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Abstract 
 

As the speed, quality, and affordability of additive manufacturing (AM) processes improve, more organisations and 

consumers are adopting the technology. Customising products, localising production, and lowering logistics are just 

a few of the primary advantages of AM. Because of these and other advantages, AM allows for a worldwide 

distributed manufacturing and supply chain involving several parties. This raises questions regarding the 

manufactured product's authenticity, and consequently its quality and reliability in use. In this research, we first 

explore the various hazards that exist in the additive manufacturing cyber-physical environment. The results highlight 

the security challenges for the AM supply chain. We then evaluate some of the currently implemented security 

measures to identify drawbacks and vulnerabilities in them. A core aspect of our investigation involves developing 

an algorithm that leverages extracted features to identify and characterize the unique signatures of glyphs and 

watermarks on the surface of 3D-printed objects. Based on the findings, the research then proposes three different 

levels of security that can be implemented and a novel authentication technique that utilises the intrinsic surface 

texture of the 3D-printed object. The experimental results and analysis demonstrate that the proposed method can 

successfully authenticate a 3-D printed object with high precision, as well as achieve a high level of security and 

robustness. 
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 Glossary 

Additive Manufacturing: A process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed 

to subtractive manufacturing methodologies. Also refers to the industrial process starting from the inception of part till 

manufacturing using 3D printers. 

Anomalies: Anomalies are any deviations that occur either on a 3D-printed surface or inside the object that are not part of the 

design but do not amount to a defect. They do not leave the objects unusable. 

Watermark: a pattern of geometrical features embedded during the manufacturing process that is extracted by scanning to 

authenticate the given 3D-printed part. 

Glyph: Macroscopic structures (greater than 1mm) that form a pattern or a 3D QR code on the printed surface, such as a 3D QR 

code, to provide a basic level of authentication. 

Elaborate geometrical features: Specialised and intricate surface textures or patterns are added during the manufacturing 

process to provide a higher level of security compared to glyphs. Examples include custom surface patterns or micro-features. 

Intrinsic geometrical features/texture: The unique, naturally occurring surface characteristics and printing traits of a 3D-printed 

object, which can be used for authentication without adding any artificial markers or patterns. Examples include layer lines or 

surface roughness resulting from the printing process. 

Fiducial: A fiducial marker or fiducial is an object placed in the field of view of an imaging system which appears in the image 

produced, for use as a point of reference or a measure. 

Fingerprinting: Fingerprinting is the process of examining the unique and distinctive surface features or patterns that naturally 

occur during additive manufacturing. These intrinsic geometrical features and printing properties serve as a unique signature or 

"fingerprint" for each product, providing reliable identification, verification, and counterfeiting protection. 

G-Code: G-Code is a generic name for a control language understandable by 3D printers that encodes the motion of the toolpath 

(Printer head) for printing. 

ArUco QR code: A type of QR code optimized for fast detection, used for embedding information on 3D-printed objects for 

authentication. 

ArUco markers: Square markers used in vision applications for camera positioning. In 3D printing, they serve as embedded 

identifiers for quick object authentication. 
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1. Introduction 

The latest industrial revolution, Industry 4.0, envisions the integration of intelligent production systems and 

advanced information technologies. Additive Layer Manufacturing (ALM) or Additive Manufacturing (AM) is a core 

component in this vision, enabling both manufacturing automation and the creation of objects with properties that 

could not be achieved with traditional subtractive manufacturing (Yampolskiy et al., 2018). AM technologies, which 

are also referred to as additive fabrication, additive processes, additive techniques, additive layer manufacturing, 

layer manufacturing, three-dimensional (3D) printing, and freeform fabrication, offer unparalleled flexibility in 

component design and fabrication. This flexibility has fuelled a demand for AM applications in industries such as 

aerospace and automotive manufacturing. Most objects manufactured through AM technologies have a substantially 

reduced weight. A study by Airbus Group Innovation (UK) and its partners, showed that up to 75% of raw material 

usage can be reduced using AM techniques for greater fuel efficiency (Chen et al., 2019; Chen, Mac and Gupta, 2017). 

In early 2015, the Federal Aviation Administration (FAA) qualified the first 3D-printed commercial jet engine part 

from General Electric (Belikovetsky et al., 2016; Joshi and Sheikh, 2015). Following this trend, there have been several 

advancements in 3D printing technologies such as Fused Deposition Modelling (FDM), Stereolithography Apparatus 

(SLA) and Selective Laser Sintering (SLS) (Vora and Sanyal, 2020). Hewlett-Packard has developed a 3D printer that 

uses its proprietary Multi Jet Fusion (MJF) 3D printing process to be a pioneer in this $12 trillion manufacturing 

industry by producing high volume objects at low costs (HP and Jabil Revolutionize $12 trillion Manufacturing Industry 

| Jabil., 2021). 

Unfortunately, this rapid adoption of AM has also motivated a broad array of cyber and cyber-physical attacks 

(Yampolskiy et al., 2018). The ease with which these 3D-printed products can be counterfeited, and the feasibility of 

such attacks, have been demonstrated in a study (Belikovetsky et al., 2016). If any unauthorised reproduction of a 

part is carried out, even a simple sub-millimetre change in scale or a change in orientation, then its performance can 

be reduced significantly (Zeltmann et al., 2016). Counterfeit objects can therefore be flawed which could result in 

dire consequences when used in safety-critical industries such as aviation. Such unauthorised objects are very 

difficult to identify in a supply chain. 

Anti-counterfeiting measures such as embedded identification tags or glyphs have been used in the past to tackle 

this issue, as exemplified by Figure 1 (Pollard et al., 2018). These glyphs are usually in the form of macroscopic 
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structures (greater than 1mm) that form a pattern or a 3D QR code on the printed surface. They can be easily 

identified by users before being scanned for verification. Another method is to deliberately introduce patterns 

scattered inside a 3D-printed object or on the surface as a way to form a watermark1 to distinguish authentic 3D 

objects from fake ones (Dachowicz et al., 2017) (Figure 2). This watermark is usually extracted and verified using 

specialist equipment. All these methods draw on the concept of a Physically Unclonable Function (PUF). A PUF is 

some protocol or algorithm applied to a single or a set of physical features derived from a part that defines a unique 

fingerprint that is easy to compute but difficult to replicate (Dachowicz et al., 2017). Although the fingerprints are 

unique, this does not mean that they cannot be cloned easily, due to their small scale. Any macroscopic structure on 

the surface, by contrast, can be easily identified and replicated. In this research, we exploit the randomness of the 

3D-printed surface texture to uniquely fingerprint the object. This randomness occurs due to the traits of the printing 

process as shown in Figure 3. This will provide the same unique fingerprint as the methods described above but 

provides the highest level of security due to the difficulty in replicating the fingerprint. 

 

Figure 1: Multi-jet-fusion printed part on the left and a high-resolution scan of the indicated portion of it on the right showing the glyph used 
for authentication (HP Labs, 2017) 

 

1 Watermark: a pattern of geometrical features embedded during the manufacturing process that is extracted by scanning. 
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Figure 2: Embedded watermark formed using anomalies (Chen et al., 2019) 

 

Figure 3: Printing process traits of a fused deposition model showcasing typical textures observed on the surface (Li et al., 2018) 

  



4 
 

1.1. Problem Statement and Hypothesis 

The major drawbacks of the current authentication approaches are that they offer limited authentication features 

against counterfeiting, making it easy for adversaries to bypass security and counterfeit objects that end up in the 

supply chain.  Table 1 compares the various authentication features currently used in the industry with the proposed 

features. It draws this comparison based on the level of security provided by each of these methods using various 

aspects of authentication ranging from the formation of authentication markers to retrieval of these markers for 

authentication. Each level of security is implemented at a different scale. 

Table 1: Taxonomy of printed object security features 

Authentication 
features 

Glyph Elaborate geometrical features  Surface features 
(Proposed) 

Formation of 
feature 

Part of the CAD model is in the 
form of a randomly generated 
3D QR code that is larger by 
1mm in size.  

Part of the CAD model with 
Specialised Surface Texture. 
Size and type depend on the 
printing technique, but each 
feature is less than 100 µm. 

The intrinsic structure 
that forms the surface 
of the printed object. 

Part of the 
design file 

Yes Yes No 

Level of 
security 

Low  
  

Medium  
  

High  

Difficulty to 
Counterfeit 

Easy Moderate Hard 

Scale of capture Macro (large scale) Meso (medium scale) Micro (small scale) 

Capture 
Complexity 

Low Medium High 

Definition of 
features 

High  Medium  Low  

Randomness of 
geometry 

Low  Medium  High  

 

Current methods of authentication are implemented by scanning either the glyph added on the surface or the 

elaborate geometrical features that were added during manufacturing. Glyphs can be in the form of 3D QR codes 

that are larger than 1mm and provide the lowest level of security due to their lack of complexity. Elaborate 

geometrical features are specialised surface textures that are carefully positioned, and more intricate than the 

glyphs. These provide a much greater level of security when compared to Glyphs as their structure definition is much 

harder to replicate. However, both these methods present surface structures that are highly defined with little 
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variation (randomness) in between each 3D-printed object when compared to the intrinsic surface of a 3D-printed 

object. Advanced knowledge of these security measures by an adversary, and access to high-resolution capture 

methods, means that these objects can be counterfeited with low to moderate difficulty. Having access to the original 

digital files of these objects will allow the adversary to replicate these security measures. This will make them 

completely indistinguishable from their original counterpart during verification. Moreover, assigning a unique 

authentication marker to all printed parts might be a tedious process that requires additional steps, adding 

complexity to production. Introducing additional geometrical features or glyphs during production may not be 

feasible or possible at all for some manufacturing requirements. Some manufacturers might desire an unmarked 

surface for aesthetics. All these drawbacks and limitations presented by the current methods motivate this research 

into a new authentication. The aim is to be least disruptive to the current manufacturing process and rely on the 

intrinsic geometrical features and printing traits of a 3D-printed object to provide the highest level of security in the 

authentication.  

The hypothesis that is presented in this research is as follows:  

Surface characteristics are unique to each 3D-printed part as each part is printed individually even when 

manufactured in the same batch from the same device.  

None of the current authentication approaches use the intrinsic surface characteristics of 3D-printed objects to 

identify unique reliable and repeatable surface features that occur naturally during the AM processes. The intrinsic 

surface features are those characteristics that are inherent to the surface itself, without any external influence or 

modification. If the research hypothesis is successfully proven, then each manufactured 3D-printed object will 

present a unique signature on the surface that defines the PUF (Physically Unclonable Function). The highly random 

microscale features make it extremely difficult to counterfeit these objects, thus providing the highest security.  
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2. Research Aim 

2.1. Research Proposal 

The current research will involve implementing novel approaches to detect, capture and characterise the 3D surface 

texture and surface topography of 3D-printed objects to derive unique signatures that can be used for authentication 

purposes.  

The novelty of the proposed approach lies in achieving a high level of accuracy in authentication by recovering the 

surface for both, macro (greater than 1mm) and microscale (less than 100 µm) features, and using glyphs and 

elaborate geometrical features along with intrinsic surface characteristics to derive a unique signature of the surface 

to identify the PUF. This approach relies on the hypothesis mentioned above as any surface that is highly random is 

also unique by nature. To achieve this, the current research will investigate surface characteristics derived from 3D 

object surfaces’ topography and surface texture recovered. The capturing resolution limits of these features are 

based on previously established standards of manufacturability limits of the chosen AM processes of this research.  

Investigating surface characteristics involves looking at using localised surface properties (including surface texture 

and other metrological 3D properties such as surface roughness) at the microscale and combining it with macroscale 

surface information and geometry to build a more generalised meta-surface structure characterisation that employs 

localisation and mapping techniques.  

2.2. Research Questions 

1. Are there any capture systems available that can capture high-resolution surface texture and geometry? Is there a 

need for a capture system to capture multiscale data for 3D-printed objects? If not, what are the requirements to 

build such a system? 

The research would require the capture of high-resolution 3D surface data. An investigation into industry-leading capture 

methods is carried out in this research to determine the current standards for capturing 3D surface data. The capture system 

should be able to recover surface structure at high resolution (less than 25 µm). The capture methods would be tested for 

their capture resolution, speed, cost and their ability to span across multiscale. This would also provide an understanding 

of whether all surface details can be captured at just one scale or if there is a need to capture at a multiscale.  
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2. How can we recover reliable surface texture and surface topography information to uniquely characterise surfaces of 

3D-printed objects? How can we derive a unique signature using this information? 

To answer this question, this study will investigate current 3D and 2D surface texture analysis approaches that have been 

implemented to characterise a surface. This investigation will lead to the development of a novel feature extraction method 

to derive a unique signature of the 3D-printed object by recovering surface data using a combination of 3D (as necessary) 

and 2D surface information for authentication purposes. The derived unique signature will establish the hypothesis presented 

in this research. The features extracted should be reliable and repeatable to obtain a unique signature. A unique signature 

obtained from the surface of a 3D-printed object should also be scale, rotation, and skewness invariant.  

3. How are we able to use a unique signature from a 3D-printed part for robust and accurate authentication? Would the 

derived signature be enough or is there a need to use additional structural and/or positional information?  

As mentioned previously, we hypothesise that the 3D surface characteristics are unique to each printed part, since each 

part is printed individually even when printed in the same batch. The investigation will first establish if the surface 

characteristics are the same at each point of a given 3D-printed surface. This will establish the requirement for additional 

information such as position. The unique signature obtained would be tested to see if it is sufficiently robust for 

authentication.  

Lastly, if additional information is required, we investigate the implementation of additional structures on the 3D-printed 

surface that form a watermark and use machine vision techniques to analyse this watermark for additional markers and 

propose a comprehensive robust solution that doesn’t compromise on the security for authentication with respect to the 

overall geometry of the object.  
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2.3. Project Scope 

It should be noted that no security and product authentication approach applies to all AM technologies. Thus, here 

we define the scope of this research. 

