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Personalisation and Recommendation for Mental Health Apps: A Scoping Review
Paul Matthews and Clemence Rhodes-Maquaire

School of Computing and Creative Technologies, University of the West of England, Bristol, UK

ABSTRACT
Personalisation, which tailors to individual preferences, is considered a possible route for 
improving engagement with digital mental health (DMH) products. Despite claims about the 
presence and importance of personalised features, evidence about their extent and impact is 
limited. The study objective was to review evidence from published research to investigate and 
characterise the contribution of personalisation to engagement and effectiveness.

Research papers were retrieved using keywords, with 139 papers being fully examined and 61 
meeting our eligibility criteria. Most of the eligible articles reviewing DMH systems have weak to 
intermediate forms of personalisation (45).  Only nine were coded as having strong, adaptive 
personalisation. Of the 40 articles which evaluated the personalisation effectiveness, 28 were 
qualitative indicating user preference for personalised features. The 16 controlled, quantitative 
designs lacked a non-personalised intervention, making it difficult to determine the added 
value. Effect sizes calculated from available data showed minimal differences in effectiveness 
compared to non-personalised apps.

Our review indicates mixed evidence of personalisation’s performance in DMH interventions. 
Generally, there is a lack of good quality evidence to isolate specific contributions of 
personalisation. Opportunities were identified for improved evaluation, however caution is 
required when implementing more sophisticated methods of DMH personalisation.
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1. Introduction

1.1. Rationale

Many mobile apps exist to help those with general well-
being or specific mental health issues and the consumer 
base is predicted to grow. Apps can offer a sense of 
anonymity and privacy for people in a society in 
which there is often still a stigma surrounding mental 
ill health (Lindow et al. 2020). Apps are fulling a grow-
ing need for people who are unable to access face-to- 
face support, subject to long service wait times, or 
whose symptoms are mild. But it remains unclear how 
much they really help over long periods. While a little 
more evidence of positive impact is now available, at 
least for certain conditions and groups (e.g. Lattie 
et al. 2020; Weisel 2019) it remains a little scattered 
and prone to publication bias.

Low engagement and attrition amongst users is an 
often cited problem in Digital Mental Health (DMH) 
products, with many people abandoning them before 
they can really help in improving mental wellness and 
outlook (Borghouts et al. 2021; Matthews, Topham, 

and Caleb-Solly 2018). High levels of abandonment 
have been associated with a low perceived personal rel-
evance (Jarrahi, Gafinowitz, and Shin 2018). User 
reviews of mental health apps have indicated possible 
reasons for such low engagement, for instance stating 
that developers should better consider user experience 
and usability when designing apps to earn better adher-
ence, and hence overall effectiveness (Alqahtani and 
Orji 2020). Personalising the services, features and 
touch points of an app is consequently usually assumed 
to lead to higher engagement, and thereafter to impact, 
mirroring the causal logic of engagement with face-to- 
face support programmes. This research aims to inves-
tigate these assumptions and is to our knowledge the 
first review to focus on personalisation in digital mental 
health design and evaluation where the products cover a 
broad spectrum of intended audiences and mental 
health conditions.

Before further outlining our research aims, we will 
define personalisation, its posited benefits and present 
evidence from other reviews as to its application and 
usefulness.
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1.2. Definitions and presumed benefits of 
personalisation

Hornstein et al. (2023) define personalisation as ‘purpo-
sefully designed variation between individuals in an 
intervention’s therapeutic elements or its structure’. 
They differentiate personalisation from customisation, 
usage, interactivity, and group-based adaptations and 
suggest four mechanisms of personalisation: user 
choice, provider choice, rule based and machine learn-
ing (ML) based. This characterisation is useful in dis-
tinguishing elements that are either under the control 
of the designer or the consumer, and where there may 
also be a trade-off (e.g. more provider direction may 
reduce user choice).

A useful typology of personalisation was developed 
by op den Akker, Jones, and Hermens (2014) and 
applied for digital fitness products by Monteiro-Guerra 
et al. (2020), helping to define the differences between 
what is often active, machine learning-based DMH 
(adaptation or self-learning), human-mediated, person-
alised support (interaction and feedback) and coarser, 
rule-based DMH (goal setting, user targeting). This tax-
onomy was used as a starting point in the present study 
and more information will be found in the coding and 
validation section.

Oinas-Kukkonen (2018) proposed that personali-
sation should be understood as a continuum from 
shallow or weak (tailoring and broad-brush filtering) 
to deep or strong (contextual understanding, con-
tinuous adaptation). We also adhere to these distinc-
tions and see user targeting with an underlying 
simple rule-based model as weak to intermediate per-
sonalisation, and online learning with an underlying, 
continuously updated user model as strong. This 
conception is a little broader than that of Hornstein 
et al. (2023), in that ‘weak personalisation’ in our 
conception is often synonymous with segmentation 
at a group level.

