (2022a) She et al.
(2020) Wu et al. (2022) Park et al. (2023) Cummins et al. (2018)
Nichols et al. (2017) Hu et al. (2018) Grieco et al. (2016) Patil and
Kanade (2018) Li et al. (2022d) Jeon and Moon (2022)

Multi-armed bandits 5 Karamcheti et al. (2018) Scott et al. (2021) Patil and Kanade
(2018) Wang et al. (2021b) Huang et al. (2022b)

Markov-Chain Decision 11 Sun et al. (2018), He et al. (2019), Su et al. (2023), Binosi et al.
(2023), Bottinger et al. (2018)
Pan et al. (2020), Zheng et al. (2021), Li et al. (2022c), Liang and
Xiao (2022), Tappler et al. (2022), Drozd and Wagner (2018)
Table 12
Frequently utilised architectures in optimisation techniques and neural network.

Neural network architecture Frequently utilised
architecture across
the literature

List of References

LSTM Family 18 Wang et al. (2019) Cummins et al. (2018) Zakeri Nasrabadi et al.
(2021) Peleg et al. (2017) Zhao et al. (2019) Blum et al. (2017)
Fan and Chang (2018) Sablotny et al. (2019) Nichols et al. (2017)
Hu et al. (2018) Liu and Patras (2022) Paduraru et al. (2021) Koo
et al. (2019) Su et al. (2023) Patil and Kanade (2018) Pan et al.
(2020) Jeon and Moon (2022), Drozd and Wagner (2018)

GAN Family 6 Li et al. (2019) Lyu et al. (2019) Ye et al. (2021) Nichols et al.
(2017) Hu et al. (2018) Liu and Patras (2022)

Seq2seq 6 Cheng et al. (2019) Blum et al. (2017) Wang et al. (2019) Zhao
et al. (2019) Blum et al. (2017) Fan and Chang (2018)
most suitable ML-based fuzzing technique, tailored to the particular
context at hand.

In our review, we also found that different TML models can enhance
traditional fuzzing approaches by providing data-driven decision-
making capabilities. Specifically, the Feature-Based Protocol Model
improves traditional fuzzing by evaluating the characteristics and
features of the target program’s protocol. However, it relies on a
predefined set of features representing key aspects of the protocol.
As a solution to this limitation, predictive and fitness models aim to
establish an optimal relationship between input and output for the
target program. This does come with further challenges since selecting
the right features for predictive functions can be a time-consuming and
domain-specific task, making it difficult to scale up for larger and more
complex software systems. In such cases, seed generation with a long
input correlation tracing model may be more feasible since they can
prioritise inputs that enhance code coverage, particularly for closed-
source targets. While TML models effectively identify promising inputs
and enable the assessment of the quality of generated test cases, they
fall short in comparison to DNN models when it comes to exploration
and optimisation.

DNN offer much promise for developing fuzzing capabilities, since
the interconnected nodes and multiple layers models can automatically
extract hierarchical representations from raw data, enabling efficient
handling of complex predictive and discriminative tasks. DNNs are
not without their challenges, such as the risk of over-fitting, which
can impact their performance in unexpected situations. To address
the challenges posed by DNN models, various DNN-based optimisa-
tion techniques, including neural network architectures and RL and
DRL techniques, offer improved strategies for dealing with complex
and high-dimensional data, such as Kernel fuzzing. In our survey, we
found that while DNN techniques have been applied to fuzzing various
complex targets, such as Operating Systems, there is a notable absence
of exploration regarding the application of RL techniques to fuzz File
Systems or related areas. Moreover, there is a notable scarcity of work
focusing on the development of high-quality datasets tailored for RL-
based fuzzing methodologies. RL and DRL techniques provide greater
19

flexibility in dynamic fuzzing environments, and through continual
learning paradigms they can better adapt to changing circumstances
within the environment. We believe that there is still great potential for
RL and DRL methods to be explored further through future research.

8.1. Assessment of mathematical framework and different architectures

A summary of the frequency of usage of various optimisation tech-
niques, including gradient-guided optimisation, the Multi-armed ban-
dit, and Markov-Chain Decision across the four categories are presented
in Table 11. Gradient-based optimisation or mutation is the most fre-
quently used optimisation technique in the fuzzing process, combined
with all categories, including TML, DNN, RL, and DRL, and the number
of literature references is 13. The reason for its frequent use may be that
it is the easiest method to implement and adapt to diverse scenarios.

Table 12 lists architectures frequently utilised optimisation tech-
niques and neural network across the literature. Frequently used neural
network architectures across the literature include LSTM, which was
applied in DNN, RL, and DRL 18 times, and GAN, a specific type of
neural network architecture used for data generation tasks, which was
mentioned 6 times. The reason for their frequent utilisation may be
their effectiveness in modelling complex data patterns and generating
realistic data samples. Seq2seq was mentioned in the literature 6 times.
The reason for its frequent use might be its effectiveness in handling
Seq2Seq tasks, such as machine translation and text summarisation.

Multi-armed bandit was referenced 5 times in the literature. The
reason for its repeated appearance might be its suitability for solv-
ing problems involving decision-making under uncertainty, such as
resource allocation and online advertising optimisation. Hence, the
popularity of employing LSTM combined with Seq2Seq in sequential
data processing strategies is well-founded.

The specific requirements of the fuzzing task and the characteristics
of the input data will determine the selection of the LSTM variant
and the number of layers to be utilised in the fuzzing process. Deep
architectural designs may not always be necessary for effective fuzzing;
simpler LSTM variations, such as standard LSTM or bidirectional LSTM,

can serve as viable alternatives.



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.

L
i
d
s
o

8

t
o
i
t
d
f

Table 13
Number of LSTM layers and LSTM models deployed in different literature.

Fuzzer Number of layers LSTM model

NeuFuzz (Wang et al., 2019) 4 Bidirectional LSTM
NetSentry (Liu and Patras, 2022) 1 Bi-ALSTM with 64-bit initial input 48 hidden states
Faster fuzzing (Nichols et al., 2017) 1 Standard LSTM with ‘‘128-wide initial layer’’ (it is not explicitly

stated)
Samplefuzz (Peleg et al., 2017) 2 Seq2seq LSTM model with 128 hidden states
Augmented-AFL (Blum et al., 2017) 1, 2 Standard LSTM and Bi-LSTM with 64-, 128-bit Chunk Seq2Seq and

Seq2Seq+Attn models
A generative blackbox fuzzing (Fan and Chang, 2018) 2 LSTM with 2 hidden (no specific name mentioned for fuzzer layers),

and each layer consists of 128 hidden states combined with seq2seq
DeepSmith (Cummins et al., 2018) 2 Standard LSTM network of 512 nodes per layer
Char-RNN (Sablotny et al., 2019) 2, 6 Two-layer GRU and one to six layer standard LSTM where training

batch size is 512 and internal size of the LSTM and GRU cells are
256

IUST-DeepFuzz (Zakeri Nasrabadi et al., 2021) 1 Unidirectional LSTM with 128 units in each layer
2 Unidirectional LSTM with 128 bits in each layer
2 Unidirectional LSTM with 256 bits in each layer
2 Bidirectional LSTM with 128 bits in each layer

SeqFuzzer (Zhao et al., 2019) 3 Deep LSTM with seq2seq model. The LSTM size is not explicitly
specified but it works with standard Ethernet packets Protocol
messages (4 states machine) data are exported as 8-byte hex C
arrays file (total 64 bits)

GANFuzz (Hu et al., 2018) 1 Standard LSTM with 32 hidden states
AFL-CB (Patil and Kanade, 2018) 1 Standard LSTM with 100 recurrent units state is a stream of 128

bytes
Dr.PathFinder (Jeon and Moon, 2022) 2 Standard LSTM (not specified)
RiverFuzzRL (Paduraru et al., 2021) 1 Standard LSTM (not specified)
PySE (Koo et al., 2019) 1 Standard LSTM (not specified)
RLF introduced by SU (Su et al., 2023) 1 Standard LSTM (not specified)
Curiosity Driven Testing (Pan et al., 2020) 1 Siamese LSTM (not specified)
Fuzzergym (Drozd and Wagner, 2018) 1 Standard LSTM with 64 units
Table 13 presents information on the number of LSTM layers and
STM models deployed in different literature. This table aids readers
n assessing the problem’s complexity, and the availability of training
ata, and provides a reasonable estimate of the computational re-
ources required for executing a fuzzing campaign based on the number
f LSTM layers and their models.