• The glyphs are larger at 1mm in size whereas the anomalies are less than 100 µm. These anomalies would 

be deliberately placed around the glyph to form the watermark. 

• The objects are not subjected to any post-processing, such as sanding/painted/etc, that will distort or 

eliminate the glyph. 

• The objects are only printed in plastic using 3D printing techniques that are widely adopted in the AM 

industry. 

• The capture system should adhere to industry standards with high-resolution output and high capture speed. 

2.4. Objectives 

1. Develop comprehensive methods for extracting and analysing localised surface properties at the 

microscale. This includes creating advanced algorithms and utilising state-of-the-art equipment to capture 

detailed surface textures and geometric features. The aim is to build a nuanced meta-surface structure 

characterisation, which is vital for authenticating 3D-printed objects with high precision. 

• Linked Research Question: This supports the question about recovering reliable surface texture 

and topography information (Question 2). 

2. Conduct an extensive investigation into the existing and potential technologies for capturing 3D surface 

textures. This involves not only assessing the capabilities of current systems but also identifying gaps and 

developing specifications for a new system that can handle both macro and micro-scale data, focusing on 

high resolution, speed, and cost-effectiveness. 

• Linked Research Question: Directly related to exploring available capture systems and the 

requirements for a multiscale capture system (Question 1). 
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3. Create innovative feature extraction techniques that can isolate and utilise unique signatures from 3D-

printed objects. This requires exploring a combination of 3D and 2D data to formulate reliable, repeatable, 

and viewpoint invariant features, contributing to a novel approach in object authentication. 

• Linked Research Question: Aligns with the question on deriving unique signatures from surface 

data (Question 2). 

4. Design a sophisticated watermarking scheme that seamlessly integrates artificial elements like glyphs and 

geometric patterns with natural surface textures. This approach aims to increase the security of 3D-printed 

objects, ensuring the watermarking does not compromise the object's integrity or aesthetic value. 

• Linked Research Question: Relates to the exploration of using additional structural and positional 

information for robust authentication (Question 3). 

5. Develop and implement advanced algorithms for object identification using captured surface data. This 

involves ensuring that the algorithms are robust, accurate, and efficient in authenticating 3D-printed 

objects, possibly using machine learning techniques to enhance performance. 

• Linked Research Question: Ties in with the question of utilising a unique signature for 

authentication (Question 3). 

2.5. Contribution and Impact 

1.  Publishable work will be undertaken by cataloguing various anomalies that can be deliberately introduced 

on 3D-printed surfaces. 

2.  This research will lead to a publishable investigative survey, testing existing methods for their capabilities at 

multi-scale data capturing.  

3.  Novel feature extraction techniques to characterise unique signatures based on viewpoint invariant features 

will be developed for 3D-printed objects. 

4.  Novel authentication techniques will be designed and developed to address specific needs for 3D-printed 

objects. This would help to uniquely identify and localise watermarks and glyphs on the 3D-printed surfaces 

for authentication.  
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2.6. Potential Commercial Interest in Additive Manufacturing Security and Authentication 

As additive manufacturing (AM) becomes increasingly popular across various industries, the need for effective 

security and authentication measures grows. Several businesses and organizations operating in sectors that depend 

on the production of high-quality, reliable, and secure components may be interested in this research area. The 

following is a list of key industries that could potentially benefit from advancements in AM security and 

authentication. 

Aviation and Defence: Aerospace and defence system manufacturers rely on additive manufacturing to create 

complex, lightweight components. Ensuring the authenticity and integrity of these components is critical, as a 

single component's failure could have severe consequences. Integrating advanced authentication mechanisms into 

their AM processes could help these companies maintain strict quality control and prevent counterfeit components 

from entering their supply chains. 

Automotive: Car manufacturers are increasingly using additive manufacturing to produce complex and customised 

parts for their vehicles. Ensuring the security and authenticity of these components is essential for maintaining 

safety standards and brand reputation. These manufacturers could utilise advanced AM authentication methods to 

verify the origin and quality of their 3D-printed items. 

Medical Devices and Implants: Medical device and implant manufacturers are increasingly turning to additive 

manufacturing for patient-specific production. Given the critical nature of these products and the strict regulatory 

standards they must adhere to, manufacturers need to implement reliable authentication techniques. The 

development of new AM authentication methods could help these companies ensure the safety and effectiveness 

of their products while complying with regulatory requirements. 

Consumer Electronics: Major consumer device manufacturers could also benefit from advancements in AM 

security and authentication. As the prevalence of counterfeit products in the electronics market continues to rise, 

companies need effective methods to protect their intellectual property and ensure the quality of their products. 

AM authentication methods could provide an additional layer of protection, making it more difficult for 

counterfeiters to replicate authentic components. 
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A wide range of industries and businesses stand to gain from advances in AM security and authentication. As 3D 

printing technology continues to grow and become more widespread across various industries, the demand for 

secure and reliable authentication solutions will only increase. Enabling researchers and companies working on AM 

authentication to safeguard the integrity and security of 3D-printed components can offer significant benefits for 

numerous industries.  
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3. Literature Review 

As outlined in the introduction, a slight deviation in 3D-printed objects can have a significantly negative impact, 

especially when used within safety-critical environments (Straub, 2018). This established the need for authentication 

in AM. As this research proposes to prove a hypothesis and develop a novel feature extraction technique, there needs 

to be a clear understanding of a few aspects of the AM manufacturing and authentication process. Thus, this 

literature review is divided into 5 major sections:  

1. Additive Manufacturing (AM) and Material Science 

2. Capture Methods 

3. Surface Feature Extraction and Texture analysis 

4. Security in AM and Authentication using the 3D-printed surface.  

5. Surface Fingerprinting Techniques 

The first section provides a clear understanding of the AM process and discusses the material that forms the 3D-

printed parts. This will help us understand some of the surface characteristics of these parts. We then identify the 

3D printing techniques and printing materials that fit our scope which has been defined in Section 2.3 and understand 

how they manufacture given objects. Every 3D printing technique, although seem to follow the basic layering model, 

is slightly different. This can lead to variations in surface finish. It is also known that different 3D printing techniques 

can result in different types of surface anomalies (Simplify3D, 2018). This information is presented as a taxonomy of 

the anomalies that can occur naturally or due to error during printing using the most common printing techniques. 

All these anomalies are part of the surface texture. A better understanding of how they are formed can help 

understand the limitations of each of these printing techniques. This will help guide the formation of the watermark 

that can be used for authentication purposes. To detect and identify these watermarks in 3D-printed objects, it is 

critical to be able to characterise the objects’ surfaces and geometries to a high degree of precision. To achieve this, 

the features used to characterise the surface textures must be obtained from different printing techniques and are 

distinctively captured at the appropriate resolution. The second section explores the various capture methods that 

are currently state-of-the-art techniques to capture the surface texture at the appropriate resolution. It also 

identifies which of these techniques are best suited for our use case. The third section talks about the extraction of 

the information from the surface a 3D-printed part and presents the expected texture of it. This would lead to an 
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examination of the current cyber-physical vulnerabilities in AM and the defence techniques against AM sabotage 

that either implements or can benefit from an authentication system. This is then followed by techniques that can 

fingerprint the surface for authentication purposes. 

3.1. Additive Manufacturing (AM) and Material Science 

AM processes take the information from a CAD and create a layer-by-layer 3D object. 

The British Standards Institution (BSI) has defined AM as "the process of joining materials to make parts from 3D 

model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing 

methodologies" (British Standards Institution, 2015). 

Additive Manufacturing (AM) is a complex process that involves both automated and manual workflows. It is integral 

to understand that 3D printing, a term commonly used by the public, is a crucial component of the broader Additive 

Manufacturing process. This process can be categorised into three distinct phases as illustrated in Figure 4 

(Yampolskiy et al., 2018). At the design phase, a CAD model is created based on the desired dimensions, properties, 

and functionalities; followed by the optional finite element analysis (FEA) on the optimization model. FEA is typical 

for safety-critical parts. The manufacturing phase includes the slicing process of the 3D model and the generation of 

G-Code for 3D printing. G-Code is a generic name for a control language understandable by 3D printers that encodes 

the motion of the toolpath (Printer head) for printing (Wickramasinghe, Do and Tran, 2020). However, it's important 

to acknowledge that laser-based AM systems such as SLS (Selective Laser Sintering) and SLA (Stereolithography) 

typically do not require G-Code programs, which differentiates them from the FDM or Material Extrusion methods. 

During the testing phase, the printed part is subjected to mechanical and physical testing. It can be destructive or 

non-destructive testing. It is at this stage that the 3D-printed object is also tested for authenticity. 

 

Figure 4: A typical process chain of Additive Manufacturing (Yampolskiy et al., 2018) 
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Furthermore, 3D printing can be classified into three processes based on the form of material used; Liquid-based, 

Powder Based and Solid Based (Wong and Hernandez, 2012) as illustrated in Figure 5. Under the scope of this 

research, we would be concentrating on plastic-based 3D-printed parts due to their prevalent use in the industry and 

the versatility of plastic materials in a wide range of applications. The printing techniques capable of printing these 

materials, highlighted in green in Figure 5: , were selected for their industry relevance, compatibility with the desired 

materials, and accessibility for research and experimental purposes. These dark green techniques are the ones 

studied in this research. In the following sections, a detailed description of these printing techniques is presented.  

 

Figure 5: A material-based classification of AM processes and technologies 

3.1.1. Fused Deposition Modelling (FDM) 

 

Figure 6: A schematic diagram of the FDM process 
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In the field of 3D printing, Fused Deposition Modelling (FDM) is a widely adopted technique due to its low cost, high 

speed, and simplicity (Sharma and Rai, 2022; Vyavahare et al., 2020). According to Sharma and Rai (Sharma & Rai, 

2022), FDM comprises the layer-by-layer deposition of thermoplastic polymer filaments extruded through a heated 

nozzle at high temperatures onto a flatbed (Figure 6). This method allows for the precise and easy development of 

complicated, bespoke items. The more intricate details of FDM processes have lately been investigated, with subjects 

including filament processing, materials, and printing parameters covered (Kristiawan et al., 2021; Lalegani Dezaki, 

Mohd Ariffin and Hatami, 2021) 

One of the components of the environmentally friendly FDM process is polylactic acid (PLA), which is produced from 

renewable biomass sources such as vegetable fats, oils, and maize starch (Sharma & Rai, 2022). Due to its natural 

degradation, PLA is a desirable material for both domestic and commercial applications, making it perfect for toys 

and decorative items (Sharma and Rai, 2022). In addition to PLA, several materials have been thoroughly investigated 

and used in FDM methods, including acrylonitrile butadiene styrene (ABS), polyethene terephthalate glycol (PETG), 

and thermoplastic polyurethane (TPU) (Kristiawan et al., 2021).  

Smart materials that react to external stimuli like heat, magnetic, and electric fields that may modify their physical 

and chemical characteristics are used in the development of FDM in the field of 4D printing (Sharma & Rai, 2022). 

This increases the potential uses of FDM-based printing processes by enabling the construction of structures with 

memory effects and shape-shifting capabilities which can be used for authentication. A deeper comprehension of 

elements like extrusion temperature, layer height, printing speed, and infill patterns will aid in the creation of more 

complex and varied applications for FDM technology as researchers continue to refine the process (Lalegani Dezaki 

et al., 2021). 

Surface roughness is mentioned in both Kristiawan et al. (2021) and Lalegani Dezaki et al. (2021) as a crucial element 

influencing the quality of FDM 3D-printed items. A printed object's surface irregularity, or surface roughness, can 

have an impact on both its mechanical and aesthetic qualities(Dey and Yodo, 2019). This is discussed further in 

Section 3.1.7. 
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3.1.2. Stereolithography (SLA)  

Stereolithography (SLA) is a 3D printing technology that uses a liquid photopolymer resin and a UV laser to create 

solid objects layer by layer.  

The SLA printing process, as illustrated in Figure 7, begins by filling a vat with liquid photopolymer resin. A build 

platform is lowered into the vat, and a UV laser traces a pattern on the surface of the resin, corresponding to the 

first layer of the 3D model. The laser's energy initiates a chemical reaction that solidifies the resin, forming the first 

layer of the object. This process was developed in the early 1980s and has been commercialized since 1986, 

representing one of the first practical applications of additive manufacturing technologies. The build platform then 

moves up slightly, allowing the fresh resin to flow beneath the solidified layer. The laser traces the next layer, which 

adheres to the previous one, and the process is repeated until the entire object is formed (Melchels, Feijen and 

Grijpma, 2010). 

 

Figure 7: A schematic diagram of the SLA process 

SLA has several advantages over other 3D printing technologies, such as high surface quality, fine resolution, and the 

ability to produce intricate and complex geometries. However, SLA-printed parts are often more brittle than those 

produced using other methods, and the resin can be expensive and sensitive to UV light, which may cause the objects 

to degrade over time if exposed to sunlight (Melchels, Feijen and Grijpma, 2010). Despite these challenges, SLA 

remains a popular choice for applications that require precise detail and a smooth finish. 
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3.1.3. Polyjet Printing (PP) 

Polyjet uses inkjet technologies developed by MIT (Massachusetts Institute of Technology) to produce physical 

models. The inkjet head moves in the x and y axes depositing a photopolymer which is cured by ultraviolet lamps 

after each layer is finished (Figure 8). It can achieve very high resolution (up to 5 µm). However, the parts produced 

by this process are weaker than others like stereolithography and selective laser sintering due to lack of adhesion 

between the layers. A gel-type polymer is used for supporting the overhang features and after the process is finished 

this material is water-jetted (Patpatiya et al., 2022; Kechagias and Maropoulos, 2015). 