In their recent work, Valentine, D’Alfonso, 
and Lederman (2023) have summarised some pre-
sumed benefits and ethical dilemmas associated with 
the integration of personalisation features in mental 
health applications. The authors note that the advan-
tages of employing recommender systems and perso-
nalisation include the reduction of ‘choice overload’ 
for users, improving the therapeutic alliance, and sup-
porting the user to self-manage. Nevertheless, this pro-
gression also gives rise to ethical concerns around 
privacy, a lack of transparency and control over a 
user’s interaction record. Like many similar sum-
maries, personalisation in Valentine et al. paper is 
often presented as an a priori benefit and some of 

their examples of possible personalised messaging 
based on captured contextual data may be perceived 
by users as intrusive.

In terms of people’s perceptions, overt enthusiasm 
among current and potential DMH users as well as pro-
duct providers for more personalised experiences is 
often reported. As Cabrita et al. (2018) note, ‘each indi-
vidual is unique, and dynamic, in a sense that a strategy 
that works for one, might not work for another’ and so 
personalisation is hypothetically a pathway to improved 
engagement and enabling users to take control of their 
wellbeing journey. This somewhat parallels the current 
calls for more personalised treatment pathways in 
face-to-face support. And in the digital space there are 
a prefusion of predictive and persuasive analytical tech-
niques that have the potential to support stronger perso-
nalisation, incorporating on-device contextual cues 
such as location, health sensor data and time of day 
alongside app interaction data (Oinas-Kukkonen 2018; 
Insel 2017).

1.3. Existing reviews of personalisation impact

Existing reviews have looked at specific MH conditions 
and contexts, research study adherence, or have addressed 
personalisation with a more face-to-face framing.

Hornstein et al. (2023), for instance, conducted a 
comprehensive systematic review focusing on persona-
lisation in DMH interventions specifically for 
depression. They identified 139 eligible papers, of 
which 94 were related to digital interventions. The 
researchers categorised their analysis into three 
primary personalisation aspects: a typology of persona-
lisation with terms like usage, customisation, interac-
tivity and group-based adaptation; the dimensions of 
personalisation and the mechanisms for personalisa-
tion. These dimensions encompassed elements such 
as content, order, guidance and communication. 
Among the digital interventions, approximately 66% 
were found to incorporate some form of personalisa-
tion. Around 32% employed personalisation mechan-
isms, with personalised communication constituting 
30% (25% involving type and 4% focusing on order). 
Interestingly, when considering interventions with 
personalisation mechanisms, 69% implemented just a 
single dimension of personalisation. The overarching 
conclusion drawn from this review was that the work 
reviewed merely scratched the surface of the potential 
scope for personalisation. The findings demonstrated 
the lack of multi-dimensional personalisation and reveal 
the need for increased incorporation of advanced 
machine learning techniques.
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Moe-Byrne et al (2022) reviewed evidence for 
tailored DMH interventions in the workplace, finding 
seven studies where a control was compared to a digital 
intervention. Tailoring was achieved by user screening 
or in-app exercises (four studies), by user character-
istics and goals (one study) or by sleep data (one 
study). Four of the counted studies did not show sig-
nificant effects of the treatment in reduction of anxiety 
or depression. One showed long-term positive impact 
on depression, and one showed significant impacts 
on depression up to one month post-treatment. They 
concluded that tailored interventions could work for 
those with higher levels of psychological distress, but 
less clear impact was shown for the general working 
population.

Additional reviews of personalisation impact are less 
related to the present work but still of some relevance. 
For personalised face-to-face interventions, O’Cillin 
(2022) reviewed nine quantitative and twelve qualitative 
studies. They found strong engagement (low drop-out 
rates) for the personalised interventions, and significant 
treatment effectiveness in six of the nine quantitative 
studies. Participants in seven of the qualitative studies 
expressed subjective recovery and there were strong 
themes of the importance of therapeutic alliance/colla-
borative engagement. In four studies, participants 
expressed ideas for improving engagement.

A review of more general mhealth app evaluations by 
Jakob et al (2022) found that 16% of the 97 studies from 
8 health domains (including mental health) reported 
that personalisation contributed to study adherence – 
though it was not reported if the apps in the remaining 
studies did have personalisation features but these did 
not contribute to adherence.

1.4. Objectives

The reviews above reveal considerable interest in, and 
implementation of, personalisation techniques of one 
form or another, and suggest the potential for improved 
retention, adherence and impact of more personalised 
digital services. But they also highlight potential gaps 
in our knowledge of what forms of personalisation are 
being used, and perhaps more importantly, how person-
alised interventions improve (or not) on more standar-
dised treatments.