.2. Limitations

Although this structured presentation enriches our understanding of
he prevalence of these techniques and architectures in the literature,
ffering a comprehensive overview of their usage and significance, it is
mperative to acknowledge the persistent, unresolved challenges within
he realm of fuzzing that warrant consideration in future research. We
iscuss potential topics which can be considered for future work as
ollowing:

• Improving Mathematical models: Fuzzing has exhibited
promising potential through existing mathematical models how-
ever, there remains ample opportunity for additional research and
refinement. For instance, within the context of fuzzing, leveraging
a Markov chain presents an avenue to model the interrelation
among distinct states of input data. In this representation, each
state embodies a specific structural composition or pattern of the
input data. A critical area for advancement involves enhancing
the Markov chain to adeptly depict event sequences, wherein
the probability of each event is contingent solely upon the state
achieved in the preceding event.

• Coverage Improvement: Fuzzing aims to explore as much of the
program’s code and behaviour as possible. Future work should
focus on enhancing better methods of leveraging features, predic-
tive/fitness models and more reliable coverage metrics and tech-
niques to ensure thorough code exploration, including complex
and less-accessible parts of the code.

• Targeting Specific Vulnerabilities Versus robustness of
fuzzing against input Variability: Developing specialised
20

fuzzing strategies and techniques tailored to identify specific
vulnerabilities holds significant promise. Concurrently, ensur-
ing the resilience of fuzzing tools against a broad spectrum
of input variability—encompassing malformed, unexpected, or
intentionally adversarial inputs—is paramount for their efficacy
in practical, real-world contexts. Fuzzing methodologies neces-
sitate customisation to effectively discern distinct vulnerability
categories, such as memory leaks and race conditions. However,
they must also possess robustness to withstand stress testing and
unanticipated variations in input. Keeping the balance between
these two factors should not cause adversarial scenarios where
malicious actors attempt to bypass or deceive fuzzing systems’
robustness against unanticipated variations in input. Achieving a
balance among the factors mentioned earlier ensures that fuzzing
techniques exhibit greater resilience against intentional evasion
endeavours.

• Handling Input Complexity and Non-Functional Properties:
Many real-world applications and systems accept complex and
structured inputs (e.g., file formats, and network protocols). De-
veloping fuzzing techniques that handle and mutate such com-
plex inputs effectively is a significant challenge. Also, beyond
functional correctness to handle input complexity, considering
non-functional properties such as performance, reliability, and
resilience is essential. Developing techniques to incorporate these
aspects into fuzzing is still an open challenge.

• Resource Efficiency and Integration with Software Develop-
ment Lifecycle: Optimising the resource consumption of fuzzing
tools is an ongoing challenge, given that fuzzing often requires
significant computational resources. Discovering methods to en-
hance fuzzing efficiency without compromising effectiveness is
imperative. For example, investigating bugs through an efficient
architecture by seamlessly integrating fuzzing into the software
development lifecycle ensures continuous and automated testing
while conserving resources.

• Fuzzing Web Applications and APIs: Extending fuzzing to web
applications, APIs, and other internet-facing systems is a vital
area for improvement. Developing fuzzing methodologies that can
effectively test web-based interfaces and protocols is essential



Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.

o

9

t
b
O
t
a
n
T
e
h

o
a
e
p
c
c
v
b

d
R
w
e
o

i
g
r
p
m
d

C

W
P
S
e

D

A

v
r

D

c
i

given the prevalence of web applications by automated Exploit
Generation. After identifying vulnerabilities, automating the pro-
cess of generating effective exploits or proofs of concept remains a
challenging task. Future work should aim to automate the exploit
generation process for identified vulnerabilities.

Addressing these challenges will contribute to advancing the field
f fuzzing and improving the overall security of software systems.

. Conclusion

In this study, we investigated a paradigm shift in fuzzing techniques
hrough different techniques of ML. We have categorised these ML-
ased techniques into four distinct categories: TML, DL, RL, and DRL.
ur investigation has revolved around the assessment of their potential

o augment conventional fuzzing methodologies. First, we conducted
comprehensive survey of various strategies, such as feature engi-

eering, predictive models, fitness models, and Long Input Correlation
racing Models, as they relate to TML models. Additionally, we have
lucidated the persistent challenges encountered when dealing with
igh-dimensional data in these traditional ML models.

Furthermore, we have discussed how the incorporation of state-
f-the-art architectural components, such as LSTM, GAN, Seq2Seq,
nd GRU, within the framework of DNN models can significantly
nhance the performance of fuzzing techniques. However, it is im-
ortant to acknowledge that the issue of overfitting necessitates the
onsideration of more adaptable models. This avenue of exploration
an be pursued through the utilisation of semi-supervised learning,
ulnerability-guided fuzzing, contextual bandit algorithms, and a RL-
ased hierarchical scheduler within RL models.

Additionally, our research has delved into the areas of Curiosity-
riven model, Deep Q-learning, and the integration of DNNs within the
L framework for applications in DRL as it relates to fuzzing. Moreover,
e have underscored the pivotal role played by DNN and RL models in
nhancing the efficacy of vulnerability detection and the identification
f complex bugs, including those occurring in Kernel and File systems.

Our study highlights the transformative role of ML-based methods
n seed selection, message generation for system fuzzing, and fuzzing
rammar optimisation. By exploring ML techniques in fuzzing algo-
ithms, our survey serves as a valuable resource for researchers and
ractitioners, providing insights into the most common and effective
odels and techniques. It aids in shaping the roadmap for applying
iverse strategies in advancing fuzzing research.

RediT authorship contribution statement

Sadegh Bamohabbat Chafjiri: Writing – review & editing,
riting – original draft, Visualization, Validation, Methodology.
hil Legg: Writing – review & editing, Supervision. Jun Hong:
upervision. Michail-Antisthenis Tsompanas: Writing – review &
diting, Supervision.

ata availability

No data was used for the research described in the article.

cknowledgments

We would like to thank the College of Arts, Technology and En-
ironment at the University of the West of England, for funding this
esearch through the PhD studentship scheme.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
21
References

Abdelnur, H., Festor, O., State, R., 2007. KiF: a stateful SIP fuzzer. In: Proceedings
of the 1st International Conference on Principles, Systems and Applications of IP
Telecommunications. pp. 47–56.