Moreover, Polyjet printing enables the production of delicate features and complicated shapes that would not be 

achievable with other additive manufacturing processes. This is because it enables the manufacturing of multi-

material and multi-coloured parts by allowing printing in many materials and colours inside a single print job. The 

method is also appropriate for generating small, intricate pieces quickly and for making moulds and patterns for 

casting operations. 

 To determine the surface finish of a Polyjet printed object, a test conducted by Cazón et al., (2014) concluded that 

statistically there are significant differences between the mean roughness in all directions measured(Wei, Zeng and 

Pei, 2019). This suggests that while preparing the print, care should be given to how the item is oriented throughout 

the printing process since it may influence the surface quality. Additionally, if necessary, the surface finish of Polyjet 

printed items can be improved by using post-processing processes like sanding, polishing, or chemical treatments. 

Polyjet printing has various limitations despite its benefits. The technology can be more expensive compared to other 

additive manufacturing techniques due to the high cost of materials and the requirement for specialist equipment, 

such as UV lights, in addition to the weaker portions. Moreover, UV radiation, moisture, or temperature fluctuations 

may cause the photopolymers used in Polyjet printing to degrade more quickly over time, which may reduce the 

printed components' long-term usefulness and durability. 
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Figure 8: A schematic diagram of the Polyjet Printing process 

3.1.4. Digital Light Processing (DLP) 

Digital Light Processing (DLP) is an additive manufacturing technique that uses a digital light projector to selectively 

cure photopolymer resins one layer at a time. A vat of liquid photopolymer resin and a build stage is used in the first 

step, immediately below the resin's surface (Figure 9). A UV light picture of a single layer is projected onto the resin 

via a digital light projector, which is typically based on a Digital Micromirror Device (DMD) chip. The liquid resin 

solidifies after being exposed to UV light, creating the correct layer shape. Up until the entire thing is finished, the 

build platform is then elevated or lowered, exposing a new layer of resin to the light source(Dilberoglu et al., 2017). 

 

Figure 9: A schematic diagram of the DLP 3D Printing process 

DLP technology is known for its capacity to create components with a high degree of resolution and a smooth surface 

finish, often between 25 and 100 microns. Because of the projection-based process's ability to continuously cure 

resin layers with less apparent layer lines than conventional layer-by-layer additive manufacturing methods, the 

smooth surface finish is made possible (Thompson and Mischkot, 2015). 
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The orientation of the item during printing, the kind and characteristics of the photopolymer resin used, and the 

methods utilised for post-processing can all have an impact on surface quality. Post-processing techniques like 

sanding, polishing, or chemical treatments can be used to enhance the surface finish (Chua, Wong and Yeong, 2017; 

Rebaioli and Fassi, 2017). 

3.1.5. Multi Jet Fusion (MJF) 

Multijet Jet Fusion (MJF) implement a unique powder-based process developed by HP. The main process in HP’s 

Multi Jet Fusion 3D printing technology is illustrated in Figure 10. First, the build material is recoated on the surface 

layer as shown in Figure 10 (a). The printing process applies a fusing agent selectively to the places where the 3D 

object is to be (Figure 10 (b)) and also applies a detailing agent where the fusing action needs to be controlled (Figure 

10 (c)). Heat energy using an array of infrared lamps is applied on the entire surface as shown in Figure 10 (d) so that 

the area for the 3D object is fused (Figure 10 (e)). This process is repeated layer by layer until the full 3D object is 

printed. The process prints using a plastic-based powder called PA12. A powered material is deposited across the 

build platform to support the overhangs (Cai et al., 2021).  

 

Figure 10: HP’s multi-agent printing process of Multi Jet Fusion technology (Cai et al., 2021) 

The MJF process generates items with reasonably smooth surfaces due to the fine control given by the fusing and 

detailing agents. The constant layer bonding and reduced layer visibility are made possible by the regulated 

application of these agents and the uniform heat distribution provided by the infrared lights. Nonetheless, elements 

including component orientation, material characteristics, and layer thickness continue to have an impact on the 

surface finish. Bead blasting or penetration with a sealant are two post-processing methods that can be used to 

further improve the surface finish and look of MJF-printed objects (Kim, Zhao and Zhao, 2016). 
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3.1.6. Selective Laser Sintering (SLS) 

SLS (Selective Laser Sintering) is commonly deployed in industry. SLS is a powder-based procedure that uses PA12 

material, just like MJF. SLS selectively fuses (sinters) the thin layer of deposited plastic-based polymer powder using 

a laser rather than using an infrared lamp. First, the powder is delivered into the reservoir platform, and then a sledge 

distributes the powder evenly across the building area to make a uniform coating. The printer must be heated to 

warm the powder before sintering. The laser's processing temperature needs to be precisely regulated between the 

melting and crystallisation points of the particular polymer. The "sintering window" of SLS processing for a particular 

polymer is the name given to this meta-stable thermodynamic area of undercooled polymer melt (Cai et al., 2021). 

The printing process begins with the activation of the laser (CO2 lasers or fibre lasers), which scans the powder bed 

along the X and Y axes in accordance with the object's predetermined design. Depending on the amount of 

transferred energy, powder particles are fused partially or entirely together. Subsequently, the printing bed is 

lowered, and another layer of powder is deposited on top of the previously sintered layer to enable the Z-axis 

construction of the item. These stages are repeated until the object is completed. The printed dosage forms are then 

removed from the construction platform and brushed to eliminate any excess powder (Figure 11) (Gueche et al., 

2021). 

 

Figure 11: A schematic diagram of the SLS process(Gueche et al., 2021) 

Due to the powder-based nature of the process, SLS items often have a little rough texture in terms of surface polish. 

Particle size, layer thickness, laser power, and scan speed are a few examples of variables that have an impact on 
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surface roughness. The orientation of the component during the printing process might also have an impact on the 

roughness (Cai et al., 2021). Sanding, bead blasting, or vibratory finishing are post-processing methods that can be 

used to enhance the surface finish of SLS-manufactured items (Cai et al., 2021; Tey, Cai and Zhou, 2021). 

3.1.7. Surface Characteristics and Anomalies 

Different 3D printing technologies produce parts with distinct surface characteristics and potential anomalies. These 

unique features, influenced by a multitude of printing parameters, can help in determining a surface signature for 

authentication purposes. In this section, we will discuss the surface finish and anomalies observed in various 3D 

printing processes. 

Various printing parameters affect the surface characteristics of a 3D-printed object, including layer thickness, 

support angle, extrusion temperature, platform temperature, print speed, extruder flow ratio, nozzle distance, infill 

type, infill density, surface layers, supports, seam type, and fan speed (Gunaydin, Kadir & S. Türkmen, 2018).  

For other AM processes such as Selective Laser Sintering (SLS) and Stereolithography (SLA), additional factors come 

into play. In SLS, parameters like laser power, scan speed, layer thickness, and powder material properties can 

significantly impact surface quality and characteristics (Doubrovski, Verlinden and Horvath, 2012). In SLA, factors 

affecting surface characteristics include laser power, scan speed, layer thickness, resin material properties, and 

recoating process (Tumbleston et al., 2015). 

 

 

 

 

 

 

 

Each 3D printing technology has a unique visual surface finish, as summarised in Table 2. 
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Table 2: Overview of surface finish 

Printing 
technology 

Surface finish
  

Surface 
Roughness 

(Ra) 

XYZ 
Resolution 

Smallest 
Layer 
Thickness 

Smallest 
Thin Wall 

Image 

Fused Deposition 
Modeling (FDM) 

Prominently 
visible layer 
lines 

Varies with 
layer 
height and 
nozzle size 
2-22 μm 

0.4 mm 
(Typical 
nozzle 
diameter) 

0.1-0.3 
mm 
(Typical) 

0.8 mm 
(Minimum)  

Stereolithography 
(SLA)  

Smooth 
surface, layer 
lines may be 
visible but 
less 
prominent 6-12 μm 

25-100 μm 
(Typical) 

25-100 
μm 
(Typical) 

0.6 mm 
(Minimum)  

Polyjet/DLP 

A smooth 
surface finish 
that is either 
glossy or 
matt 

2-32 μm 
16-42 μm 
(Typical) 

16-42 μm 
(Typical) 

0.6 mm 
(Minimum)  

Multi Jet Fusion 
(MJF)  

Grainy 
texture 

10-25 μm 
80 μm 
(Typical) 

80 μm 
(Typical) 

0.7 mm 
(Minimum)  

Selective Laser 
Sintering (SLS) 

Grainy 
texture. Like 
MJF but a bit 
rougher 
along the 
layer lines 

10-75 μm 

100-120 
μm 
(Typical) 

100-120 
μm 
(Typical) 

0.7 mm 
(Minimum)  

Laminated Object 
Manufacturing 
(LOM) 

Rough 
surface, 
visible seams 
between 
layers 94-101 μm NA 

Layer 
thickness 
of used 
material 

Depends 
on 
material 
and layer 
size 

NA 

 

In all Additive Manufacturing (AM) processes, layer thickness, width, and overlap interval between layers affect 

surface roughness and mechanical properties, resulting in a 'staircase effect' on occasion (Bochmann et al., 2015). 

This impact and surface roughness can be mitigated by thinning the layer (Sai and Yeole, 2010). Surface roughness 

measurements (Ra) have been extensively analysed for various 3D printing processes, but no clear trend has been 
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identified due to location-dependent variability   (Reddy, 2018; Cazón et al., 2014; Negi, Dhiman and Sharma, 2014; 

Ahn et al., 2009). However, Pérez et al. (2018) found that certain printer parameters had a considerable impact on 

surface properties. A staircase effect can occur due to the sampling of a curved surface in a CAD based on the layer 

height a 3D printer can print (Figure 12). These effects are visible significantly in Figure 13.  

Kazuhisa Miyoshi's work (Miyoshi, 2021) also emphasizes the importance of understanding the physical, mechanical, 

and chemical changes induced by surface modifications for better surface characterization. This is particularly 

relevant when considering thin films and coatings, as well as tribological engineering surfaces, which are crucial in 

3D printing. 

Wall thickness, layer height, temperature, extrusion rate, and printing speed have a substantial impact on the surface 

properties of FDM-printed objects (Bochmann et al., 2015). Pérez et al. (2018) discovered that increasing layer height 

and wall thickness diminished surface quality, whereas toolpath, speed, and temperature had no effect. Material 

storage conditions and the type of material employed can also influence surface quality (Dey and Yodo, 2019; Valerga 

et al., 2019). 

Due to their layer-by-layer procedures and photopolymer resins, SLA, PolyJet and Digital Light Processing (DLP) 

printers produce smooth surface finishes (Wei, Zeng, and Pei, 2019; Kechagias and Maropoulos, 2015; Cazón et al., 

2014). Supporting materials are simply removable, leaving clean surfaces behind. However, the quality of the surface 

finish may vary based on the printer and materials utilised. 

For Multi Jet Fusion (MJF) and Selective Laser Sintering (SLS) procedures, complete polymer particle fusion and 

adhesion with prior layers are required. Insufficient sintering windows or excessive heat might result in surface finish 

concerns like lateral development (Cai et al., 2021; Petzold et al., 2019). 
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Figure 12: CAD model (left), stair stepping effect model (right) (Hou et al., 2015) 

 

Figure 13: Theoretical stair-stepping effect (left), the real stair-stepping effect of 3D printing content (right) (Hou et al., 2015) 

This might be true when the surface was analysed at the macroscale, but another study showed that change in 

extrusion temperature and rate causes significant porosity on the surface (Gordeev, Galushko and Ananikov, 2018; 

Valerga et al., 2018). Figure 14 shows a change in extrusion rate that is indistinguishable to human eyes but can alter 

the strength of the part significantly. The difference is extrusion rate should result in different characteristics for the 

surface. 

 

Figure 14: 85% extrusion rate vs 98% extrusion rate on an FDM printer (Gordeev, Galushko and Ananikov, 2018) 

 

 

Table 3: Influence of storage conditions of the material and operating temperature of the 3D printer on the surface finish (Valerga et al., 
2018) 
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Furthermore, Table 3 reveals that the material's storage circumstances are even more essential than temperature or 

pigmentation, even though it is rarely studied. This can cause microscopic changes that are not captured by 

conventional surface testing. Moreover, the surface roughness can present a high variability depending on the 

measuring location (Pérez et al., 2018).  

Materials also influence the print surface quality. For example, PLA (Poly Lactic Acid) polymer, one of the most 

common materials used in FDM printing, has an uncontrolled and arbitrary appearance due to its low homogeneity 

(Valerga et al., 2018). Despite replicating the same printing conditions. Similar results were observed with other 

popular FDM printing materials (Dey and Yodo, 2019; Valerga et al., 2018).  

In the case of Polyjet, photopolymers used for printing also present a distinct surface finish. Previous investigations 

have shown the top surface finish has a uniform pattern for roughness parameters, indicating higher reliability on 

the measurements taken, while the side surface clearly shows the discrete deposited built layers, indicating the parts 

have uniform-built structure (Wei, Zeng and Pei, 2019; Kechagias and Maropoulos, 2015; Cazón et al., 2014). 

However, the surface roughness values calculated were unique for each part measured. Figure 15 shows a 

microscopic image of the two types of surfaces that a Polyjet printer can achieve. The glossy finish has smooth 

surfaces, but the matte finish contains repeated lines with peaks and valleys. 



26 
 

 

Figure 15: Microscope images of surfaces of Polyjet prints with black material using (a) glossy and (b) matte finish (Wei et. al. , 2019) 

As other techniques like MJF and SLS, as they share their traits in printing, they also share some of their flaws. Full 

fusion of polymer particles in the top powder layer is necessary as well as adhesion with previous sintered layers. 