Given these uncertainties, it is important and timely 
to review recent evidence of the kinds of personalisation 
being designed and evaluated across the spectrum of 
mental health conditions, their relative effects on adop-
tion and ongoing usage and any subsequent improve-
ments in mental health among user populations. The 
findings from this scoping review are intended to 

expand the knowledge base and identify research and 
development opportunities in digital mental health 
(DMH) field for researchers, app and service providers.

The research questions that framed this review were: 

1. What different approaches to personalisation and 
recommendation have been used in DMH research 
and research-based products?

2. Does personalisation and recommendation in MH 
apps lead to better user engagement and outcomes?

3. What gaps and opportunities exist for better under-
standing and promoting effective use of personalisa-
tion and recommendation?

2. Methods

This study used the PRISMA framework (Tricco et al. 
2018) as a guideline for the scoping review.

2.1. Search strategy

Research papers were retrieved between August 2022 
and August 2023 with the articles sourced from Scopus, 
ACM Digital Library, Google Scholar and IEEE Explore 
databases. The articles from Google Scholar were fre-
quently found to either be irrelevant or duplicates of 
ones found in the other databases. The titles and 
abstracts of the articles were read, and relevant cases 
were added to the collection to identify duplicates 
from the other author’s search. This search strategy is 
shown in Figure 1.

2.2. Eligibility criteria

The eligibility criteria when searching for journal 
articles were carefully applied to ensure they linked 
with the research questions. Just those papers published 
in the last 11 years (2012–2023 inclusively) were 
included. This covers the period in which digital inter-
ventions incorporating personalisation were more com-
mon in the literature. Articles that were reviews or 
theoretical work were not included in the articles col-
lected, nor were purely predictive or diagnostic studies 
as these did not include mental health interventions. 
Furthermore, papers needed to have a substantial com-
ponent of primary research connected to personalisa-
tion/recommendations and not be predominantly 
secondary literature review or recommendations for 
future research. Initial searches produced large volumes 
of articles, and many were not applicable to the study. 
These included articles regarding personalisation of pre-
scription drugs or personalised face to face mental 
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health interventions. Only studies that were written in 
English were included in this review but there was no 
restriction regarding study setting or country of 
publication.

2.3. Search

The search strategy included the main elements and 
synonyms of personalisation as well as different mental 
health problems. The search strategy used for the IEEE 
database, for example, were (‘All Metadata’: personalis* 
OR ‘All Metadata’: personaliz* OR ‘All Metadata’: tai-
lor* OR ‘All Metadata’: recommender OR ‘All Meta-
data’: recommendation) AND (‘All Metadata’: ‘mental 
health’ OR ‘All Metadata’: ‘digital mental health’ OR 
‘All Metadata’: anxiety OR ‘All Metadata’: depression 
OR ‘All Metadata’: loneliness OR ‘All Metadata’: stress 
OR ‘All Metadata’: psychosis OR ‘All Metadata’: well-
being OR ‘All Metadata’: schizophrenia OR ‘All Meta-
data’: ptsd OR ‘All Metadata’: panic OR ‘All 
Metadata’: bipolar OR ‘All Metadata’: ocd OR ‘All Meta-
data’: adhd OR ‘All Metadata’: dissocial). The * within 
this allows different derivatives of the terms shown 

with the brackets demonstrating the different options 
that must be included.

2.4. Study selection

As shown in Figure 1, the process of selecting articles for 
review consisted of three steps. Throughout the process 
the two authors worked on two databases each, continu-
ously discussing the process. The databases were 
ordered by relevance to improve time management 
due to the large volume of articles, once it was shown 
that articles were not relevant to the eligibility criteria 
the screening process ended. Both authors then went 
through half of the articles each, reading them in full, 
to identify further ineligible articles alongside assigning 
eligible articles to the criteria described above. The N/A 
for publications excluded in Figure 1 describes a small 
group of articles that did not match with the other cat-
egories chosen. It included CONSORT documents, 
articles found to not have mental health as a primary 
outcome, those that did not include the full articles 
and those that did not include personalisation/rec-
ommendation of the apps.

Figure 1. PRISMA chart.
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2.5. Coding and validation

139 articles were chosen for full review and these were 
then read in full to decide on whether they matched 
the full criteria. Those that were deemed eligible were 
then coded into their study type, study rigour, level of 
personalisation and type of personalisation. The type 
of personalisation was based on the taxonomy of op 
den Akker et al. (2014) and Monteiro-Guerra et al. 
(2020) but adapted by us during the coding. This is 
shown in Table 2. The level of personalisation was 
weak, intermediate and strong, with the authors agree-
ing criteria for allocation to these categories as shown 
in Table 1.