Anon, 2014. CVE-2014-6271. URL https://cve.mitre.org/cgi-bin/cvename.cgi?name=
cve-2014-6271.

Anon, 2016. syzkaller. URL https://github.com/google/syzkaller, (Updated page
accessed in August 2023).

Anon, 2021. CVE-2021-44228. URL https://cve.mitre.org/cgi-bin/cvename.cgi?name=
2021-44228.

Becker, S., Abdelnur, H., State, R., Engel, T., 2010. An autonomic testing framework
for IPv6 configuration protocols. In: Stiller, B., De Turck, F. (Eds.), Mechanisms for
Autonomous Management of Networks and Services. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 65–76.

Binosi, L., Rullo, L., Polino, M., Carminati, M., Zanero, S., 2023. Rainfuzz:
Reinforcement-learning driven heat-maps for boosting coverage-guided fuzzing. In:
De Marsico, M., di Baja, G.S., Fred, A.L.N. (Eds.), Proceedings of the 12th Inter-
national Conference on Pattern Recognition Applications and Methods. ICPRAM
2023, Lisbon, Portugal, February 22-24, 2023, SCITEPRESS, pp. 39–50. http://dx.
doi.org/10.5220/0011625300003411.

Blum, W., Rajpal, M., Singh, R., 2017. Not all bytes are equal: Neural byte sieve
for fuzzing. Cornell University Library, URL https://www.microsoft.com/en-us/
research/publication/not-all-bytes-are-equal-neural-byte-sieve-for-fuzzing/.

Böhme, M., Pham, V.-T., Nguyen, M.-D., Roychoudhury, A., 2017. Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. pp. 2329–2344.

Bottinger, K., Godefroid, P., Singh, R., 2018. Deep reinforcement fuzzing. In: 2018
IEEE Security and Privacy Workshops. SPW, IEEE Computer Society, Los Alamitos,
CA, USA, pp. 116–122. http://dx.doi.org/10.1109/SPW.2018.00026, URL https:
//doi.ieeecomputersociety.org/10.1109/SPW.2018.00026.

Carvalho, M., DeMott, J., Ford, R., Wheeler, D.A., 2014. Heartbleed 101. IEEE Secur.
Privacy 12 (4), 63–67. http://dx.doi.org/10.1109/MSP.2014.66.

Chen, Y., Ahmadi, M., Mirzazade farkhani, R., Wang, B., Lu, L., 2020. MEUZZ: Smart
seed scheduling for hybrid fuzzing. In: Proceedings of the 23rd International
Symposium on Research in Attacks, Intrusions and Defenses. RAID ’20.

Cheng, L., Zhang, Y., Zhang, Y., Wu, C., Li, Z., Fu, Y., Li, H., 2019. Optimizing seed
inputs in fuzzing with machine learning. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings. ICSE-Companion, pp.
244–245. http://dx.doi.org/10.1109/ICSE-Companion.2019.00096.

Choi, G., Jeon, S., Cho, J., Moon, J., 2023b. A seed scheduling method with a
reinforcement learning for a coverage guided fuzzing. IEEE Access 11, 2048–2057.
http://dx.doi.org/10.1109/ACCESS.2022.3233875.

Cummins, C., Petoumenos, P., Murray, A., Leather, H., 2018. Compiler fuzzing through
deep learning. In: Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. ISSTA 2018, Association for Computing
Machinery, New York, NY, USA, pp. 95–105. http://dx.doi.org/10.1145/3213846.
3213848.

Daniele, C., Andarzian, S.B., Poll, E., 2024. Fuzzers for stateful systems: survey
and research directions. ACM Comput. Surv. 56 (9), http://dx.doi.org/10.1145/
3648468.

Drozd, W., Wagner, M.D., 2018. FuzzerGym: A competitive framework for fuzzing and
learning, arxiv abs/1807.07490.

Duan, G., Fu, Y., Cai, M., Chen, H., Sun, J., 2023a. DongTing: A large-scale
dataset for anomaly detection of the linux kernel. J. Syst. Softw. 203, 111745.
http://dx.doi.org/10.1016/j.jss.2023.111745, URL https://www.sciencedirect.com/
science/article/pii/S0164121223001401.

Duan, G., Fu, Y., Zhang, B., Deng, P., Sun, J., Chen, H., Chen, Z., 2023b. TEE-
Fuzzer: A fuzzing framework for trusted execution environments with heuristic
seed mutation. Future Gener. Comput. Syst. 144, 192–204. http://dx.doi.org/
10.1016/j.future.2023.03.008, URL https://www.sciencedirect.com/science/article/
pii/S0167739X23000857.

Fan, R., Chang, Y., 2018. Machine learning for black-box fuzzing of network pro-
tocols. ISBN: 978-3-319-89499-7, pp. 621–632. http://dx.doi.org/10.1007/978-3-
319-89500-0_53.

Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A., 2016.
Chapter one - security testing: A survey. In: Memon, A. (Ed.), In: Advances in
Computers, vol. 101, Elsevier, pp. 1–51. http://dx.doi.org/10.1016/bs.adcom.2015.
11.003.

Feng, W., Lai, Y., Liu, Z., 2020. Vulnerability mining for modbus TCP based on
exception field positioning. Simul. Model. Pract. Theory 102, 101989. http://dx.doi.
org/10.1016/j.simpat.2019.101989, URL https://www.sciencedirect.com/science/
article/pii/S1569190X19301224, Special Issue on IoT, Cloud, Big Data and AI in
Interdisciplinary Domains.

http://refhub.elsevier.com/S0167-4048(24)00205-0/sb1
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb1
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb1
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb1
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb1
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-6271
https://github.com/google/syzkaller
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-44228
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb5
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb5
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb5
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb5
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb5
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb5
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb5
http://dx.doi.org/10.5220/0011625300003411
http://dx.doi.org/10.5220/0011625300003411
http://dx.doi.org/10.5220/0011625300003411
https://www.microsoft.com/en-us/research/publication/not-all-bytes-are-equal-neural-byte-sieve-for-fuzzing/
https://www.microsoft.com/en-us/research/publication/not-all-bytes-are-equal-neural-byte-sieve-for-fuzzing/
https://www.microsoft.com/en-us/research/publication/not-all-bytes-are-equal-neural-byte-sieve-for-fuzzing/
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb8
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb8
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb8
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb8
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb8
http://dx.doi.org/10.1109/SPW.2018.00026
https://doi.ieeecomputersociety.org/10.1109/SPW.2018.00026
https://doi.ieeecomputersociety.org/10.1109/SPW.2018.00026
https://doi.ieeecomputersociety.org/10.1109/SPW.2018.00026
http://dx.doi.org/10.1109/MSP.2014.66
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb11
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb11
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb11
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb11
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb11
http://dx.doi.org/10.1109/ICSE-Companion.2019.00096
http://dx.doi.org/10.1109/ACCESS.2022.3233875
http://dx.doi.org/10.1145/3213846.3213848
http://dx.doi.org/10.1145/3213846.3213848
http://dx.doi.org/10.1145/3213846.3213848
http://dx.doi.org/10.1145/3648468
http://dx.doi.org/10.1145/3648468
http://dx.doi.org/10.1145/3648468
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb16
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb16
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb16
http://dx.doi.org/10.1016/j.jss.2023.111745
https://www.sciencedirect.com/science/article/pii/S0164121223001401
https://www.sciencedirect.com/science/article/pii/S0164121223001401
https://www.sciencedirect.com/science/article/pii/S0164121223001401
http://dx.doi.org/10.1016/j.future.2023.03.008
http://dx.doi.org/10.1016/j.future.2023.03.008
http://dx.doi.org/10.1016/j.future.2023.03.008
https://www.sciencedirect.com/science/article/pii/S0167739X23000857
https://www.sciencedirect.com/science/article/pii/S0167739X23000857
https://www.sciencedirect.com/science/article/pii/S0167739X23000857
http://dx.doi.org/10.1007/978-3-319-89500-0_53
http://dx.doi.org/10.1007/978-3-319-89500-0_53
http://dx.doi.org/10.1007/978-3-319-89500-0_53
http://dx.doi.org/10.1016/bs.adcom.2015.11.003
http://dx.doi.org/10.1016/bs.adcom.2015.11.003
http://dx.doi.org/10.1016/bs.adcom.2015.11.003
http://dx.doi.org/10.1016/j.simpat.2019.101989
http://dx.doi.org/10.1016/j.simpat.2019.101989
http://dx.doi.org/10.1016/j.simpat.2019.101989
https://www.sciencedirect.com/science/article/pii/S1569190X19301224
https://www.sciencedirect.com/science/article/pii/S1569190X19301224
https://www.sciencedirect.com/science/article/pii/S1569190X19301224


Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Gong, K., Yang, W., Cui, B., Chen, C., 2022. DRLFCfuzzer: fuzzing with deep-
reinforcement-learning under format constraints. In: 2022 2nd International
Conference on Electronic Information Engineering and Computer Technology.
EIECT, pp. 374–380. http://dx.doi.org/10.1109/EIECT58010.2022.00080.

Grieco, G., Grinblat, G.L., Uzal, L., Rawat, S., Feist, J., Mounier, L., 2016. Toward
large-scale vulnerability discovery using machine learning. In: Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy. CODASPY
’16, Association for Computing Machinery, New York, NY, USA, pp. 85–96. http:
//dx.doi.org/10.1145/2857705.2857720.

Groß, T., Schleier, T., Müller, T., 2022. ReFuzz - structure aware fuzzing of the resilient
file system (ReFS). In: Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security. ASIA CCS ’22, Association for Computing
Machinery, New York, NY, USA, pp. 589–601. http://dx.doi.org/10.1145/3488932.
3523260.

He, J., Balunović, M., Ambroladze, N., Tsankov, P., Vechev, M., 2019. Learning to
fuzz from symbolic execution with application to smart contracts. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’19, Association for Computing Machinery, New York, NY, USA, pp. 531–548.
http://dx.doi.org/10.1145/3319535.3363230.

Hochreiter, S., 1998. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. Internat. J. Uncertain. Fuzziness Knowledge-Based
Systems 6, 107–116. http://dx.doi.org/10.1142/S0218488598000094.

Hu, Z., Shi, J., Huang, Y., Xiong, J., Bu, X., 2018. GANFuzz: A GAN-based industrial
network protocol fuzzing framework. In: Proceedings of the 15th ACM International
Conference on Computing Frontiers. CF ’18, Association for Computing Machinery,
New York, NY, USA, pp. 138–145. http://dx.doi.org/10.1145/3203217.3203241.

Huang, Y., Shu, H., Kang, F., Guang, Y., 2022a. Protocol reverse-engineering methods
and tools: A survey. Comput. Commun. 182, 238–254. http://dx.doi.org/10.
1016/j.comcom.2021.11.009, URL https://www.sciencedirect.com/science/article/
pii/S0140366421004382.

Huang, Z., Song, X., Luo, Y., Yang, J., Cui, B., 2022b. Syzballer: Kernel fuzzing based
on basic block weight and multi-armed bandit. In: 2022 IEEE 8th International
Conference on Computer and Communications. ICCC, pp. 2364–2369. http://dx.
doi.org/10.1109/ICCC56324.2022.10065711.

Jeon, S., Moon, J., 2022. Dr.PathFinder: hybrid fuzzing with deep reinforcement
concolic execution toward deeper path-first search. Neural Comput. Appl. 34 (13),
10731–10750. http://dx.doi.org/10.1007/s00521-022-07008-8.

Jha, P., Scott, J., Ganeshna, J.S., Singh, M., Ganesh, V., 2023. BertRLFuzzer: A BERT
and reinforcement learning based fuzzer. arXiv:2305.12534.

Karamcheti, S., Mann, G., Rosenberg, D., 2018. Adaptive grey-box fuzz-testing with
thompson sampling. In: Proceedings of the 11th ACM Workshop on Artificial
Intelligence and Security. AISec ’18, Association for Computing Machinery, New
York, NY, USA, pp. 37–47. http://dx.doi.org/10.1145/3270101.3270108.

Koo, J., Saumya, C., Kulkarni, M., Bagchi, S., 2019. PySE: Automatic worst-case test
generation by reinforcement learning. In: 2019 12th IEEE Conference on Software
Testing, Validation and Verification. ICST, pp. 136–147. http://dx.doi.org/10.1109/
ICST.2019.00023.

Li, D., Chen, H., 2019. FastSyzkaller: Improving fuzz efficiency for linux kernel fuzzing.
J. Phys. Conf. Ser. 1176 (2), 022013. http://dx.doi.org/10.1088/1742-6596/1176/
2/022013.

Li, Y., Ji, S., Lyu, C., Chen, Y., Chen, J., Gu, Q., Wu, C., Beyah, R., 2022a. V-
Fuzz: Vulnerability prediction-assisted evolutionary fuzzing for binary programs.
IEEE Trans. Cybern. 52 (5), 3745–3756. http://dx.doi.org/10.1109/TCYB.2020.
3013675.

Li, X., Liu, X., Chen, L., Prajapati, R., Wu, D., 2022b. ALPHAPROG: Reinforcement
generation of valid programs for compiler fuzzing. In: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36, No. 11. pp. 12559–12565. http:
//dx.doi.org/10.1609/aaai.v36i11.21527.

Li, X., Liu, X., Chen, L., Prajapati, R., Wu, D., 2022c. FuzzBoost: Reinforcement
compiler fuzzing. In: Information and Communications Security: 24th International
Conference, ICICS 2022, Canterbury, UK, September 5–8, 2022, Proceedings.
Springer-Verlag, Berlin, Heidelberg, pp. 359–375. http://dx.doi.org/10.1007/978-
3-031-15777-6_20.

Li, T., Wan, X., Özbek, M.M., 2022d. AgentFuzz: Fuzzing for deep reinforcement
learning systems. In: 2022 IEEE International Symposium on Software Relia-
bility Engineering Workshops. ISSREW, pp. 110–113. http://dx.doi.org/10.1109/
ISSREW55968.2022.00049.

Li, Z., Zhao, H., Shi, J., Huang, Y., Xiong, J., 2019. An intelligent fuzzing data gen-
eration method based on deep adversarial learning. IEEE Access 7, 49327–49340.
http://dx.doi.org/10.1109/ACCESS.2019.2911121.

Liang, X., Xiao, T., 2022. RLF: Directed fuzzing based on deep reinforcement learning.
In: 2022 International Conference on Machine Learning, Control, and Robotics.
MLCR, pp. 127–133. http://dx.doi.org/10.1109/MLCR57210.2022.00032.