Figure 16 shows what can happen if the sintering window is too small for it to happen. It also shows the effects of 

too much heat that can cause the surrounding polymer powder of the heat focus to reheat to a molten state 

preventing a high-resolution output. This is called lateral growth. Also, specific to MJF, as the materials fuse to form 

the object, there is some compression within the powdered layers that cause a ‘dip’ on the top surface. 

 

Figure 16: SLS anomaly due to small ‘sintering window’: curling or lateral growth 

 

Moreover, different print orientations produce different surface textures. Figure 17 depicts the surface roughness 

values and surface profiles for the top, front, and side surfaces of the PA11 and TPU specimens. The PA11 specimen's 
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front and side surfaces were noticeably rougher than the top surface. The rougher front and side surfaces are the 

result of surrounding powder adhering to the specimen. The surface roughness of the PA11 specimens was lower on 

all surfaces than that of the MJF-printed PA12 specimens(Cai et al., 2021; Petzold et al., 2019). 

 

Figure 17:Surface roughness profiles of specimens: (a) PA11 and (b) TPU (Tey et. al. , 2021) 

These processes discussed above can also introduce various anomalies to the printed objects due to several factors 

(external and internal). External factors such as running out of printing material, machine failure or extruder jam can 

cause print failures. Whereas internal factors are those that can influence surface roughness and introduce anomalies 

to the print. These internal factors or parameters can be manipulated to deliberately introduce anomalies to the 

print. The source of these anomalies can be divided into 3 categories (Pérez et al., 2018): 

• Material: temperature, viscosity, density, type of material, and mechanical properties.  

• Platform: temperature, pressure, vibrations, the position of the platform, position of the extruder, system 

coordinates, and heat evacuation.  

• Printer head: speed, angle of inclination, diameter of extrusion, vibration, and acceleration. 

Some of these anomalies can even lead to defects as they render the objects completely unusable, which is 

undesirable. In FDM printing, sudden oscillating movement of the printer head may result in visible vibrational 

anomalies (Figure 18). These anomalies can still be acceptable, depending on the use case. But some anomalies as 

shown in Figure 19, more commonly lead to defective objects. Overheating the filament changes its viscosity and 

reducing the flow rate of the filament leads to poor adhesion of the layers. 
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Figure 18: Anomalies due to Vibrations 

 

Figure 19: Defect due to over-heating and under extrusion respectively 

All of these anomalies described were due to internal factors. Internal factors that can be set or modified by the user 

can cause certain desired effects on the parts. (Simplify3D, 2018) has identified 41 such anomalies and their sources; 

out of which only 18 are caused due to external factors. Table 15, in APPENIDX, shows all the types of anomalies that 

can occur in the identified printing processes due to internal factors and their sources.  

Summary 

Objects from different printing technologies can be usually easily identified by observing the part but certain printer 

parameters influence the surface finish slightly which can’t be observed by the naked eye. Even subtle changes, such 

as changing the object orientation during print can alter the roughness of the surface (Myshkin et al., 2003). For 

example, by manipulating the extrusion rate on a FDM printer, we can create micro pores between the layer lines 

that are only visible under a microscope (Gordeev, Galushko and Ananikov, 2018). Also, notice that some of the 

anomalies are unique to a particular printing technique. Along with certain intrinsic properties of the surface, these 

anomalies can also help us understand the limitation of our deliberately introduced patterns and determine a unique 

signature for the printing technology. 
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These unique surface features introduced on the surface, along with widely varying printing parameters, can help 

determine a unique surface signature that can be used for authentication of the object, not just the printing 

technology. This requires a capture method that can meet our requirements of being able to capture their intricate 

surface features. 

3.2. Capture Methods 

To authenticate 3D-printed objects accurately, it's essential to capture their surface data precisely. This section 

reviews commercial state-of-the-art techniques for capturing 3D surfaces at both macro and micro scales. The 

resolution of capture is determined by the print resolution of 3D-printed objects, and the analysis spans the range 

as per the research scope mentioned in Section 2.3, with systems evaluated based on their output resolution and 

capture speed. 

3D sensing methodologies vary depending on the desired level of detail and field of view. While the market offers a 

variety of systems with improved accuracy, validated independent studies corroborating these claims, particularly 

under conditions similar to those specified in this study, are limited. This review seeks to close that gap by providing 

an in-depth examination of available technologies and their applicability in the precise authentication of 3D-printed 

artefacts. 

3.2.1. Non-Contact Methods 

Micro-scale 

Multi-focus 3D Microscopy: This technique combines multiple images taken at different focus depths to create a 

detailed 3D model of the surface. With z-accuracy as high as 2 μm and an x-field of view up to 1 mm, Multi-focus 3D 

Microscopy is ideal for examining microscale features on surfaces, offering unparalleled detail for research and 

quality control in materials science and microfabrication(Zamofing and Hugli, 2004). 

White Light Interferometry: White Light Interferometry utilizes the interference pattern of light to measure surface 

topography. It offers a z-accuracy range from 0.01 to 10 μm and a narrow x-field of view (0.2 to 2 μm), suitable for 

capturing high-precision surface measurements. This method is widely used in semiconductor inspection, micro-

electromechanical systems (MEMS), and other applications requiring nanometric precision. 
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Confocal Microscopy: Confocal Microscopy provides high-resolution images by using a pinhole to eliminate out-of-

focus light in specimens that are thicker than the focal plane. It achieves a z-accuracy of 0.05 to 1 μm across an x-

field of view ranging from 0.2 to 40 μm. Confocal microscopy is essential for detailed analysis of live cells, 

microstructures in materials science, and complex surface geometries(Krzewina, 2006). 

Micro-scale non-contact capture techniques, as summarized in Error! Reference source not found., offer the 

precision and resolution essential for analysing the intricate details of microstructures. Each method serves different 

but complementary roles in micro-scale analysis, from providing a broad overview with Multi-focus 3D Microscopy, 

achieving high precision with White Light Interferometry, to delivering depth-resolved images with Confocal 

Microscopy. These methods enable the extraction of unique surface signatures necessary for the authentication of 

3D-printed objects at a microscale, underscoring the critical role of advanced imaging techniques in modern 

manufacturing and quality assurance processes. 

Table 4:  Rough example specifications of range imaging systems suited for microvision (Hügli and Mure-Dubois, 2006) 

Method Multi-focus 3D 
microscopy 

White light 
interferometry 

Confocal 
microscopy 

z-accuracy 2 μm 0.01-10 μm 0.05-1 μm 
x-field of 
view 

1 mm 0.2-2 μm 0.2-40 μm 

 

Macro-scale 

Stereo Vision: Stereo Vision involves using two or more cameras to capture the same scene from slightly different 

angles. The differences between these images are used to reconstruct a 3D scene by identifying corresponding points 

between the images. The z-accuracy of Stereo Vision systems varies with the square of the distance to the object 

(z^2), offering a field of view typically between 0.1 to 10 meters. This method is highly versatile and can be adapted 

to a wide range of applications, from industrial inspection to virtual reality(HP Labs, 2017). 

Structured Light (SL): Structured Light systems project a known pattern onto the surface of an object. By observing 

the deformation of this pattern from a different angle, the system can calculate the 3D shape of the object. The 

accuracy of SL systems can reach 0.1 to 10 mm in the z-direction, with a field of view similar to that of stereo vision 

systems. SL is particularly effective for detailed and complex surfaces, providing high-resolution data suitable for 

quality control and reverse engineering applications (Rubinsztein-Dunlop et al., 2017). 
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Photometric Stereo: Photometric Stereo estimates the surface normals of objects by observing the changes in 

appearance under different lighting conditions. This method can infer detailed surface textures and shapes, offering 

variable z-accuracy that depends on the distance squared (z^2). With a field of view ranging from 1 to 10 meters, 

Photometric Stereo excels in capturing subtle surface details across a wide area, making it invaluable for texture 

analysis and material identification(Woodham, 1978). 

Each macro-scale non-contact capture method offers unique advantages, with Stereo Vision providing broad 

applicability, Structured Light delivering high-resolution details, and Photometric Stereo excelling in surface texture 

analysis. The selection of a specific technique depends on the requirements of the application, considering factors 

such as the desired level of detail, the complexity of the surface, and the size of the object to be scanned. These 

methods, summarized in Error! Reference source not found., represent the forefront of macro-scale 3D data 

capture, facilitating accurate and detailed analysis for authentication and other applications. 

Table 5: Rough example specifications of range imaging systems suited for macrovision (Hügli and Mure-Dubois, 2006) 

Method Stereo Vision Structured Light 
(SL) 

Photometric 
Stereo 

z-accuracy Varies with z2 0.1-10 mm Varies with z2 
x-field of view 0.1-10 m 0.1-10 m 1-10m 

 

3.2.2. Contact Methods 

Touch Probe Scanning: Touch Probe Scanning involves physically touching the object's surface with a probe to 

measure its geometry. This method, known for its high accuracy, is widely used in manufacturing for quality control 

and inspection. However, it can be time-consuming and may not be suitable for delicate or highly detailed surfaces 

due to the risk of damaging the object(Leach et al., 2017). 

Atomic Force Microscopy (AFM): Atomic Force Microscopy offers unparalleled resolution by scanning a surface with 

a fine-tipped probe. AFM is indispensable for nanoscale surface analysis, providing critical insights into material 

properties, molecular arrangements, and surface irregularities. Although it offers exceptional resolution, AFM is 

limited by slow scanning speeds and small coverage areas, making it less practical for large-scale or rapid 

authentication processes(Myshkin et al., 2003). 
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3.2.3. Technological Limitations and Breakthroughs 

The quest for accurate surface data capture in 3D-printed object authentication has led to the exploration of both 

contact and non-contact methods. Recent studies have highlighted the importance of considering local surface 

roughness variability, as stated by Pérez et al. (2018), which presents both challenges and opportunities in producing 

unique surface signatures for authentication. 

There have been significant advances in non-contact methods. Yu and (2013) demonstrated the use of a structured 

light system (SL) with grey code and phase-shifting techniques to achieve a resolution of 100 µm (Yu and Wang, 

2013). Yin et al. (2015) furthered this approach with a 3D microscopic SL system capable of similar resolution (Yin et 

al., 2015). However, the work by Li et al. (2016) pointed out challenges in capturing microscale data using 

photometric stereo, particularly with reflective surfaces (Li et al., 2016). These advancements underscore the 

importance of choosing the right non-contact method based on the specific requirements of surface texture and 

geometry. 

For contact methods, technological limitations and breakthroughs are equally crucial. Touch Probe Scanning, while 

highly accurate, faces limitations in speed and potential surface damage. Atomic Force Microscopy (AFM) provides 

exceptional resolution but is hampered by slow scanning speeds and limited coverage areas. Recent innovations aim 

to address these limitations. High-speed AFM systems and more sensitive touch probes are being developed to 

enhance efficiency and applicability(Vora and Sanyal, 2020). The integration of automated scanning systems with 

adaptive force control is another promising advancement, potentially making Touch Probe Scanning suitable for a 

wider range of materials. 

Adding to the advancements in contact methods, Ramya T. N and Veena M B (2020) explored Polynomial Coefficient-

based authentication for 3D fingerprints, offering a dynamic matching rate and addressing some limitations of 

traditional contact-based recognition methods. This approach uses a 3D database and mathematical morphology for 

minutiae point extraction, providing a novel direction in the authentication of 3D-printed objects by leveraging 

unique fingerprint patterns (N and M B, 2020). 

Furthermore, Lishchenko et al. (2022) conducted a study comparing contact (R130 roughness tester) and non-contact 

(LJ-8020 laser profiler) methods for determining surface irregularities on 3D printed parts. Their research highlights 
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the efficiency of online monitoring for 3D printing quality and suggests diagnostic features for identifying defects, 

indicating the importance of precise surface quality assessment in authentication processes(Lishchenko, Piteľ and 

Larshin, 2022). 

Time-of-flight cameras, commonly used in 3D computer vision, traditionally exhibit lower accuracy, ranging from 

1mm to 1cm, which is often inadequate for detailed authentication purposes. However, recent breakthroughs in 

computational imaging, such as the implementation of deep learning-based systems with time-of-flight cameras (Suo 

et al., 2021), offer new possibilities for capturing high-resolution 3D data. 

In summary, the dynamic field of 3D data capture is experiencing rapid advancements in both contact and non-

contact methods. The ongoing development of these technologies is enhancing their accuracy, efficiency, and 

applicability, thereby potentially improving the authentication process's performance for 3D-printed objects. As 

these technologies continue to evolve, they promise to provide more reliable solutions for capturing the unique 

surface signatures essential for effective authentication. 

Summary 

The exploration of capture methods for authenticating 3D-printed objects emphasizes the essential role of non-

contact technologies in achieving precise and unintrusive surface data acquisition. These methodologies are 

especially conducive for this research, highlighting their effectiveness in capturing detailed structural and geometric 

characteristics without compromising the object's integrity. Non-contact methods, including Multi-focus 3D 

Microscopy, White Light Interferometry, Confocal Microscopy for micro-scale, and Stereo Vision, Structured Light 

(SL), Photometric Stereo for macro-scale analysis, stand out for their ability to accurately record the complex surface 

textures necessary for robust authentication processes. 

According to Straub (2018), using surface data, which includes both inherent and intentionally introduced properties, 

serves as a foundation for extracting and analysing unique features required for authentication. This approach 

emphasises the importance of comprehensive surface characterization in developing effective authentication 

frameworks for 3D-printed objects. 

Furthermore, advances in computational imaging technologies, such as deep learning applications in time-of-flight 

cameras, point to potential improvements in the efficiency and accuracy of non-contact capture techniques. This is 
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supported by contributions from researchers such as Pérez et al. (2018), Yu and Wang (2013), Yin et al. (2015), Li et 

al. (2016), and Suo et al. (2021), who collectively shed light on the dynamic evolution of 3D data capture technology 

and its critical application in 3D-printed object authentication.  