Each author worked through half of the journals 
using the eligibility criteria, then to ensure intercoder 
reliability was high 10 papers were randomly selected 
and r reliability was calculated. The Kappa’s Cohen 
for agreement was 0.75 which showed an acceptably 
high level of agreement between the authors. Any dis-
agreements were discussed, and a decision was made 
about which classification aligned the most with the 
articles. Once this was completed it was found that 61 
articles met the eligibility criteria.

3. Results

All the articles were encoded and classified in full and 
Table 3 shows the results. 65.6% of the articles were con-
sidered more useful, incorporating design and build 
with evaluation or being purely evaluative. These 
articles were used to determine if personalisation/rec-
ommendation improved user engagement within the 
applications. The papers in this category often provided 
limited information on the design and build of the 
recommendation techniques and it was difficult to 
identify the level of personalisation used in practice. 
For the evaluative parts, these were both qualitative 
and quantitative and were encoded according to the 
study rigour, describing the quality of the evaluation 
designs – this included sample sizes, reproducibility, 
detail of the methods and the existence of controls. 
The control groups were either treatment as usual for 

those who were receiving counselling alongside the 
use of an application, or they were waitlisted and 
instructed to not use the application until the end of 
the study.

Most of the articles adopted user targeting as the 
personalisation method, which meant personalisation/ 
recommendation was often based on questionnaires or 
onboarding option sets administered at the sign-up 
point, e.g: 

we will use the information provided by the answers to 
the pre-test questionnaire, as these answers give an evi-
dence of the strengths and needs of a caregiver [user] 
before starting to use the intervention plan proposed 
by the app.

(Ferré-Bergadà et al. 2021, 3, our brackets)

Alternatively, assessments and interventions were 
targeted to people based on demographic or clinical cat-
egories, e.g. 

Table 1. Personalisation level (inspired by Oinas-Kukkonen 
2018).
Weak Broad-brush or very basic user targeting, or where there are 

few content/intervention options to determine 
personalisation

Medium Finer grained user targeting, adaptation or self-learning
Strong Multiple personalisation methods used; Personalisation to 

the individual level; Responsive to changes in individuals’ 
state / task / location

Not 
Applicable

No real personalisation or not stated

Table 2. Personalisation types (op den Akker, Jones, and 
Hermens 2014) with personalisation concepts from Monteiro- 
Guerra et al. (2020). Original definitions in normal type, our 
own application and interpretation in bold type.
Type Description

Feedback Presenting individuals with information about 
themselves, obtained during assessment or 
elsewhere. Might be from other users, admins or 
automated

Inter-human 
interaction

Support for any form of interaction with other real 
human beings – though if mainly in the form of 
feedback use that instead

Adaptation Adaptation ‘attempts to direct messages to 
individuals’ status on key theoretical determinants 
(knowledge, outcome expectations, normative 
beliefs, efficacy and/or skills) of the behaviour of 
interest’ – behaviour or temporal-based changes in 
recommended activities. App alters as time goes on 
based on user activities

User Targeting User targeting attempts to increase attention or 
motivation to process messages by conveying, 
explicitly or implicitly, that the communication is 
designed specifically for ‘you’ – personalisation 
based on user profiling through e.g. initial survey or 
menu choices. Information from user used to 
determine the content presented

Goal Setting Goal setting is a technique used to present the user 
with short-term, as well as long-term goals that can 
instil a feeling of progress over the course of an 
intervention or the day. Goal setting is a tailoring 
concept that can only be used in combination with 
feedback

Context Awareness A system is context-aware if it uses context to provide 
relevant information and/or services to the user, 
where relevancy depends on the user’s task – use 
adaptation in most cases

Self-learning A self-learning application is able to update its internal 
model of the user by recording and learning from 
the various interactions the user has with the 
application. (ML-based personalisation). use 
adaptation instead

Multiple Areas Use only where more than two apply and it is difficult to 
choose one
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To achieve a greater level of personalization, these 
assessments can also be tailored to individuals by demo-
graphic (e.g. age, gender) or clinical information (e.g. 
endorsement of self-harm, depression score).

(Iorfino et al. 2019, 3)

Personalisation in such cases was therefore not con-
tinuous throughout the use of the app and not indivi-
dualised in a strict sense. These were therefore usually 
classified as weak personalisation, unless there were 
additional mechanisms used.

Stronger personalisation, which we have tended to 
link with adaptive or context-sensitive support, is some-
thing which was noted in user-centred design orientated 
studies as potentially desirable: 

participants often welcomed opportunities to give feed-
back, hoping to improve how well a tool would support 
them in the future.

(Kornfield et al. 2022, 10)

Though even these noted an accompanying desire on 
the part of users to also be surprised, to be exposed to 
content not seen before.