Lin, Y.-D., Lai, Y.-K., Bui, Q.T., Lai, Y.-C., 2020. ReFSM: Reverse engineering from
protocol packet traces to test generation by extended finite state machines. J. Netw.
Comput. Appl. 171, 102819. http://dx.doi.org/10.1016/j.jnca.2020.102819, URL
https://www.sciencedirect.com/science/article/pii/S1084804520302897.
22
Liu, H., Patras, P., 2022. NetSentry: A deep learning approach to detecting incipient
large-scale network attacks. Comput. Commun. 191, 119–132. http://dx.doi.org/10.
1016/j.comcom.2022.04.020, URL https://www.sciencedirect.com/science/article/
pii/S0140366422001335.

Liu, J., Wei, Y., Yang, S., Deng, Y., Zhang, L., 2022. Coverage-guided tensor compiler
fuzzing with joint IR-pass mutation. Proc. ACM Program. Lang. 6 (OOPSLA1),
http://dx.doi.org/10.1145/3527317.

Lyu, C., Ji, S., Li, Y., Zhou, J., Chen, J., Chen, J., 2019. SmartSeed: Smart seed
generation for efficient fuzzing. arXiv:1807.02606.

Mallissery, S., Wu, Y.-S., 2023. Demystify the fuzzing methods: A comprehensive survey.
ACM Comput. Surv. 56 (3), http://dx.doi.org/10.1145/3623375.

Miao, S., Wang, J., Zhang, C., Lin, Z., Gong, J., Zhang, X., Li, J., 2022. Deep learning
in fuzzing: A literature survey. In: 2022 IEEE 2nd International Conference on
Electronic Technology, Communication and Information. ICETCI, pp. 220–223.
http://dx.doi.org/10.1109/ICETCI55101.2022.9832143.

Miller, B.P., Fredriksen, L., So, B., 1990. An empirical study of the reliability of UNIX
utilities. Commun. ACM 33 (12), 32–44. http://dx.doi.org/10.1145/96267.96279.

Miller, B.P., Koski, D., Lee, C.P., Maganty, V., Murthy, R., Natarajan, A., Steidl, J., 1995.
Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and Services.
Tech. rep, Computer Sciences Department, University of Wisconsin-Madison.

Miller, C., Peterson, Z.N.J., 2007. Analysis of Mutation and Generation-Based Fuzzing.
Tech. rep.

Molnar, D., Godefroid, P., Levin, M., 2008. Automated whitebox fuzz testing. In:
Network and Distributed System Security Symposium. NDSS, pp. 416–426.

Nichols, N., Raugas, M., Jasper, R., Hilliard, N., 2017. Faster fuzzing: Reinitialization
with deep neural models. arXiv:1711.02807.

Nouwou Mindom, P.S., Nikanjam, A., Khomh, F., 2023. A comparison of reinforcement
learning frameworks for software testing tasks. Empir. Softw. Eng. 28, 111. http:
//dx.doi.org/10.1007/s10664-023-10363-2.

Paduraru, C., Paduraru, M., Stefanescu, A., 2021. RiverFuzzRL - an open-source tool
to experiment with reinforcement learning for fuzzing. http://dx.doi.org/10.1109/
ICST49551.2021.00055.

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D.,
Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J.,
Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-
Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C.,
Welch, V.A., Whiting, P., Moher, D., 2021. The PRISMA 2020 statement: an
updated guideline for reporting systematic reviews. BMJ 372, http://dx.doi.org/
10.1136/bmj.n71, arXiv:https://www.bmj.com/content/372/bmj.n71.full.pdf, URL
https://www.bmj.com/content/372/bmj.n71.

Pailoor, S., Aday, A., Jana, S., 2018. MoonShine: Optimizing OS fuzzer seed selection
with trace distillation. In: 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association, Baltimore, MD, pp. 729–743, URL https://www.usenix.org/
conference/usenixsecurity18/presentation/pailoor.

Pan, M., Huang, A., Wang, G., Zhang, T., Li, X., 2020. Reinforcement learning based
curiosity-driven testing of android applications. In: Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ISSTA 2020,
Association for Computing Machinery, New York, NY, USA, pp. 153–164. http:
//dx.doi.org/10.1145/3395363.3397354.

Park, L.H., Chung, S., Kim, J., Kwon, T., 2023. GradFuzz: Fuzzing deep neural
networks with gradient vector coverage for adversarial examples. Neurocomput-
ing 522, 165–180. http://dx.doi.org/10.1016/j.neucom.2022.12.019, URL https:
//www.sciencedirect.com/science/article/pii/S0925231222015168.

Park, L.H., Kim, J., Park, J., Kwon, T., 2022. Mixed and constrained input muta-
tion for effective fuzzing of deep learning systems. Inform. Sci. 614, 497–517.
http://dx.doi.org/10.1016/j.ins.2022.10.079, URL https://www.sciencedirect.com/
science/article/pii/S0020025522011999.

Patil, K., Kanade, A., 2018. Greybox fuzzing as a contextual bandits problem, arxiv
abs/1806.03806.

Peleg, H., Singh, R., Name, Y., 2017. Learn&fuzz: Machine learning for input fuzzing. In:
Proceedings of ASE’2017 (32nd International Conference on Automated Software
Engineering). Urbana-Champaign, pp. 50–59.

Pham, H.V., Lutellier, T., Qi, W., Tan, L., 2019. CRADLE: Cross-backend validation
to detect and localize bugs in deep learning libraries. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering. ICSE, pp. 1027–1038. http:
//dx.doi.org/10.1109/ICSE.2019.00107.

Qin, Y., Yue, C., 2022. Fuzzing-based hard-label black-box attacks against ma-
chine learning models. Comput. Secur. 117, 102694. http://dx.doi.org/10.
1016/j.cose.2022.102694, URL https://www.sciencedirect.com/science/article/pii/
S016740482200092X.

Raychev, V., Vechev, M., Krause, A., 2015. Predicting program properties from "big
code". In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’15, Association for Computing
Machinery, New York, NY, USA, pp. 111–124. http://dx.doi.org/10.1145/2676726.
2677009.