In conclusion, non-contact methods are deemed most suitable for this research due to their non-invasive nature and 

ability to deliver the high-resolution data required for analysing and interpreting surface textures and features for 

authentication. This selection leverages surface data's rich structural and geometric attributes, whether naturally 

occurring or deliberately introduced, to establish a sound basis for developing a robust authentication framework 

for 3D-printed objects. The ongoing advancements in non-contact capture technologies not only aim to refine the 

authentication process's precision and efficiency but also highlight the critical role of innovation in advancing the 

fields of 3D printing and object authentication. 
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3.3. Surface Feature Extraction and Texture Analysis 

This research aims at identifying reliable and repeatable surface features that occur during the AM processes. These 

surface features need to be invariant to translation and rotation and skewness. Studies specific to AM authentication 

will be discussed in Section 4. In this section, we review recent advances in surface texture analysis methods. The 

technique must be robust enough to identify anomalies that form the watermark on the surface and characterise 

the surface including the glyph to derive a unique signature of the surface. There are four major issues in texture 

analysis (Materka and Strzelecki, 1998):  

1) Feature extraction: to compute a characteristic of a digital image able to numerically describe its texture 

properties. 

2) Texture discrimination: to partition a textured image into regions, each corresponding to a perceptually 

homogeneous texture (leads to image segmentation). 

3) Texture classification: to determine to which of a finite number of physically defined classes (such as normal 

and abnormal texture) a homogeneous texture region belongs. 

4) Shape from texture: to reconstruct 3D surface geometry from texture information. 

Feature extraction is the first stage of texture analysis followed by watermark identification. Watermark 

identification using texture analysis can be categorised into three different approaches: Statistical; Structural; and 

Filter-based. Below is a critical evaluation of each of these approaches in recovering the surface: 

3.3.1. Structural Approach 

Structural approaches represent texture by characterising texture elements, this is done with the detection and 

composition of several simpler texture structures at the microscale.  

Early studies by Tuceryan and Jain (1993) proposed a structural approach to identify anomalies in textile images. The 

study used a histogram analysis to threshold the captured image and then a data structure was mapped which 

represented the skeleton structure of the texture. It used the texture of a known good surface to compare with the 

captured image to detect anomalies. This method is slow and computationally expensive as compared to a new 

system configuration proposed by Abouelela et al. that detected structural anomalies by implementing simple 
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statistical features (mean, variance, median) to 3D depth data (Abouelela et al., 2005). The results indicate that the 

system can detect flaws which vary drastically in physical dimension and nature with a very low false detection rate.  

Structural approaches are only reliable in segmenting anomalies from texture whose pattern is very regular. This 

method could be useful to obtain a geometrical fingerprint of the surface. Often these methods are used in 

conjunction with statistical approaches. 

3.3.2. Statistical Approaches 

In contrast to structural methods, statistical approaches do not attempt to understand explicitly the hierarchical 

structure of the texture. Instead, they represent the texture indirectly by the non-deterministic properties that 

govern the distributions and relationships between pixel values. 

Histogram statistics of these distributions are the most used in this approach. Despite their simplicity, histogram 

techniques have proved their worth as a low computational cost, low-level approach in various applications (Madrigal 

et al., 2017; Hou et al., 2015; Chen and Bhanu, 2007; Wang, Zha and Cipolla, 2006). They are also invariant to 

translation and rotation. Commonly used histogram statistics include range, mean, geometric mean, harmonic mean, 

standard deviation, variance, and median. However, the reliability of these methods is low in characterising the 

surface uniquely (Hanbay, Talu and Özgüven, 2016).  

3.3.1. Filter-Based Approach 

Filter-based approaches are implemented by applying filter banks on the image and computing the intensity of the 

filter responses. The methods can be divided into time domain and frequency domain.  

In the time domain, the images are usually filtered by gradient filters to extract edges, lines, isolated dots, etc. Sobel, 

Canny, and Laplacian filters have been routinely used as a precursor to measure edge density. (Kumar and Pang, 

2002) used linear finite impulse response (FIR) filters to detect anomalies in fabric by comparing the filter responses 

from regions with anomalies to anomaly-free regions. Following the trend of combining two different approaches, 

(Zhao et.al., 2008) presented an extension to Local Binary Pattern (LBP) by enhancing images by using a Sobel 

filter(Sobel and Feldman, 1990). Whilst these techniques can still be useful, on complex, irregular textures, the 

textures are often too noisy to discern anything of use without using techniques to remove unwanted high-frequency 

features. 
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In the frequency domain, the image is transformed into the Fourier domain, multiplied with the filter function, and 

then re-transformed into the spatial domain saving on the spatial convolution operation. Ring and wedge filters are 

some of the most used frequency domain filters (Xie, 2008). A ring filter, being a symmetric band-pass filter, can 

reveal the distribution of texture’s energy across the frequency domain and measure its roughness. A wedge filter 

can help evaluate the directionality of the image. In the original study presented in 1985, seven dyadically spaced 

ring filters and four wedge-shaped orientation filters for feature extraction (Coggins and Jain, 1985). Also, in studies 

by (Ferez, Silvestre and Munoz, 2004; Chiu et al., 2002), although they used frequency domain to successfully defect 

anomalies, no evidence was provided for the reliability of the methods. But as the Fourier domain is only affected by 

the change in the structure of the surface, it is very suitable for real-time or high-speed applications (Hanbay, Talu 

and Özgüven, 2016). 

Since the Fourier coefficients are depending on the entire image, the Fourier transform is not able to localise the 

defective regions in the time domain. The classical way of introducing time dependency into Fourier analysis is 

through the windowed Fourier transform. Gabor filters are used to detect anomalies using this principle. Gabor filters 

are used to analyse textures in both time and frequency domain (Tong, Wong and Kwong, 2016; Chen and Chen, 

1999; Randen and Husøy, 1999). This method obtained a high true detection rate for surface anomalies. It can extract 

the outstanding features of all anomalies when tuned properly. However, since the Gabor filters are rotation-based 

filters, they are vulnerable to the rotational transforms of the images. 

Summary 

The surface characterisation is a crucial step in this research to obtain a unique signature. As observed in this section, 

every approach has certain drawbacks. And most of the implementations mentioned are a combination of at least 

two approaches. The main purpose of implementing these approaches is to be able to minimise the computational 

complexity and increase the rate of anomaly detection. The statistical approaches will be tested to obtain surface 

texture while the structural approach would be tested to obtain a geometrical fingerprint of the surface. This allows 

us to obtain a PUF of the surface. Findings from these tests would help develop a novel approach to authenticate 3D-

printed parts using the derived unique signature obtain from the glyph and the watermark surrounding it. 
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4. Security in AM and Authentication of 3D-printed surfaces 

Additive manufacturing (AM) or 3D printing is especially vulnerable to cyberattacks due to its reliance on digital files 

and connectivity. This impacts multiple parties throughout the supply chain. There is still no universal solution to 

solve all cyber security issues in AM industry. Cyber and cyber-physical attacks on the AM process can happen at any 

point in the process. So far, the three major categories of attack identified in AM are (Yampolskiy et al., 2018): 

• Theft of technical data 

• Part sabotage 

• Illegal part manufacturing. 

Figure 20 illustrates the possible targets of AM sabotage, which include the manufactured object, the AM equipment, 

and the environment. It also shows various attack methods and their feasibility, with a focus on how part sabotage 

and illegal part manufacturing can affect each component of the AM process. 

 

Figure 20: AM sabotage, correlation between attack methods and attack targets (Yampolskiy et al., 2018) 

Under the scope of this research, we would be concentrating only towards the countermeasures for part sabotage 

and illegal part manufacturing postproduction. Part sabotaging target’s part manufacturing by either reducing the 

mechanical strength or the fatigue life of the part. Whereas illegal part manufacturers would attempt to replicate 
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the part by scanning, which can indirectly present similar issues as part sabotage. Then these parts enter the supply 

chain due to a break in custody and end up with the customer (Figure 21). 

 

Figure 21: Adulterated AM supply chain 

To countermeasure these adverse scenarios, several authentication methods for 3D-printed objects have been 

presented in recent times. Most 3D-printed authentication methods currently published have accomplished this by 

relying completely on certain specific additional information added to the part during manufacturing. These methods 

can be classified into two categories: Watermarking-based (Peng, Yang and Long, 2019; Straub, 2015, 2017, 2018; 

Chen, Mac and Gupta, 2017; Hou, Kim and Lee, 2017; Zeltmann et al., 2016; Hou et al., 2015) and Special material-

based authentication. 

4.1. Authentication Methods in Additive Manufacturing 

This section will address the principal categories of authentication systems, defining their general principles and 

highlighting the differences between them.  

There are two broad classifications for 3D-printed object authentication methods: 

• Watermarking-based strategies: During the manufacturing process, these strategies entail embedding 

secret information or patterns within the 3D-printed object. This concealed information can be extracted for 

authentication purposes in the future. Blind (uninformed), non-blind (informed), and side-informed 

detection approaches differ in the quantity and type of information necessary for authentication. 
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• Material-based approaches: These methods involve the incorporation of materials or substances into the 

3D-printed object, so establishing a unique, difficult-to-replicate signature. Incorporating quantum dots or 

chemical fingerprints into an artefact are examples of material-based techniques. For authentication, these 

approaches frequently require specialist equipment or procedures, such as spectrometry. 

Each of these categories has advantages and disadvantages, and the choice of authentication technique may rely on 

the specific security requirements of the AM application, the complexity of the 3D-printed object, and the availability 

of authentication resources (e.g., specialised equipment or software). By studying the various approaches to AM 

authentication, researchers may better identify research gaps and develop new, more effective techniques for 

ensuring the security and integrity of 3D-printed parts. 

With this overview in mind, the next sections will address the advantages, shortcomings, and future research 

possibilities of watermarking-based (Section 4.1.1) and material-based (Section 4.1.2) authentication approaches. 

 

 

4.1.1. Watermarking-Based 

Watermarking is the process of secretly embedding information. Authentication is done by retrieving this secret 

information using various means. This can be further distinguished between three categories (Macq, Alface and 

Montanola, 2015) 

Authentication 
techniques

Watermark-
Based

Non-Blind Blind Side Informed

Special 
Material-

Based
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1) Blind (uninformed authentication): The watermark is decoded without the need for the original model. The 

watermark contains all the information required. 

2) Non-Blind (informed authentication): The knowledge or the embedded algorithm to retrieve the watermark 

is not enough information. Prior knowledge of the original model is required to complete authentication. 

3) Side-informed: Side-informed detection is a stage between the blind and the non-blind scenarios, where the 

original shape of the object is not needed on detection but only some information related to it. 

Blind detection 

Hou et al. (2017) proposed an improved blind 3D model watermarking system that is both robust to the 3D printing 

process, and invariant to the object itself (Hou et. al., 2017). The system relies on a z-axis-invariant watermarking 

algorithm and a print-axis estimator (Figure 22). The watermark is formed by distorting the model along the z-axis 

and printing the distorted model. The watermark is then retrieved from the surface on the same axis. The authors 

tested the robustness of the system against a variety of deformations, including noise introduced as a normal part 

of printing and scanning objects, and common post-processing steps such as painting or sanding. Across three 

printers and multiple models, the scheme produced varied results. The author observed that the model 

characteristics such as size and scaling could reduce detection accuracy, as could higher-resolution printing. 

Moreover, it does not work well with 3D models featuring complex surfaces, sharp edges, and piecewise planar 

portions. 

 

Figure 22 Blind watermarking for FDM printing (Hou et al., 2017) 

Chen,et. al. (2017) and Zeltmann et al., (2016), proposed to incorporate into the design file some physical features 

that, if processed and printed with a specific combination of parameters, will result in a high-quality part; any other 

combination of parameters will result in a defective part or of inferior quality that can even lead to a failure in part. 

Another benefit to this protection method is that it does not leave a visible mark on the part.  
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Straub (2015, 2017, 2018) explored image-based fault detection and security for FDM 3D printing by comparing pixel 

values from images captured at five different angles to track the progress during printing. Even though it is a very 

good inspection system, the author admits, its manual operation means that it is not a very robust authentication 

system as it relied on human intervention to identify issues in those images that are flagged by the system. Also, this 

technique can only provide security during the print process. It doesn’t provide any means to prevent illegal parts 

from entering the supply chain. 

And Wu et al., (2017) proposed to use a combination of feature extraction techniques on 3D grayscale images. For 

each section of captured images, the following features are extracted using a stereovision camera: the mean of 

grayscale, the standard deviation of grayscale, and the number of pixels whose grayscale is larger than 120. To detect 

an attack on the part, the authors evaluate machine learning algorithms: k-Nearest Neighbor (kNN) and random 

forest. Using just a static camera, the author was able to achieve 96.1% accuracy for authentication using anomaly 

detection. But this method is not robust as it is only able to achieve that accuracy if there is no variation in skewness 

or changes to scale.  

Pham et al., (2018) proposed a watermarking technique using Menger facet curvature and K-means clustering. The 

facets of the model clustered into groups based on the Menger curvature. The Menger curvature of each group is 

then used to compute the embedded watermark (Figure 23). 

 

Figure 23  Watermarking using Menger facet curvature (Pham et al., 2018) 

Taking a different approach, (Suzuki et al., 2015, 2017; Silapasuphakornwong et al., 2016) through a series of 

publications, proposed various methods to embed a watermark just below the top surface by forming fine cavities. 

The variation between all the approaches proposed is the authentication technique. Various non-destructive 
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extraction techniques are proposed to read the watermark namely, thermal photography(Suzuki et al., 2015, 2017), 

thermal videography and Near-infrared.  