Some studies with adaptive systems, such as Luan 
et al. medication management app for depression 
(2020), did indicate greater user satisfaction with time: 

the longer users use the system, the more satisfied they 
are with the recommended content. The main reason is 
that with the interaction with users, the system is more 
and more aware of users, and the recommended con-
tent is more and more accurate.

(Luan et al. 2020, 8)

Of the eligible papers employing more adaptive 
machine learning as a basis of personalisation and/or 
recommendation, many were only reporting on their 
design stages and lacked a controlled evaluation with 
end users. Among those classified as having strong per-
sonalisation, five were in the framework/design stage, 
while four had design-build with evaluation or evalu-
ation only. For intermediate personalisation, nine 
were in the framework/design stage, and seven had 
design-build with evaluation or evaluation only. Lewis 
et al. (2022) were among the four papers classified as 
having strong personalisation with design-build and 
evaluation. However, this study evaluated data collected 
from an app and simulated a personalisation technique, 
thereby lacking a controlled evaluation involving end 
users.

Examples of these more adaptive machine learning 
techniques included: Regression analysis to match stu-
dent stress levels to categories of art for relaxation 
(Chandrasiri et al. 2021), a Naïve Bayes content recom-
mender for therapeutic activities (Rohani et al. 2020), 
Model Predictive Control for PTSD intervention 
(Noble 2013), natural language processing of patient 
input to extract symptoms and match to treatment 
(Mukhiya et al. 2020b) and reinforcement learning 
(Q-Learning) to recommend interventions in an app 
for stress (Clarke, Jaimes and Labrador 2017).

Overall, there was conflicting evidence about whether 
personalisation was a viable route to improve engage-
ment and increased the wellbeing of the users. As 
shown in Table 4, the Hedge’s g statistics vary from 
paper to paper, due to the nature of the designs and tar-
get groups, showing either no effect or a strong one. 
Many articles did not supply the data to calculate 
these effects and so it is not possible to discern a strong 
trend. For example, Weber et al. (2019) suggest that 
their study demonstrates that personalisation of a men-
tal health app to help manage and prevent work related 
stress was effective in comparison to the waitlist control 
group. The personalised approach in this study was 
simple, with personalised feedback on questionnaire 
scores and in-depth sleep data. There was a small 
effect size in two groups, indicating a small reduction 
in stress at the final timepoint.

Given the study designs, it was not possible to iso-
late the effect specifically due to personalisation fea-
tures. But we can compare the effects to quite 
strong effect sizes of Hedge’s g = 0.6 (0.45–0.75) for 
a review of digital interventions more generally (i.e. 
non-personalised apps) (Fu et al. 2020) and generally 
positive, though inconclusive engagement-to-outcome 
effects of g = 0.40, again across standardised apps 
(0.097–0.705) (Gan et al. 2021).

Table 3. Case classification results.

Classification
Number of  

studies

Study Type Protocol only 8
Framework or theory 3
Design / Build Only 10
Design / Build with Evaluation 17
Evaluation Only 23

Study Rigour Poor – Small Sample/Self Report 16
Average – Qualitative or No Control 12
Good – Controlled 16
N/A 17

Type of 
Personalisation

Adaptation 7

Context Awareness 2
Feedback 7
Goal Setting 4
Inter-Human Interaction 4
Self-Learning 1
User Targeting 29
Multiple Areas 3
N/A 4

Level of 
Personalisation

Weak 30

Intermediate 15
Strong 9
N/A 7
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Studies looking at actual usage patterns were reveal-
ing. In terms of app usage and engagement, uptake of 
recommended self-help items may be as low as 4% of 
available activities and those recommendations selected 
may be shorter-term and easier to implement interven-
tions (Rohani et al. 2020). Elsewhere, apps with rec-
ommendations, while increasing intention-to-use 
among participants, did not actually translate to more 
engagement (Currey and Torous 2023).

Qualitative evaluation work (prospective and retro-
spective) also revealed mixed attitudes toward persona-
lisation and recommendations. For instance, in a design 
study just 42% of participants expressed a preference for 
personalised, intelligent wellbeing recommendations 
over more group-generalised recommendations (Sellak 
and Grobler 2020). Another study found participants 
would ‘sometimes’ welcome system recommendations 
(Kornfield et al. 2022).

4. Discussion

While caution about long-term or standalone effective-
ness is warranted, mental health apps have the potential 
to comprise part of modern-day treatment (Ahmed 
et al. 2021). Apps can be used at different stages of treat-
ment/prevention and can be used for different aftercare 
techniques and help with education, symptom assess-
ment or even treatment adherence (Kerst, Zielasek, 
and Gaebel 2020). Due to the increase in demand for 
mental health services, mental health apps are likely to 
remain more available and accessible to the public 
then professional help.