http://dx.doi.org/10.1109/EIECT58010.2022.00080
http://dx.doi.org/10.1145/2857705.2857720
http://dx.doi.org/10.1145/2857705.2857720
http://dx.doi.org/10.1145/2857705.2857720
http://dx.doi.org/10.1145/3488932.3523260
http://dx.doi.org/10.1145/3488932.3523260
http://dx.doi.org/10.1145/3488932.3523260
http://dx.doi.org/10.1145/3319535.3363230
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1145/3203217.3203241
http://dx.doi.org/10.1016/j.comcom.2021.11.009
http://dx.doi.org/10.1016/j.comcom.2021.11.009
http://dx.doi.org/10.1016/j.comcom.2021.11.009
https://www.sciencedirect.com/science/article/pii/S0140366421004382
https://www.sciencedirect.com/science/article/pii/S0140366421004382
https://www.sciencedirect.com/science/article/pii/S0140366421004382
http://dx.doi.org/10.1109/ICCC56324.2022.10065711
http://dx.doi.org/10.1109/ICCC56324.2022.10065711
http://dx.doi.org/10.1109/ICCC56324.2022.10065711
http://dx.doi.org/10.1007/s00521-022-07008-8
http://arxiv.org/abs/2305.12534
http://dx.doi.org/10.1145/3270101.3270108
http://dx.doi.org/10.1109/ICST.2019.00023
http://dx.doi.org/10.1109/ICST.2019.00023
http://dx.doi.org/10.1109/ICST.2019.00023
http://dx.doi.org/10.1088/1742-6596/1176/2/022013
http://dx.doi.org/10.1088/1742-6596/1176/2/022013
http://dx.doi.org/10.1088/1742-6596/1176/2/022013
http://dx.doi.org/10.1109/TCYB.2020.3013675
http://dx.doi.org/10.1109/TCYB.2020.3013675
http://dx.doi.org/10.1109/TCYB.2020.3013675
http://dx.doi.org/10.1609/aaai.v36i11.21527
http://dx.doi.org/10.1609/aaai.v36i11.21527
http://dx.doi.org/10.1609/aaai.v36i11.21527
http://dx.doi.org/10.1007/978-3-031-15777-6_20
http://dx.doi.org/10.1007/978-3-031-15777-6_20
http://dx.doi.org/10.1007/978-3-031-15777-6_20
http://dx.doi.org/10.1109/ISSREW55968.2022.00049
http://dx.doi.org/10.1109/ISSREW55968.2022.00049
http://dx.doi.org/10.1109/ISSREW55968.2022.00049
http://dx.doi.org/10.1109/ACCESS.2019.2911121
http://dx.doi.org/10.1109/MLCR57210.2022.00032
http://dx.doi.org/10.1016/j.jnca.2020.102819
https://www.sciencedirect.com/science/article/pii/S1084804520302897
http://dx.doi.org/10.1016/j.comcom.2022.04.020
http://dx.doi.org/10.1016/j.comcom.2022.04.020
http://dx.doi.org/10.1016/j.comcom.2022.04.020
https://www.sciencedirect.com/science/article/pii/S0140366422001335
https://www.sciencedirect.com/science/article/pii/S0140366422001335
https://www.sciencedirect.com/science/article/pii/S0140366422001335
http://dx.doi.org/10.1145/3527317
http://arxiv.org/abs/1807.02606
http://dx.doi.org/10.1145/3623375
http://dx.doi.org/10.1109/ICETCI55101.2022.9832143
http://dx.doi.org/10.1145/96267.96279
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb48
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb48
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb48
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb48
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb48
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb49
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb49
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb49
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb50
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb50
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb50
http://arxiv.org/abs/1711.02807
http://dx.doi.org/10.1007/s10664-023-10363-2
http://dx.doi.org/10.1007/s10664-023-10363-2
http://dx.doi.org/10.1007/s10664-023-10363-2
http://dx.doi.org/10.1109/ICST49551.2021.00055
http://dx.doi.org/10.1109/ICST49551.2021.00055
http://dx.doi.org/10.1109/ICST49551.2021.00055
http://dx.doi.org/10.1136/bmj.n71
http://dx.doi.org/10.1136/bmj.n71
http://dx.doi.org/10.1136/bmj.n71
http://arxiv.org/abs/https://www.bmj.com/content/372/bmj.n71.full.pdf
https://www.bmj.com/content/372/bmj.n71
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
http://dx.doi.org/10.1145/3395363.3397354
http://dx.doi.org/10.1145/3395363.3397354
http://dx.doi.org/10.1145/3395363.3397354
http://dx.doi.org/10.1016/j.neucom.2022.12.019
https://www.sciencedirect.com/science/article/pii/S0925231222015168
https://www.sciencedirect.com/science/article/pii/S0925231222015168
https://www.sciencedirect.com/science/article/pii/S0925231222015168
http://dx.doi.org/10.1016/j.ins.2022.10.079
https://www.sciencedirect.com/science/article/pii/S0020025522011999
https://www.sciencedirect.com/science/article/pii/S0020025522011999
https://www.sciencedirect.com/science/article/pii/S0020025522011999
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb59
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb59
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb59
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb60
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb60
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb60
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb60
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb60
http://dx.doi.org/10.1109/ICSE.2019.00107
http://dx.doi.org/10.1109/ICSE.2019.00107
http://dx.doi.org/10.1109/ICSE.2019.00107
http://dx.doi.org/10.1016/j.cose.2022.102694
http://dx.doi.org/10.1016/j.cose.2022.102694
http://dx.doi.org/10.1016/j.cose.2022.102694
https://www.sciencedirect.com/science/article/pii/S016740482200092X
https://www.sciencedirect.com/science/article/pii/S016740482200092X
https://www.sciencedirect.com/science/article/pii/S016740482200092X
http://dx.doi.org/10.1145/2676726.2677009
http://dx.doi.org/10.1145/2676726.2677009
http://dx.doi.org/10.1145/2676726.2677009


Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Saavedra, G.J., Rodhouse, K.N., Dunlavy, D.M., Kegelmeyer, P.W., 2019. A review of
machine learning applications in fuzzing. arXiv:1906.11133.

Sablotny, M., Jensen, B.S., Johnson, C.W., 2019. Recurrent neural networks for fuzz
testing web browsers. In: Lee, K. (Ed.), Information Security and Cryptology – ICISC
2018. Springer International Publishing, Cham, pp. 354–370.

Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., Holz, T., 2017. kAFL:
Hardware-assisted feedback fuzzing for OS kernels. In: 26th USENIX Security
Symposium. USENIX Security 17, USENIX Association, Vancouver, BC, pp. 167–
182, URL https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/schumilo.

Scott, J., Sudula, T., Rehman, H., Mora, F., Ganesh, V., 2021. BanditFuzz: Fuzzing SMT
solvers with multi-agent reinforcement learning. In: Huisman, M., Păsăreanu, C.,
Zhan, N. (Eds.), Formal Methods. Springer International Publishing, Cham, pp.
103–121.

She, D., Krishna, R., Yan, L., Jana, S., Ray, B., 2020. MTFuzz: Fuzzing with a multi-
task neural network. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. In: ESEC/FSE 2020, Association for Computing Machinery, New York,
NY, USA, pp. 737–749. http://dx.doi.org/10.1145/3368089.3409723.

She, D., Pei, K., Epstein, D., Yang, J., Ray, B., Jana, S., 2019. NEUZZ: Efficient fuzzing
with neural program smoothing. In: 2019 IEEE Symposium on Security and Privacy,
Vol. 1. SP, pp. 803–817. http://dx.doi.org/10.1109/SP.2019.00052.

Su, J., Dai, H.-N., Zhao, L., Zheng, Z., Luo, X., 2023. Effectively generating vulnera-
ble transaction sequences in smart contracts with reinforcement learning-guided
fuzzing. In: Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. ASE ’22, Association for Computing Machinery,
New York, NY, USA, http://dx.doi.org/10.1145/3551349.3560429.

Sun, X., Fu, Y., Dong, Y., Liu, Z., Zhang, Y., 2018. Improving fitness function for
language fuzzing with PCFG model. In: 2018 IEEE 42nd Annual Computer Software
and Applications Conference, Vol. 01. COMPSAC, pp. 655–660. http://dx.doi.org/
10.1109/COMPSAC.2018.00098.

SunHao-0, 2020. HEALER: A program-analysis-guided fuzzer for linux kernel drivers.
https://github.com/SunHao-0/healer (Updated page accessed in August 2023).

Takanen, A., 2009. Fuzzing is still widely unknown. https://www.computerworld.com/
article/2769688/fuzzing-is-still-widely-unknown.html. (Accessed: 27 August 2022).