To make the process a bit more difficult to replicate, Chen et al. (2019) implemented a QR code embedded within 

the layers of the part. This exploded view of the watermark was much harder to replicate as it would only decode 

when viewed from the correct angle. The information stored in the QR code can only be retrieved by using a CT image 

of the layers to retrieve information making it unfeasible for mass production use (Figure 24).  

 

Figure 24: Embedded QR code(Chen et al., 2019) 

Blind watermarking has various practical advantages over non-blind approaches, as it is not necessary to know every 

3D-printed object's corresponding key. These approaches are also simple to build and robust in detection; however, 

blind detection poses a greater challenge to the watermarking scheme and reduces its resilience relative to non-blind 

methods when features are not maintained. Furthermore, because these watermarks are static for all printed goods, 

an attacker can readily acquire and copy them. 

Lastly, Liu et al., (2021) proposed a watermarking scheme based on wavelet transform, which can be embedded in 

3D-printed objects without affecting their visual appearance. The authors employed the lifting wavelet transform 
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and singular value decomposition techniques to incorporate a watermark into the 3D model. The method that has 

been put forward exhibits’ resilience against a range of attacks, including but not limited to the addition of noise, 

mesh simplification, and mesh smoothing. Nevertheless, this approach exhibits limitations in its ability to address 

intricate forms of attacks such as remeshing and object cutting. 

In conclusion, blind detection watermarking techniques provide a level of security for 3D-printed things by 

embedding secret data within the product without requiring the original model. Although these approaches can be 

robust and simple to deploy, their resilience is compromised when characteristics are not preserved, and the 

watermark's static nature makes it susceptible to reproduction by attackers. In order to increase the security and 

authentication of 3D-printed products, researchers continue to investigate and create innovative watermarking 

techniques. 

 

Non-Blind Detection 

Peng et. al., (2019), proposed a method to model the observational and printing noise of an authentication mark 

printed on the surface to generate a digital signature at the microscale (Figure 25). The signature is captured and 

saved as a private key during the registration and later a public key is shared with the clients for verification. The 

method claims an accuracy of 100% but shows vulnerability to post-processing attacks such as polishing because it 

analyses and detects the markers in a 2D image. 
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Figure 25 (a) Designed authentication mark. (b) One captured mark was printed by a FDM printer. (c) Another captured mark was printed by 
UnionTech RSPro 600. (d)One captured mark was printed by UnionTech Lite 600. (e) Another captured mark printed by UnionTech Lite 600 

(Peng, Yang and Long, 2019) 

Hou et al. (2015) presented a watermarking method that can survive the 3D printing and 3D re-scanning process. A 

normal vector in the x-y plane of each layer of the model mesh is modified to a reference pattern which has been 

rotated by some degree around the object. The verification of this watermark is done by scanning the surface of the 

model which results in a histogram of the features. That histogram is then compared with the reference pattern for 

authentication. However, this method has some limitations. The author concluded by mentioning how changing the 

print orientation will skew the authentication watermark and prevent the algorithm from verifying the required 

information.  

Yamazaki et al., (2014) proposed one of the first authentication methods for 3D-printed objects. A watermark is 

embedded in the spectral domain of the 3D CAD using an informed algorithm based on the spread spectrum 

technique. The paper focused on the extraction technique of this embedded watermark and mentioned that the 

technique proposed is encoding agnostic. The watermark extraction is done by reconstructing the 3D surface mesh 

from the object and matching the surface to the model. 

The authors of the study (Gao et al., 2021) introduced a non-blind watermarking technique for 3D-printed objects 

that relies on Laplacian mesh optimisation. The technique incorporates the watermark into the high-frequency 
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elements of the Laplacian mesh, which exhibit reduced susceptibility to prevalent forms of tampering such as mesh 

simplification, smoothing, and noise injection. The approach additionally exhibits significant resilience to 3D printing 

and scanning procedures. Nonetheless, it is possible that the system may not possess the capability to effectively 

manage intricate forms of attacks such as remeshing and object cutting. 

Since these methods are non-blind, both the embedding and extracting steps can only be performed by the owner 

of the original 3D mesh with complete access to the secret data. This allows each part printed to have a unique 

watermark/identifier. Non-blind detection methods offer increased security compared to blind detection methods 

because of the need for the original model and secret data for watermark extraction. However, these methods can 

also be more complex to implement and may still have vulnerabilities, such as susceptibility to post-processing 

attacks. Researchers are continually working on developing and refining non-blind detection methods to improve 

the security of 3D-printed objects. 

4.1.2. Material-Based 

Besides watermarking 3D-printed objects, the use of special or blended materials into 3D-printed objects is another 

method to prevent counterfeiting2. Quantum Materials Corporation (QMC) announced that they have patented the 

process of embedding quantum dots into 3D objects to detect counterfeit parts. The quantum dots are embedded 

in such a way that they create an unclonable signature (Heidi, 2014; Clare, 2016). 

Also, InfraTrac developed a process to embed a unique chemical fingerprint into 3D-printed objects (Michael, 2023). 

The technology allows for products to be marked in a way that is nearly impossible to fake so that they can be 

authenticated at any time with a simple spectrometer. Both these methods are prohibitively expensive to be 

implemented on a mass scale. 

By embedding unique materials or substances, such as quantum dots or chemical fingerprints, within the product, 

material-based authentication methods offer an alternative method for protecting 3D-printed items. This provides a 

signature that is unique and difficult to copy, which can be used for authentication. The primary disadvantage of 

these technologies, however, is their high cost, which makes them unfeasible for widespread use in mass-produced 

 

2 https://3dprint.com/7701/quantum-dots-3d-print/ 

https://3dprint.com/7701/quantum-dots-3d-print/
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items. Despite the cost, material-based authentication approaches continue to be investigated as a potential 

alternative to watermarking schemes, and academics are attempting to identify more cost-effective material-based 

ways for protecting 3D-printed products. 

Summary 

Authentication in AM is still a very developing field, but we see from this section that none of the authentication 

methods so far have used any 3D depth data to authenticate except for the study done by (Hou et al., (2015). Even 

this had a lot of limitations. Wu et al., (2017) does implement the use of anomalies but only uses 2D vision approaches 

to authenticate. There has not been any research so far that implements any 3D capture methods reliably for 

authentication and none that implements 3D capture methods at the microscale for authentication purposes. 

2D extraction of surface features extraction approach requires robust feature extraction from micro textured 

surfaces and accurate 2D-3D registration for mapping that is practically impossible for non-blinded approaches 

(Yamazaki et al., 2014).  

Most of the techniques mentioned above have tried to avoid using a 3D scanning tool for authentication. In theory, 

a 3D capture from an inexpensive 3D capture system would be sufficient to recover a watermark when using 

watermarking techniques such as Peng et al., (2019) or Pham et al. (2018) Even though both methods present very 

high robustness, and it is difficult to speculate on the impact of a 3D capture system on these methods. A 3D capture 

of the surface would have provided a lot more detailed surface representation with higher efficiency as seen in 

(Pollard et al., 2018). Also, the method proposed in this study i.e., the use of glyphs and watermarks along with the 

intrinsic surface characteristics to derive a unique signature of the surface, using combined data captured at macro 

and micro scale can further help with the accuracy of authentication. Further investigation would be carried out in 

this research to prove this. 

4.2. Limitations and Gaps  

Many constraints and gaps remain unsolved, despite the several authentication methods covered in this chapter. 

This section intends to highlight these shortcomings and identify research opportunities in AM security and 

authentication.  
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• Dependence on 2D data: The majority of current authentication techniques rely on 2D surface data or 

pictures, which may not capture the entire complexity and distinctive properties of 3D-printed components. 

This reduces the precision and resiliency of these methods, making them subject to forgery and sabotage. 

• Inadequate use of 3D capture methods: While several studies (e.g., Hou et al., 2015) have attempted to 

employ 3D depth data for authentication, there is a dearth of studies on the reliable application of 3D capture 

methods, particularly at the microscale. Creating novel authentication methods that utilise 3D capture 

techniques may improve the precision and robustness of part authentication. 

• Vulnerability to post-processing attacks: Several authentication systems, including the one presented by 

Peng et al. (2019), are vulnerable to post-processing assaults, such as polishing and sanding. This vulnerability 

could jeopardise the authenticity of authenticated components and open the door to counterfeiting and 

sabotage. 

• Limited application to intricate geometries: Certain authentication methods have difficulty with 3D models 

with complicated surfaces, sharp edges, and piecewise planar parts. Future research should investigate 

approaches that may effectively authenticate complex part geometries, hence boosting the security of a 

broader range of AM applications. 

By addressing these limitations and gaps identified, this study aims at developing more robust and effective 

authentication methods for AM, ultimately enhancing the security of the AM process, and protecting the integrity of 

3D-printed parts. 

5. Surface Fingerprinting Techniques 

This section provides a comprehensive review of various surface fingerprinting techniques used for the 

authentication and identification of objects. These techniques can be broadly categorised into three sections: 2D, 

3D, and statistical approaches. Each of these categories focuses on different aspects of surface features and leverages 

various methodologies to achieve accurate and robust surface fingerprinting. 

5.1. 2D Surface Fingerprinting Techniques 

2D surface fingerprinting techniques involve the extraction and analysis of 2D features from a two-dimensional 

representation of an object’s appearance, such as may be captured by images. These techniques can be categorised 
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into three main sections: Edge Detection and Texture Analysis for feature extraction, and Pattern Matching 

techniques for representing or modelling the extracted features. In this context, Edge Detection and Texture Analysis 

are used to extract distinctive features from the surface of a 3D-printed object, while Pattern Matching techniques 

serve to model and represent the extracted features for identification and authentication purposes. 

5.1.1. Image-based Techniques 

Image-based techniques focus on analysing the visual information of an object captured in 2D images. They can be 

used to identify the overall appearance, shape, structure, and texture of the object, making them useful for 

authentication purposes. 

Edge Detection: Edge detection techniques, such as Canny edge detection or Sobel operators, identify the boundaries 

between different regions of intensity in an image. The extracted edges can then be used to identify the presence of 

coded patterns or markers. However, these methods may be sensitive to noise and require careful parameter tuning 

to achieve optimal results. Edge detection techniques like the Hough Transform (Hough, 1962) and Contour Tracing 

can also be used to identify and extract more elaborate geometrical features, such as lines, circles, or other 

parametrised shapes. These methods can provide valuable information about an object's geometry, but their 

performance may be affected by the presence of noise and clutter in the image. 

Elaborate geometrical features: Techniques such as Local Binary Patterns (LBP) (Shi et. al., 2020; Ahonen et. al., 2006; 

Ojala et al., 2002) and Gabor filters (Wang et. al., 2005) can be used to capture more complex local intensity variations 

and edge-like structures in the image. These methods can help in understanding an object's elaborate geometrical 

texture and surface characteristics but may require extensive feature selection and parameter optimization to 

achieve optimal results. 

5.1.2. Texture-based 

Texture analysis techniques focus on extracting and characterising repetitive patterns of features describing the 

surface properties of an object. 

Glyph-based techniques: In the context of glyph-based texture analysis, the extraction of coded patterns or markers 

can be achieved through techniques such as Template Matching (Brunelli, 2009) or Feature-based Matching (Lowe, 
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2004), which seek to identify the presence of specific texture patterns in the image. However, these methods may 

be sensitive to changes in scale, rotation, and illumination. 

Elaborate geometrical features: Techniques like Co-occurrence Matrix-based methods and Local Ternary Patterns 

(LTP) (Tan and Triggs, 2010) can be employed to capture more elaborate geometrical features related to the object's 

texture. These methods can provide valuable information about the object's surface topographic properties but may 

require extensive feature selection and parameter optimization to achieve optimal results. 

Intrinsic surface features: Methods such as Wavelet Transform and Fractal Dimension can be used to analyse the 

object's texture and surface properties at different scales and resolutions. These methods can help in understanding 

the object's intrinsic surface features but may be computationally expensive and require careful parameter selection. 

5.1.3. Pattern Matching (Glyph-based) 

Pattern matching techniques involve comparing the extracted features to a database of known features to identify 

and authenticate objects. 

Glyph-based techniques: For glyph-based pattern matching, techniques such as Template Matching (Brunelli, 2009) 

or Feature-based Matching (Lowe, 2004) can be employed to compare the extracted coded patterns or markers 

against a database of known patterns. These methods can provide robust and reliable identification, but their 

performance may be affected by changes in scale, rotation, and illumination. 

Elaborate geometrical features: Techniques like Shape Context (Belongie et al., 2002) and Scale-Invariant Feature 

Transform (SIFT) (Lowe, 2004) can be used for pattern matching based on the extracted elaborate geometrical 

features. These methods can provide robust and invariant matching performance, even in the presence of changes 

in scale, rotation, and illumination. However, they may require extensive feature extraction and matching 

procedures, which can be computationally expensive. 

Intrinsic surface features: Methods such as Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005) and Bag 

of Visual Words (BoVW) (de Lima et al., 2019) can be employed for pattern matching based on the extracted intrinsic 

surface features. These techniques can offer a compact and discriminative representation of the object's texture and 

surface properties, enabling efficient and accurate matching against a database of known features. However, their 
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performance may be affected by the choice of feature extraction and quantization methods, as well as the size of 

the feature vocabulary. 

In conclusion, 2D surface fingerprinting techniques can provide valuable information about the object's overall shape, 

structure, texture, and other surface properties, potentially enabling efficient and accurate identification and 

authentication. By combining different edge detection, texture analysis, and pattern matching techniques, a 

comprehensive and robust solution for 2D fingerprinting be developed, catering to a wide range of applications, such 

as security, forensics, and manufacturing. 