Personalisation and recommendation approaches 
are becoming more and more familiar in everyday 

digital life, with many different retail and social 
media applications personalising the interface as they 
learn more about our preferences and behaviour. 
But personalisation can lead to harms as well as 
benefits (Stray et al. 2022) and there needs to be 
both oversight and transparency around how it 
operates.

This review identified forty-seven articles concerned 
with DMH support and personalisation. These 
papers provide a good sample of both the types and 
level of personalisation in proposed and current apps 
together with how likely app users are likely to find 
these useful.

Our analysis of the content and quality of these 
articles has the following implications for our research 
questions: 

1. What different approaches to personalisation and 
recommendation have been used in digital MH 
research and research-based products?

Our classification saw the majority of articles rated as 
cases of weak personalisation, with coarse profiling or 
targeting being the most common method. This 
approach may commit participants to a common 
group at the outset, without the possibility of later 
refinement or movement between groups. This form 
of clustering may give functional simplicity for the pro-
vider (and improve usability for many users) but may 
miss longitudinally dynamic aspects of personal states 
and preferences.

Products described in many of the articles did not 
clearly state the underlying method of personalisation 
used. We can conclude that the term is sometimes 
used for emphasis or hyperbole only, when in fact the 

Table 4. Hedge’s g for eligible articles.

Reference
Type of 

personalisation Group
Hedge’s g 
statistics Comments

Weber, Lorenz and 
Hemmings (2019)

User Targeting Intervention vs Waitlist Control – wellbeing 
scale

0.0136 Improved wellbeing – no effect

Intervention vs Waitlist Control – general 
stress scale

0.1364 Decreased stress – very small effect

Intervention vs Waitlist Control – cognitive 
stress scale

0.2065 Decreased stress – small effect

Lattie et al. (2020) Inter-Human 
Interaction

Single study: baseline to 8 week – anxiety 
literacy questionnaire

0.2174 Anxiety improved – very small 
effect

Tsirmpas et al. (2022) User Targeting Single study: baseline to 8 weeks – PHQ-9 0.5814 Depression improved – medium 
effect

Single study: baseline to 16 weeks – PHQ-9 1.2994 Depression improved – very large 
effect

Single study: 8 week to 16 weeks – PHQ-9 0.7841 Depression improved – medium/ 
large effect

Single study: baseline to 8 weeks – GAD-7 0.8261 Anxiety improved – large effect
Single study: baseline to 16 weeks – GAD-7 1.0870 Anxiety improved – very strong 

effect
Single study: 8 week to 16 weeks – GAD-7 0.4615 Anxiety improved – medium effect

Hwang et al. (2022) Goal Setting Intervention Vs Waitlist Control – PSS baseline −0.3023 stress better (control) – small effect
Intervention Vs Waitlist Control – PSS 

follow-up
0.9226 Stress decreased (intervention) – 

large effect
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experience received by users is in fact relatively uniform. 
In other cases, authors may be reluctant, or not at liberty 
to describe technical intellectual property. This would 
be, in our view, a retrogressive tendency, and a failure 
to acknowledge that, in the area of mental health, algo-
rithmic transparency should be essential and not merely 
a nice-to-have.

Of examples using an underlying machine learning 
model, these were largely found to be static (trained 
offline on a dataset before being deployed). Such models 
run the risk of validity decay, as predictions are most 
relevant to the data the model is trained on, potentially 
less so to new data provided by new users (Fröhlich et al. 
2018). 

2. Does personalisation and recommendation in MH 
apps lead to better user engagement and outcomes?

This question can be broken down into two parts: 
that personalisation can lead to better engagement, 
and that engagement with DMH products can be a 
determinant of better mental health outcomes. These 
are discussed below. Essentially, we find that the evi-
dence for these premises is currently weak and conflict-
ing, despite a strong discourse in the DMH community 
that personalisation is an unproblematic advantage.

For engagement, we find that personalisation may 
have little or no impact on indicators, with studies 
admitting, for instance, that: 

Deploying the app recommendation algorithm demon-
strated feasibility but did not in itself change engage-
ment. (Currey and Torous 2023, 6)

it was found that these personalized behavioural goals 
did not have a significant impact on engagement levels 
compared to non-personalized behaviour goals. (James 
et al. 2022, 1574)

While participants often state preferences for person-
alised and recommended content, in practice they may 
behave differently. In their study of 218 app users 
assigned randomly to guided or autonomous con-
ditions, Pieritz et al. (2021) found that although all par-
ticipants declared they would prefer guided content, in 
practice those in the autonomous condition completed 
significantly more activities and also rated them higher. 
The authors recommended optimising for both efficacy 
and engagement by applying recommendations spar-
ingly (Pieritz et al. 2021) Others have noted that a bal-
ance between choices and more explicit direction may 
be appropriate where people are less motivated or confi-
dent to choose themselves (Kornfield et al. 2022). 
Strongly recommendation-driven interfaces may nega-
tively impact users’ perception of agency and control. 
As one study participant has expressed it: 