Tao, C., Tao, Y., Guo, H., Huang, Z., Sun, X., 2023. DLRegion: Coverage-guided fuzz
testing of deep neural networks with region-based neuron selection strategies. Inf.
Softw. Technol. 162, 107266. http://dx.doi.org/10.1016/j.infsof.2023.107266, URL
https://www.sciencedirect.com/science/article/pii/S0950584923001209.

Tappler, M., Cano Córdoba, F., Aichernig, B.K., Könighofer, B., 2022. Search-based test-
ing of reinforcement learning. In: Raedt, L.D. (Ed.), Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence. IJCAI-22, International
Joint Conferences on Artificial Intelligence Organization, pp. 503–510. http://dx.
doi.org/10.24963/ijcai.2022/72, Main Track.

Tripathi, S., Grieco, G., Rawat, S., 2017. Exniffer: Learning to prioritize crashes by
assessing the exploitability from memory dump. In: 2017 24th Asia-Pacific Software
Engineering Conference. APSEC, pp. 239–248. http://dx.doi.org/10.1109/APSEC.
2017.30.

Wang, J., Chen, B., Wei, L., Liu, Y., 2017. Skyfire: Data-driven seed generation for
fuzzing. In: 2017 IEEE Symposium on Security and Privacy. SP, pp. 579–594.
http://dx.doi.org/10.1109/SP.2017.23.

Wang, Q., Gao, Y., Ren, J., Zhang, B., 2023. An automatic classification algorithm for
software vulnerability based on weighted word vector and fusion neural network.
Comput. Secur. 126, 103070. http://dx.doi.org/10.1016/j.cose.2022.103070, URL
https://www.sciencedirect.com/science/article/pii/S016740482200462X.

Wang, Y., Jia, P., Liu, L., Huang, C., Liu, Z., 2020a. A systematic review of fuzzing
based on machine learning techniques. PLOS ONE 15 (8), 1–37. http://dx.doi.org/
10.1371/journal.pone.0237749.

Wang, J., Song, C., Yin, H., 2021a. Reinforcement learning-based hierarchical seed
scheduling for greybox fuzzing. In: Proceedings 2021 Network and Distributed
System Security Symposium.

Wang, Y., Wu, Z., Wei, Q., Wang, Q., 2019. NeuFuzz: Efficient fuzzing with deep neural
network. IEEE Access 7, 36340–36352. http://dx.doi.org/10.1109/ACCESS.2019.
2903291.

Wang, Z., Yan, M., Chen, J., Liu, S., Zhang, D., 2020b. Deep learning library testing
via effective model generation. In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. In: ESEC/FSE 2020, Association for Computing Machinery,
New York, NY, USA, pp. 788–799. http://dx.doi.org/10.1145/3368089.3409761.

Wang, D., Zhang, Z., Zhang, H., Qian, Z., Krishnamurthy, S.V., Abu-Ghazaleh, N.,
2021b. SyzVegas: Beating kernel fuzzing odds with reinforcement learning.
In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Associa-
tion, pp. 2741–2758, URL https://www.usenix.org/conference/usenixsecurity21/
presentation/wang-daimeng.

Watkins, C., 1989. Learning from Delayed Rewards (Ph.D. thesis). University of
Cambridge, England.
23
Watkins, C.J., Dayan, P., 1992. Q-learning. Mach. Learn. 8 (3–4), 279–292.
Wei, A., Deng, Y., Yang, C., Zhang, L., 2022. Free lunch for testing: Fuzzing deep-

learning libraries from open source. In: Proceedings of the 44th International
Conference on Software Engineering. ICSE ’22, Association for Computing Ma-
chinery, New York, NY, USA, pp. 995–1007. http://dx.doi.org/10.1145/3510003.
3510041.

Wu, M., Jiang, L., Xiang, J., Zhang, Y., Yang, G., Ma, H., Nie, S., Wu, S.,
Cui, H., Zhang, L., 2022. Evaluating and improving neural program-smoothing-
based fuzzing. In: Proceedings of the 44th International Conference on Software
Engineering. ICSE ’22, Association for Computing Machinery, New York, NY, USA,
pp. 847–858. http://dx.doi.org/10.1145/3510003.3510089.

Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., Zhao, J., Li, B., Yin, J., See, S.,
2019. DeepHunter: A coverage-guided fuzz testing framework for deep neural
networks. In: Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis. ISSTA 2019, Association for Computing Machinery,
New York, NY, USA, pp. 146–157. http://dx.doi.org/10.1145/3293882.3330579.

Xu, W., Moon, H., Kashyap, S., Tseng, P.-N., Kim, T., 2019. Fuzzing file systems via
two-dimensional input space exploration. In: 2019 IEEE Symposium on Security
and Privacy. SP, pp. 818–834. http://dx.doi.org/10.1109/SP.2019.00035.

Ye, A., Wang, L., Zhao, L., Ke, J., Wang, W., Liu, Q., 2021. RapidFuzz: Accelerating
fuzzing via generative adversarial networks. Neurocomputing 460, 195–204. http:
//dx.doi.org/10.1016/j.neucom.2021.06.082, URL https://www.sciencedirect.com/
science/article/pii/S0925231221010122.

Zakeri Nasrabadi, M., Parsa, S., Kalaee, A., 2021. Format-aware learn&fuzz: deep test
data generation for efficient fuzzing. Neural Comput. Appl. 33 (5), 1497–1513.
http://dx.doi.org/10.1007/s00521-020-05039-7.

Zalewski, M., 2020. American fuzz lop. https://github.com/google/AFL.
Zhang, L., Thing, V.L.L., 2018. Assisting vulnerability detection by prioritizing crashes

with incremental learning. In: TENCON 2018 - 2018 IEEE Region 10 Conference.
pp. 2080–2085. http://dx.doi.org/10.1109/TENCON.2018.8650188.

Zhang, G., Zhou, X., Luo, Y., Wu, X., Min, E., 2018. PTfuzz: Guided fuzzing with
processor trace feedback. IEEE Access 6, 37302–37313. http://dx.doi.org/10.1109/
ACCESS.2018.2851237.

Zhao, H., Li, Z., Wei, H., Shi, J., Huang, Y., 2019. SeqFuzzer: An industrial protocol
fuzzing framework from a deep learning perspective. In: 2019 12th IEEE Conference
on Software Testing, Validation and Verification. ICST, pp. 59–67. http://dx.doi.
org/10.1109/ICST.2019.00016.

Zheng, Y., Liu, Y., Xie, X., Liu, Y., Ma, L., Hao, J., Liu, Y., 2021. Automatic
web testing using curiosity-driven reinforcement learning. In: Proceedings of the
43rd International Conference on Software Engineering. ICSE ’21, IEEE Press, pp.
423–435. http://dx.doi.org/10.1109/ICSE43902.2021.00048.

Zong, P., Lv, T., Wang, D., Deng, Z., Liang, R., Chen, K., 2020. FuzzGuard: Filter-
ing out unreachable inputs in directed grey-box fuzzing through deep learning.
In: 29th USENIX Security Symposium (USENIX Security 20). USENIX Associa-
tion, pp. 2255–2269, URL https://www.usenix.org/conference/usenixsecurity20/
presentation/zong.