5.2. 3D Surface Fingerprinting Techniques 

The process of 3D surface fingerprinting encompasses the retrieval and evaluation of 3D characteristics from three-

dimensional depictions of an entity. The aforementioned techniques are capable of capturing both local and global 

geometric features of an object's surface, thereby facilitating a more comprehensive representation of its structure. 

The subsequent sections will provide a critical analysis of different 3D fingerprinting methods that utilise mesh-based, 

point cloud-based, and occupancy grid-based approaches. These techniques will be evaluated in relation to the 

security feature outlined in Table 1. 

5.2.1. Mesh-based Techniques 

Mesh-based techniques are utilised to depict the surface of an object by means of a set of interconnected vertices, 

edges, and faces. The aforementioned depiction enables a condensed and readily available spatial configuration; 

however, it may pose certain difficulties in extracting characteristics and managing topological disturbances. Some 

examples of mesh-based techniques include the method proposed by Gumhold and Macleod (2001), which is 

effective for extracting robust features from 3D surfaces, and the methods by Li et al. (2021) and Zhang et al. (2022), 

which focus on extracting mesh parameters using local and global descriptors, respectively. These methods have 

shown promising results for extracting robust features from 3D surfaces, but they are not without their limitations. 

Glyph-based techniques refer to methods that utilise visual symbols or glyphs to represent data or information. These 

techniques are commonly used in data visualisation and information design to convey complex information in a clear 

and concise manner(Sola et al., 2022). Glyphs can be used to represent a wide range of data types, including 

numerical values, categorical variables, and textual information. By using glyphs, data can be presented in a way that 
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is easy to understand and interpret, allowing users to quickly identify patterns and trends in the data. The integration 

of coded patterns or markers in the mesh structure or texture can be achieved through the use of mesh-based glyph 

techniques. Nevertheless, there are difficulties associated with the modification of conventional feature-based 

matching methodologies, such as SIFT and SURF, to suit 3D mesh data. It is therefore helpful to investigate more 

recent techniques that are tailored for 3D data, such as 3D-SIFT (Scovanner et al., 2007) and 3D-SURF (Knopp et al., 

2010) while taking into account their computational intricacy and resilience to changes in scale, rotation, and lighting. 

Intricate geometric characteristics: In order to derive intricate geometric characteristics from mesh structures, 

techniques such as the one introduced by Gumhold and Macleod (2001) have been employed. Figure 26 illustrates 

the process of feature extraction from mesh information. It demonstrates how interconnected vertices, edges, and 

faces represent an object's surface, enabling the extraction of various characteristics. The figure highlights the 

application of different techniques, such as mesh-based, glyph-based, and curvature-based methods, to derive 

surface features from the mesh structure. Nevertheless, these techniques frequently rely on particular mesh 

representations and could necessitate reparameterization or remeshing of the data, resulting in the possible 

forfeiture of geometric intricacy. It is imperative to conduct a thorough critical assessment of various mesh 

processing techniques, including mesh simplification, smoothing, and subdivision, to ascertain their influence on the 

extracted features and the overall performance of fingerprinting. 

The intrinsic surface features are those characteristics that are inherent to the surface itself, without any external 

influence or modification. The utilisation of curvature-based techniques (Kazhdan, Funkhouser and Rusinkiewicz, 

2003) and mesh parameterisation methods (Huang and Zhou, 2010; Reuter et al., 2009; Li and Gu, 2004) have been 

employed to effectively capture the inherent characteristics of surfaces. Nonetheless, these techniques may exhibit 

susceptibility to noise and mesh resolution. Further exploration of advanced feature extraction techniques that are 

more resilient and adaptable, such as scale-invariant methods (Bronstein and Kokkinos, 2010) and diffusion-based 

methods (Yang et al., 2023), could be beneficial in enhancing the dependability and precision of intrinsic surface 

feature extraction. 
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Figure 26 Feature extraction using mesh information. (a): Surface points: Essential for understanding the general geometry of a 3D object, 
surface points can be extracted by analysing surface normals and curvatures in the mesh. (b): Crease points: Located along sharp edges 

where surfaces meet, crease points define boundaries between mesh regions and can be extracted by detecting surface normal discontinuities 
and dihedral angles. (c): Border points: Situated on the mesh boundary, border points provide valuable information about external features 
and interactions with surroundings and can be identified by detecting open edges. (d) Corner points: Representing junctions where multiple 

crease lines intersect, corner points define the overall mesh topology and offer insights into the object's complex geometry. 

5.2.2. Point Cloud-based Techniques 

The utilisation of point cloud representation of object geometry is a prevalent technique for the creation of 3D 

fingerprinting. The process entails the extraction and manipulation of a vast collection of points situated in a three-

dimensional space, each possessing distinct coordinate values (x, y, z), for the purpose of depicting the exterior of an 

entity. Point clouds can be obtained through diverse methods of data acquisition, including but not limited to laser 

scanning, structured light, or photogrammetry. 

Qi et al. (2017) proposed the PointNet architecture, which is a deep learning methodology utilised for point cloud 

processing. The PointNet model exhibits the ability to extract advanced features from unprocessed point cloud data, 

thereby facilitating the categorization and partitioning of three-dimensional entities. The methodology involves the 

utilisation of symmetric functions and nonlinear transformations on the input point cloud, which effectively captures 

the local and global geometric features. 

a) Local geometric features: The PointNet algorithm is designed to extract local geometric features from point clouds 

by examining the interrelationships among adjacent points. The process entails the computation of characteristics 

such as surface normals, curvature, and density, which facilitate comprehension of the regional structure and texture 

of the three-dimensional printed entity. The process of extracting said features is of utmost importance in order to 

create a distinct identification of an object's surface characteristics. 
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b) Global geometric features: By combining the local features throughout the entire point cloud, PointNet can also 

extract global geometric information. This is accomplished by a number of pooling procedures that compile the local 

data into a comprehensive understanding of the overall geometry of the 3D object. Global characteristics are crucial 

for identifying the object's larger-scale structure and can help create its distinctive fingerprint. 

Although PointNet has exhibited remarkable efficacy in diverse 3D recognition assignments, it possesses certain 

constraints in encapsulating intricate details and conserving spatial correlations among points. Qi et al. (2018) 

presented PointNet++, an enhanced iteration of PointNet, which employs a hierarchical neural network architecture 

to tackle the aforementioned concerns. The integration of PointNet++ with additional methodologies such as mesh 

parameters and adaptive occupancy grids can yield a more comprehensive and resilient 3D fingerprinting approach. 

This can result in enhanced security and dependability when verifying the authenticity of 3D-printed items. 

The utilisation of point cloud-based methodologies entails the derivation and manipulation of characteristics from 

an extensive collection of points situated within a three-dimensional spatial environment. Although point cloud data 

is known for its versatility and reduced susceptibility to topological noise, its processing can be computationally 

demanding and may necessitate supplementary pre-processing measures, such as denoising, downsampling, and 

registration. 

Glyph-based: The process of integrating coded patterns or markers as unique geometric structures or spatial 

arrangements of points is necessary when applying glyph-based methods to point cloud data. The presence of 

sparsity and irregularity in point cloud data may pose difficulties in the implementation of conventional feature-

based matching methods. Researchers have investigated techniques tailored for point cloud data, such as the 3D 

Hough Transform (Borrmann et al., 2011) focusing on computational efficiency and resistance to noise and 

occlusions.  

Elaborate geometrical features: Point clouds have been analysed using deep learning techniques, specifically 

PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b), to extract geometrical features. Nonetheless, these 

techniques may necessitate substantial training datasets and may incur significant computational costs. Researchers 

have also compared alternative techniques, such as graph-based methodologies (Niepert, Ahmad and Kutzkov, 
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2016a) and spectral techniques (Ovsjanikovs, 2011) with regard to their computational demands, precision, and 

applicability to diverse object categories and datasets. 

Intrinsic surface features: The process of identifying inherent surface characteristics from point cloud data can pose 

difficulties owing to the irregularity and noise that is inherent in the data. Various techniques such as normal 

estimation, curvature estimation, and density-based methods can be utilised. However, it is imperative to thoroughly 

assess their sensitivity to noise and parameter selection. 

5.2.3. Occupancy Grid-based Techniques 

Occupancy grids provide a structured and uniform way to represent 3D objects by discretising the space into a regular 

grid structure. They have been used in conjunction with glyph-based techniques, elaborate geometrical features, and 

intrinsic surface features to provide a comprehensive fingerprinting solution for 3D objects. However, they may face 

challenges in terms of computational complexity, data storage, and resolution limitations. 

Glyph-based techniques in occupancy grids involve embedding coded patterns or markers as distinct patterns of 

occupied and unoccupied cells. 3D convolutional neural networks (Maturana and Scherer, 2015) and 3D grid-based 

matching algorithms (Sünderhauf et al., 2015) have been proposed for occupancy grid data, but their computational 

complexity, resolution sensitivity, and robustness to noise and occlusions should be carefully considered. 

Elaborate geometrical features can be extracted using adaptive and hierarchical grid representations, such as 

OctoMap, the work of Hornung et al. (2013) and Choy et al. (2019). The choice of grid resolution and the underlying 

hierarchical data structure should be thoroughly investigated to optimise the performance of geometrical feature 

extraction(Santos et al., 2013). 

Intrinsic surface features can be extracted using methods like Minkowski Convolutional Neural Networks (Choy, 

Gwak and Savarese, 2019) and 3D ShapeNets (Wu et al., 2014), which may require large training datasets and be 

computationally expensive. Alternative techniques, such as statistical methods (Rusu and Cousins, 2011) and graph-

based approaches (Niepert, Ahmad and Kutzkov, 2016) should be explored to improve the efficiency and reliability 

of intrinsic surface feature extraction. 
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Figure 27: An octree map generated from example data. (a): Point cloud recorded in a corridor with a tilting laser range finder. (b): Octree 
generated from the data, showing occupied voxels only. (c): Visualization of the octree showing occupied voxels (dark) and free voxels (white). 

The free areas are obtained by clearing the space on a ray from the sensor origin to each endpoint. Lossless pruning results in leaf nodes of 
different sizes, mostly visible in the free areas on the right. 

5.3. Statistical Fingerprinting Techniques 

Statistical fingerprinting techniques involve the extraction and analysis of features from the spatial or frequency 

distribution of surface properties. These techniques can provide insights into an object's texture and global 

characteristics, which can be valuable for authentication and identification purposes. This section reviews several 

state-of-the-art statistical fingerprinting techniques, including the Gray-Level Co-occurrence Matrix (GLCM), Local 

Binary Patterns (LBP), and Gaussian Mixture Models (GMM). 

5.3.1. Gray-Level Co-occurrence Matrix (GLCM) 

GLCM is a widely used texture analysis method that captures the spatial distribution of gray levels in an image. GLCM 

computes a matrix that represents the frequency of co-occurring pixel intensities at a specific spatial relationship. 

Various features can be derived from the GLCM, such as contrast, correlation, energy, and homogeneity, which 

provide valuable information about an object's texture and surface properties (Dhruv, Mittal and Modi, 2018). 

However, GLCM can be sensitive to image rotation and scale, which might limit its robustness in certain applications. 

Recent research has focused on improving GLCM's invariance properties through multi-resolution and multi-

orientation approaches (Khan and Professor, 2020). 

5.3.2. Gaussian Mixture Models (GMM) 

The Gaussian Mixture Model (GMM) is a probabilistic model that is generative in nature. It is designed to represent 

data as a combination of multiple Gaussian distributions, where each distribution is weighted according to its 

contribution to the overall data set. The Gaussian Mixture Model (GMM) has been employed in the realm of texture 

analysis and surface fingerprinting through the utilisation of local features, such as gradients or patches, in either an 

(a) (b) (c) 
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image or 3D data. This approach has been documented by Zhang et al. (2021). The Gaussian Mixture Model (GMM) 

has the ability to effectively capture intricate probability distributions and offer a versatile depiction of surface 

characteristics. Nevertheless, Gaussian Mixture Model (GMM) may necessitate a substantial quantity of parameters 

and may incur high computational costs. Contemporary studies have been directed towards the enhancement of 

GMM-based techniques, including variational GMM (Xu et al., 2020) and sparse GMM (Ravishankar et al., 2010), with 

the aim of diminishing computational intricacy. 

The utilisation of GLCM and LBP could prove to be advantageous in capturing intrinsic surface features, given the 

contextual framework of a Glyph, the elaborate geometrical features, and Intrinsic surface features. These methods 

are particularly adept at identifying texture and local structures within the data. The Gaussian Mixture Model (GMM) 

has the ability to effectively represent complex geometric characteristics through the utilisation of local feature 

distribution modelling in both image and 3D model data. The integration of statistical fingerprinting techniques with 

the aforementioned 2D and 3D methods has the potential to yield a more exhaustive and resilient fingerprinting 

approach, thereby enhancing the level of security and dependability in the verification of entities. 

 

Summary 

In summary, this section gave a thorough review of the many methods used to authenticate and fingerprint 3D-

printed objects. Three basic categories—2D approaches, 3D techniques, and statistical techniques—were used to 

group the methods under discussion. 

A basic level of authentication can be provided by 2D approaches, such as image-based, texture-based, and glyph-

based ones, although they are typically less successful at capturing the distinctive, intrinsic surface properties of 3D-

printed items. Additionally, they are more sensitive to ambient noise, occlusion, and lighting. 

A more thorough understanding of the geometry, topology, and distinguishing surface properties of 3D-printed items 

is possible thanks to 3D techniques, which include mesh-based, point cloud-based, and occupancy grid-based 

approaches. These methods could, however, run into issues with computing complexity, resolution restrictions, and 

noise sensitivity. 
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For finding hidden patterns and connections between extracted characteristics, statistical techniques like 

multivariate analysis, machine learning-based methodologies, and feature distribution analysis are helpful. 