I’d prefer to be in control, and not the computer … it’s 
like the machine making choices … rather than you 
making your own decisions. (Blom 2002)

On the more positive side, Kornfield et al. (2022) sta-
ted in their study of potential users of a text messaging 
intervention that ‘participants also suggested that they 
would sometimes welcome system recommendations 
as a way of maintaining momentum or moving out of 
their comfort zones’. Certainly, some trials based on 
digital personalised treatments have shown high com-
pletion rates (e.g. 85% for an 8 module web-based treat-
ment for paranoia) though notably when the treatment 
was completed in the face to face setting of a clinical 
appointment (Ward et al. 2022).

As for demonstrating positive impact on mental 
health indicators, the majority of the evaluative studies 
that we reviewed used a personalisation technique and 
a waitlist control but did not include a group that 
were assigned a standardised form of the intervention. 
So, while studies did sometimes show strong effect 
sizes compared to controls (Table 4), these were not 
necessarily larger than those found in systematic studies 
of general (i.e. largely non-personalised) interventions. 
So there remains doubt as to whether personalised treat-
ments are more impactful. 

3. What gaps and opportunities exist for better under-
standing and promoting effective use of personalisation 
and recommendation?

From reviewing these papers we find that there has 
been no standard conception of what personalisation 
is in mental health apps, with many works defining per-
sonalisation as generic feedback, periodic questions or 
broad targeting, approaches that we have labelled as 
‘weak’ according to Oinas-Kukkonen’s conceptualis-
ation (Oinas-Kukkonen 2018). Hornstein’s recent 
work (2023) makes progress here by breaking down 
the concept into different dimensions and mechanisms 
which help in characterising and distinguishing differ-
ent personalisation levels. This provides the opportunity 
for much finer grained and evidence-based feature com-
parisons within single app design and evaluations. To 
date there is little if any published research on this.

An additional gap lies in the need for a more 
thorough investigation into the actual interactions 
within the app, as opposed to solely relying on either 
the stated intentions of users or the system designers. 
Better HCI-based observational and data-driven work 
might expand on the intriguing work quoted above, 
which indicates that choice restriction – even if only 
perceived – might harm exploration and engagement.

A small number of projects have started to incorpor-
ate machine learning and statistical algorithms for user 
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profiling and content recommendation. That said, in 
the literature we encountered there is a large skew 
towards proof-of-concept prototypes. Many of the 
studies we reviewed discussed design and build stages 
only, with the effect of the final intervention products 
on the intended user groups unknown. And operatio-
nalising machine learning is itself a research and devel-
opment issue that can be better addressed in future 
work.

As noted above, machine learning approaches to 
personalisation that are available in our literature 
sample were often static and there are significant 
opportunities to trial online and iterated, offline learn-
ing that can be used to dynamically tune individual 
experiences. Coupled with some form of evaluation 
this provides a powerful tool to understand the 
effect of different forms of personalisation (or the 
varying of emphases on past as opposed to present 
context and preferences). At a more basic level, it 
is also worth comparing state-of-the-art adaptive per-
sonalisation to more social collaborative filtering 
(CF – where greater emphasis is placed on the overall 
preferences of the app user community) which is sim-
pler to implement and may give comparative results. 
There is a little evidence from offline simulation 
studies such as Lewis et al (2022) that adaptive CF 
algorithms with contextual variables can provide 
more accurate predictions of recommendation suit-
ability. Such in silico work provides a next best 
alternative to naturalistic and online learning evi-
dence, which can be more expensive to collect.

Finally, the small sample sizes and lack of power 
of the evaluative studies reviewed here meant that 
it could be questionable whether the results shown 
were due to chance or a poor level of internal/exter-
nal validity. Larger sample sizes should be included 
within future studies and better designs which evalu-
ate different kinds of personalisation and compare 
these with more standardised approaches in multi- 
armed designs.

5. Conclusion

Personalisation of the DMH products in our study was 
often quite weak with people tending to be allocated to 
groups or types which are treated similarly in terms of 
interaction, content and messaging. This is some way 
from a user experience that really learns from and 
adapts to an individual’s unique preferences.

In terms of impacts, despite a strong discourse as to 
the importance of personalisation to engagement and 
ensuing benefits in digital mental health support, the 
evidence for this remains to some extent contradictory. 

If anything, both behavioural studies and stated prefer-
ences suggest a blended approach, with either optional 
or limited personalisation of content which preserves 
user agency and control.