Sadegh Bamohabbat Chafjiri is a postgraduate researcher
at the University of the West of England, specialising in
vulnerability assessment and software testing. His Ph.D.
focuses on an AI-enabled software security framework,
with an emphasis on fuzz testing. With a background
in entrepreneurship and IT management, Sadegh holds a
bachelor’s degree in electrical engineering and two master’s
degrees in telecommunication engineering, specialising in
cryptography and IT management with a data analytics
focus. He has extensive experience in security engineering,
data analytics, AI-enabled solutions, and the Internet of
Things. Leveraging his expertise, Sadegh has consistently
delivered innovative solutions in software security and
sustainable infrastructures.

Phil Legg is a Professor of Cyber Security at the University
of the West of England (UWE Bristol). His research interests
span across cyber security, machine learning, visualisation,
and human–computer interaction, to better understand the
detection and mitigation of security threats. He has led
various research activities supported by DSTL, NCSC, UKRI,
CCAV, and CPNI, along with industry and academic col-
laborators. He has published over 60 academic journals
and conference papers across his research interests (citation
count: 1694; h-index: 20), with successful research fund-
ing of over £2.2M. He is the Programme Leader of the
M.Sc. Cyber Security and Co-Director of the NCSC-supported
Academic Centre of Excellence in Cyber Security Education.

http://arxiv.org/abs/1906.11133
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb65
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb65
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb65
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb65
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb65
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb67
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb67
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb67
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb67
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb67
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb67
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb67
http://dx.doi.org/10.1145/3368089.3409723
http://dx.doi.org/10.1109/SP.2019.00052
http://dx.doi.org/10.1145/3551349.3560429
http://dx.doi.org/10.1109/COMPSAC.2018.00098
http://dx.doi.org/10.1109/COMPSAC.2018.00098
http://dx.doi.org/10.1109/COMPSAC.2018.00098
https://github.com/SunHao-0/healer
https://www.computerworld.com/article/2769688/fuzzing-is-still-widely-unknown.html
https://www.computerworld.com/article/2769688/fuzzing-is-still-widely-unknown.html
https://www.computerworld.com/article/2769688/fuzzing-is-still-widely-unknown.html
http://dx.doi.org/10.1016/j.infsof.2023.107266
https://www.sciencedirect.com/science/article/pii/S0950584923001209
http://dx.doi.org/10.24963/ijcai.2022/72
http://dx.doi.org/10.24963/ijcai.2022/72
http://dx.doi.org/10.24963/ijcai.2022/72
http://dx.doi.org/10.1109/APSEC.2017.30
http://dx.doi.org/10.1109/APSEC.2017.30
http://dx.doi.org/10.1109/APSEC.2017.30
http://dx.doi.org/10.1109/SP.2017.23
http://dx.doi.org/10.1016/j.cose.2022.103070
https://www.sciencedirect.com/science/article/pii/S016740482200462X
http://dx.doi.org/10.1371/journal.pone.0237749
http://dx.doi.org/10.1371/journal.pone.0237749
http://dx.doi.org/10.1371/journal.pone.0237749
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb80
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb80
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb80
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb80
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb80
http://dx.doi.org/10.1109/ACCESS.2019.2903291
http://dx.doi.org/10.1109/ACCESS.2019.2903291
http://dx.doi.org/10.1109/ACCESS.2019.2903291
http://dx.doi.org/10.1145/3368089.3409761
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb84
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb84
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb84
http://refhub.elsevier.com/S0167-4048(24)00205-0/sb85
http://dx.doi.org/10.1145/3510003.3510041
http://dx.doi.org/10.1145/3510003.3510041
http://dx.doi.org/10.1145/3510003.3510041
http://dx.doi.org/10.1145/3510003.3510089
http://dx.doi.org/10.1145/3293882.3330579
http://dx.doi.org/10.1109/SP.2019.00035
http://dx.doi.org/10.1016/j.neucom.2021.06.082
http://dx.doi.org/10.1016/j.neucom.2021.06.082
http://dx.doi.org/10.1016/j.neucom.2021.06.082
https://www.sciencedirect.com/science/article/pii/S0925231221010122
https://www.sciencedirect.com/science/article/pii/S0925231221010122
https://www.sciencedirect.com/science/article/pii/S0925231221010122
http://dx.doi.org/10.1007/s00521-020-05039-7
https://github.com/google/AFL
http://dx.doi.org/10.1109/TENCON.2018.8650188
http://dx.doi.org/10.1109/ACCESS.2018.2851237
http://dx.doi.org/10.1109/ACCESS.2018.2851237
http://dx.doi.org/10.1109/ACCESS.2018.2851237
http://dx.doi.org/10.1109/ICST.2019.00016
http://dx.doi.org/10.1109/ICST.2019.00016
http://dx.doi.org/10.1109/ICST.2019.00016
http://dx.doi.org/10.1109/ICSE43902.2021.00048
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.usenix.org/conference/usenixsecurity20/presentation/zong


Computers & Security 143 (2024) 103903S. Bamohabbat Chafjiri et al.
Jun Hong is a Professor of Artificial Intelligence in the
Department of Computer Science and Creative Technologies
at UWE Bristol. He is a member of the Computer Science
Research Centre (CCRC). His current research interests are
centred around data extraction, integration, linkage, and
analytics (health, consumer, business, administrative, so-
cial media/Web, structured and unstructured data, privacy
preservation); graph mining and social network analy-
sis; and intelligent autonomous systems (AI planning and
BDI-based multi-agent systems).
24
Michail-Antisthenis Tsompanas holds a bachelor’s, mas-
ter’s, and doctorate degrees in Electrical and Computer
Engineering from Democritus University of Thrace, Greece.
Currently, he is a Lecturer in Computer Science at the Uni-
versity of the West of England. With expertise in modelling
biological processes and both conventional and unconven-
tional computing, he has published in renowned scientific
journals. His research interests encompass unconventional
and bio-inspired computations, modelling and simulation,
electronic systems design, Cellular Automata theory, and
applications. He has contributed to multiple European and
part-national part-European projects. Since 2009, he has
been a member of the Technical Chamber of Greece.


	Vulnerability detection through machine learning-based fuzzing: A systematic review
	Introduction
	Motivation
	Data Collection Methodology
	Eligibility Criteria and Search Terms
	Database Selection
	Methodology for Categorisation

	TML Techniques for Fuzzing
	Feature-based Models
	Fitness Functions and Predictive Models
	Long Input Correlation Tracing Models
	Assessment of TML techniques
	Challenges in TML models

	Deep Neural Network Techniques for Fuzzing
	Exploration and Optimisation Approaches
	Prioritising Dynamic Information
	Gradient-guided Optimisation

	Assessment of DNN features
	Applied Architectures in DNN
	Long Short-Term memory (LSTM) network
	Generative Adversarial Network
	LSTM and Seq2Seq
	LSTM and GRU
	LSTM and GAN
	Bi-ALSTM and GAN

	Assessment of DNN Architectures
	Operating System and File System Fuzzing
	OS Fuzzing
	File System Fuzzing
	Dataset for Kernel Fuzzing

	Assessment of DNN model for Complex Targets and Datasets
	Persistent Challenges in DNN

	RL Techniques for Fuzzing
	General RL Models
	Kernel Fuzzing
	Assessment of RL Models
	Challenges in RL and other previous models: A Comparative Exploration

	DRL Techniques
	DRL models
	Curiosity-driven Learning
	Deep Q-learning
	Integration of DNN with RL Framework

	Assessment of DRL models

	Discussion and Future Work
	Assessment of Mathematical Framework and Different Architectures
	Limitations

	Conclusion
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	Declaration of competing interest
	References