The engagement benefits of personalisation shown in 
face-to-face interventions, particularly to serve under-
reached groups, still have the potential to be transferred 
to the digital space. Stronger and more responsive per-
sonalisation might be a way to achieve this, but more 
precise evaluation designs need to be employed to 
confirm if this is indeed the case.

DMH products are gaining popularity for providing 
immediate and anonymous support for individuals 
struggling with their mental health. Personalisation 
could be a valid route for creators of DMH to enable 
users to receive appropriate support based on their indi-
vidual preferences. To help build the knowledge base, 
our review highlights the importance of researchers 
and private companies collaborating to openly and 
transparently share research on personalisation in 
DMH. This collaborative effort is crucial for evaluating 
the effectiveness of personalisation and understanding 
its potential limitations.

5.1. Success/strengths

This review followed the PRISMA guidelines for scop-
ing reviews and is one of the first such reviews aimed 
at characterising personalisation in mental health 
apps, helping to demonstrate the gaps in research for 
future researchers.

We have taken strong yet diverse inclusion criteria to 
ensure that the right type of and range of articles were 
being selected.

5.2. Limitations

This review did exclude studies that did not include 
or state personalisation as a significant component, 
which could have limited the amount of evidence 
gathered. The eligibility criteria may also have elimi-
nated papers relevant to this scoping review, with 
the article search being restricted to 2012–2023 
and may have eliminated some interesting earlier 
articles.

In addition, as Hornstein et al. have pointed out 
(2023), published research tends to exclude many devel-
opments in the private /commercial sector, many of 
which are considerably more advanced in terms of 
implementation than in the academic domain. We 
therefore encourage more sharing of impact and 
engagement data from such platforms, perhaps through 
academic partnerships.
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5.3. Future research

The purpose of this scoping review was to identify the 
different approaches used within DMH research and 
whether these approaches then lead to better user 
engagement and mental wellbeing.

As mental health and wellbeing apps are becoming 
more popular there are new apps being released regu-
larly but without evidence being supplied on their effec-
tiveness. There needs to be an ongoing effort to design 
evaluative studies for a more detailed assessment of 
the benefits of the different possible approaches to 
personalisation.
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2019; Schlosser et al. 2018; Clarke, Jaimes and Labrador 2017; Neumeier et al. 2017; Kop, Hoogendoorn 
and Klein 2014; Noble 2013)

Strong (Currey and Torous 2023; Lewis et al. 2022; Riese et al. 2021; Luan et al. 2020; Khwaja et al. 2019; Rabbi 
et al. 2018; Xin et al. 2017; Hung et al. 2015; Lanata et al. 2015)

N/A (Ben-Yehuda et al. 2022; Figueroa et al. 2022; Shalaby et al. 2022; Tang et al. 2022; Athanas et al. 2021; 
Khwaja et al. 2021; Sellak and Grobler 2020)

Level of Interest Interesting method (Currey and Torous 2022; Görtz-Dorten et al. 2022; Leary et al. 2022; Lewis et al. 2022; Miura et al. 2022; 
Tang et al. 2022; Tsirmpas et al. 2022; Vairavasundaram et al. 2022; Chandrasiri et al. 2021; Germain 
et al. 2021; Gire et al. 2021; Riese et al. 2021; Ghaznavi et al. 2020; Leightley et al. 2020; Luan et al. 2020; 
Mukhiya et al. 2020a; Khwaja et al. 2019; Varnfield et al. 2019; Clarke, Jaimes and Labrador 2017; 
Neumeier et al. 2017; Xin et al. 2017; Wang et al. 2016; Antezana et al. 2015; Hung et al. 2015; Kop, 
Hoogendoorn and Klein 2014; Noble 2013)

(Continued ) 
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Continued.
Classification Studies

Interesting evaluation (Chaturvedi et al. 2023; Hwang et al. 2022; Kornfield et al. 2022; Lungu et al. 2022; Mayer et al. 2022; 
Shalaby et al. 2022; Athanas et al. 2021; Lattie et al. 2020; Bonn et al. 2019; Heffernan et al. 2019; 
Kennard et al. 2018)

Interesting outcome (Bertacco et al. 2022; Figueroa et al. 2022; James et al. 2022; Khwaja et al. 2021; Bhattacharya et al. 2019; 
Ghandeharioun et al. 2019)

Multiple areas (Currey and Torous 2023; Ben-Yehuda et al. 2022; Moral-Munoz et al. 2022; Nebot et al. 2022; Ward et al. 
2022; Rohani et al. 2020, 2021; Vonk et al. 2021; Burley et al. 2020; Sellak and Grobler 2020; Rosario, 
Mariano and Samonte 2019; Weber, Lorenz and Hemmings 2019; Rabbi et al. 2018; Schlosser et al. 
2018; Bidargaddi et al. 2017; Lanata et al. 2015)

N/A (Newbold et al. 2020)
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