Nevertheless, they might need sizable training datasets and can be costly computationally. 

The methodologies that combine the benefits of 3D and statistical techniques are the most promising when 

considering the drawbacks of each technique. Occupancy grid-based approaches, like OctoMap, and point cloud-

based algorithms, such PointNet and PointNet++, have demonstrated potential for extracting distinctive and 

trustworthy properties from 3D-printed objects. These methods have the potential to produce a reliable and 

complete fingerprinting solution for 3D object authentication when combined with cutting-edge statistical 

techniques and machine learning technologies. 
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6. Methodology 

This section sets out how we propose to undertake the research. Based on the literature review, this study proposes 

to add an additional phase for watermark registration to implement a non-blind authentication method that will be 

developed in this research to register and uniquely identify each 3D-printed part produced by the AM process ( 

 

 

 

Figure 28). The features extracted from the registered watermark are then encrypted and stored digitally. Once 

registered, the object is then released to the supply chain. At the customer end, during the verification process, the 

same watermark is scanned, and features are extracted. These features are then compared with the features 

extracted during registration for authentication. If the features match, the object is believed to be of genuine origin 

(Figure 29).  

 

Phase IV: 

Authentication 

Data Processing, Registration, Feature Extraction and 

Genuine Check 

 

 

 

 

Figure 28: A typical process chain of Additive Manufacturing with the additional proposed phase IV of authentication 

Data Processing, Registration, Feature 

Extraction and Genuine Check   

QR CODE and/or WATERMARK 
FORMATION 
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Figure 29:Authentication framework 

The development of this non-blind authentication technique will follow the methodology provided in Figure 30, 

which serves as a comprehensive workflow diagram that encapsulates the research tools, both software and 

hardware, materials, and methods employed throughout the project. This diagram systematically integrates the 

processes and phases detailed in Figures 27, 28, and 29, ensuring a clear visual representation of the project's 

implementation strategy. This can be divided into 4 stages: 

 

Figure 30: Overview of Methodology 

• At Stage 1, in order to achieve the goals of this research, we would first need to build a dataset. This dataset 

is built by printing numerous objects with glyphs and anomalies from all the identified printing techniques. 
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This is the stage where the 3 layers (glyph-based features, elaborate geometrical features, and intrinsic 

surface features) of features have been defined that form the signature of the object.   

• In Stage 2, the surface data from the 3D printed objects would then be captured for analysis. The ground 

truth data needs to be validated to ensure the captured data is consistent. Leading to the development and 

testing of a new capture device. 

• Next, at Stage 3, the captured data would then be used to investigate feature extraction and texture analysis 

approaches to obtain a unique signature.  

• Lastly, at Stage 4, the positional information of the QR code and watermark would be obtained to provide 

additional robustness to the authentication process.  

6.1. Watermark Formation 

The dataset required for this research is not currently available, therefore the required dataset needs to be generated 

for testing. In order to create a dataset for capture, we 3D print objects with anomalies discussed in Section 3.1.7. As 

this research would only be investigating plastic-based materials, we only use the following materials for each of the 

printing methods: 

DLP 

• Plastic-based photopolymer resin 

SLS and MJF 

• Multijet Fusion PA12. PA12 used is a strong thermoplastic. 

Revisiting the table introduced in Section 1.1 (Table 1: Taxonomy of printed object security features), we propose a 

three-layered approach to forming the watermark based on the increasing level of difficulty to replicate: 

• Level 1 – Glyph Verification: A 3D QR code is used as a glyph. The size and pattern would be used for 

authentication. Since the pattern is predetermined and easier to identify, the glyph provides the least 

security but is a good visual indicator (fiducial) to indicate the registration area used for authentication. This 

can also carry embedded information. 
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• Level 2 – Elaborate geometrical features: The location and shape of these elaborate geometrical features are 

used for authentication. These features offer a middle level of security because they were purposefully 

included in the design and integration of the object. Incorporating a suite of geometrically complex designs 

that include chamfered edges, Voronoi patterns, and noise textures, these features are strategically 

embossed or debossed around the glyph to enhance security. Each feature, such as a triangular wave pattern 

or a cube block, is meticulously crafted to be distinct and challenging to replicate, ensuring a robust middle 

layer of security. Although they are more difficult to imitate than glyphs, they can still be faked if the 

manufacturing process or the design of the item are sufficiently understood. 

• Level 3 – Naturally occurring surface texture: Uses the printing techniques’ intrinsic surface characteristics 

that are completely random and unique to each 3D printed object or part. Since this can’t be replicated, it 

provides the highest level of security. 

 

Figure 31: Whole artefact, elaborate geometrical feature (Blue) and QR code (Green) 

A macroscopic glyph on the surface of a 3D-printed part, for the sole purpose of part verification, can be easily 

observed and replicated by an adversary, thus providing the least difficulty to counterfeit. Elaborate geometric 

features during manufacturing that mimic naturally occurring anomalies or specialised surface textures that are 

uniquely designed for authentication are harder to identify on the surface as they could be considered to be part of 

the design or mistaken as print defects. However, advanced knowledge of the manufacturing process or access to 

the original design files can provide the insight the adversary needs to counterfeit the 3D-printed parts. To ensure 

each object carries a unique signature, the methodology involves a detailed approach to the design and integration 
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of these features. By systematically altering the CAD files, we introduce variations in the geometrical patterns that 

are both intricate and unique to each printed object. This process not only requires a deep understanding of the 3D 

printing technology and material behaviour but also leverages software capabilities for precision design beyond 

conventional manufacturing limitations. 

All these 3 Levels together provide the unique signature for the authentication of each object. Each of these test 

objects would have elaborate geometrical features added that are less than 500 µm around the glyph (larger than 

1mm). The size of these anomalies is based on the minimum resolutions of various printing techniques. With the 

understanding of how anomalies occur on a 3D-printed surface, we attempt to replicate them by systematically 

modifying the CAD file to introduce controlled anomalies. This multi-layered approach ensures robust authentication, 

as each level contributes to the overall security, making it increasingly difficult for adversaries to successfully 

counterfeit the object. 

6.2. Data Capture 

To capture the watermark, based on our literature review, we select the industry-leading capture methods to capture 

the 3D-printed surface. The three methods are (1) Multi-focus 3D microscopy, (2) Photometric Stereo and (3) 

Structured Light. These methods have been selected based on their high-resolution output, speed, cost and their 

ability to span across multiscale except multi-focus 3D microscopy. However, the Multi-focus 3D microscopy software 

allows multiple microscale data capture to be stitched together to obtain the necessary capture size.  

Multi-focus 3D microscopy provides the highest resolution at the microscale making it ideal to capture ground truth 

data.  

6.3. Surface Feature Extraction and Texture Analysis 

A systematic experimental method will be used to test the existing surface characterisation algorithms at micro and 

macroscales. The algorithms will be tested for speed and accuracy. The results from these tests will help derive 

unique features for the glyphs and watermarks on the surface. Successful features derived in this way will serve to 

help us build new characterisation techniques resulting in a novel approach specifically tailored for 3D-printed 

objects. Successful techniques should be able to characterise unique signatures based on viewpoint invariant 

features for authentication.  
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An algorithm based on the features extracted will also be developed that can identify and characterise the unique 

signatures of the glyphs and watermarks on the surface of the object. These features will be extracted using a 

combination of 2D and 3D image processing techniques as well as statistical modelling on the captured data. Some 

of the key expected outcomes are: 

• Identifying the optimum feature extraction technique for authentication. 

• Identifying unique fingerprint to a particular printing process. 

• Highlighting the similarities on the surface of the printing process. 

A comparison between the three features type (2D, 3D and statistical) is presented in the table below (Table 6). The 

processing techniques are classed against the three levels of authentication previously presented. 

Table 6: Fingerprinting strategy 

 
2D 3D Statistical 

Level 1- QR 
code 
verification 

• Easy translation to 
ArUco marker 
dictionary 

• Direct libraries 
available for quick 
implementation 

• Additional complexity 
as the QR doesn’t 
contain extra 
information 

• Shape and size 
• Measurements of the 

QR code 

Level 2- 
Elaborate 
geometrical 
feature 

• Ray tracing  
• Texture pattern 

classification 

• Point cloud 
classification  

• Classify all 8 patterns  

• Statistical analysis of 
the surface 

• Each pattern printed 
will have a unique 
texture 

Level 3- 
Intrinsic 
texture 

• Microscopic 
structures might not 
be distinguishable  

• Point cloud 
classification 

• Identify printing 
technique 

• Statistical analysis of 
the surface 

• The surface profile of 
every printed object 
will be unique 

 

Following the comparison in Table 6, an exploration into the authentication process across all three levels is 

presented: 

Level 1 - QR Code Verification: The initial stage utilizes ArUco markers, an established and universally recognized 2D 

barcode system, for embedding essential authentication information within 3D-printed objects. These markers offer 
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a reliable method for quick identification and decoding, proving to be particularly effective for Level 1 authentication 

due to their adaptability to various lighting conditions and angles of view (OpenCV, 2023). 

Level 2 - Elaborate geometrical feature: At this stage, the focus shifts to more sophisticated surface details, such as 

elaborate geometric patterns and textures that are challenging to replicate. The combination of ray tracing and 

texture pattern classification techniques is employed to analyze these complex features, enhancing the object's 

security by adding a layer of difficulty for counterfeiters. 

Level 3 - Intrinsic Texture: The highest level of authentication examines the intrinsic surface texture of the 3D-printed 

object, which includes microscopic structures unique to each print. This level leverages advanced point cloud 

classification and statistical analysis to identify the unique "fingerprint" of each object, offering the most detailed 

and secure form of authentication. 

This tiered approach to authentication, from the easily accessible ArUco markers to the in-depth analysis of intrinsic 

textures, creates a robust framework for verifying the authenticity of 3D-printed objects. 

Summary 

A research methodology is suggested along with the authentication framework for this study after reviewing the 

literature and the research questions. The proposed layers of security—Glyph Verification, Elaborate Geometrical 

Features, and Intrinsic Surface Features—will together create a watermark on the surface that will yield an individual 

signature that can be extracted. A capture method that will provide the ground truth data was chosen from among 

those mentioned in the literature review. 

The validated ground truth data can then be used for more in-depth analysis. The new capture method that is being 

developed and tested will use it as a benchmark or reference dataset. The same dataset can also be used for 

improved surface feature extraction and texture analysis research and development. A combination of 2D, 3D, and 

statistical models will be used for feature extraction and texture analysis. 

The validated ground truth data can then be used for more in-depth analysis. The new capture method that is being 

developed and tested will use it as a benchmark or reference dataset. The same dataset can also be used for 

improved surface feature extraction and texture analysis research and development. A combination of 2D, 3D, and 

statistical models will be used for feature extraction and texture analysis. 
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The methodology was created to provide an iterative improvement and integration of new knowledge as it emerges, 

allowing for an agile research approach. The research will be able to adjust to improvements in 3D printing 

technology and authentication methods thanks to its adaptability, ensuring that the findings will still be useful in a 

field that is developing quickly.  
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7. Experiments 

In this section, several experiments are presented that are based on the research methodology presented above. 

This will lead to the development of the authentication framework presented previously. Firstly, the capture methods 

are tested for their capture resolution (micro and macro) and then the selected capture method is validated for its 

repeatability. The development of the watermark design is also described in this section. Once the capture method 

has been validated, the required dataset from the watermark developed is captured. This is then followed by the 

development of feature extraction and data augmentation techniques to achieve the desired authentication results. 

Finally, experimentation is presented that shows the effectiveness of the proposed authentication framework in 

securing 3D-printed objects and preventing counterfeiting. 

7.1. Test Object   

Industry-standard for authentication, as seen in Section 4, have predominantly been using watermarks. But there 

has not been a standard benchmark object that is used to establish the robustness of these authentication 

techniques. Thus, as part of this research, a test artefact refers to a specifically designed portion of the benchmark 

object, which is used for evaluating the effectiveness of the watermarking techniques. Each test artefact represents 

a distinct set of features and challenges, allowing for a comprehensive assessment of the authentication process 

across different scenarios. This benchmark object will also serve to evaluate the effectiveness of the three levels of 

security described in Section 2.1. 

 The 3D CAD model of the benchmark object was generated using the following 3D CAD and Design for Additive Manufacturing software: 
Fusion 360 and nTop (Autodesk, 2023; nTopology, 2023). The test object is split into 8 quadrants. Each quadrant consists of an embossed QR 

code that is surrounded by an elaborate surface feature, which refers to intricate, distinctive patterns or structures on the surface of the 
object. The QR codes were generated using a 4x4 ArUco marker dictionary (OpenCV, 2023). Some elaborate features were geometrically 

created, and others were randomly generated. The total object dimensions are 45x45x4mm and each test artefact is 15x15mm. Figure 32 
shows the test artefact and 

 

 provides a short description of the geometrical features added around the QR code along with the ArUco marker ID.  
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Figure 32: The test object with 7 test artefacts in which the geometrical features of each test artefact are added around the QR code that is 
well-aligned with the ArUco marker ID. 

 

Table 7: The description of 7 test artefacts in which the geometrical features of each test artefact are added around the QR code that is well-
aligned with the ArUco marker ID. 

 

 

 

 

 

Table 8: Technical Specifications of AM Systems Used in Fabrication of Test Objects 

AM 
System 
(3D 
Printer) 

XY 
Resolution 

Z Resolution 
(Layer 
Thickness) 

Materials Max 
Printing 
Volume (X, 
Y, Z) 

DLP 130 microns 25 microns Standard 
photopolymer 
resin 

128 x 128 x 
200 mm 

SLS 200 microns 100 microns Nylon 12 (PA12) 165 x 165 x 
320 mm 

MJF 1200 dpi 
(approx. 21 
microns) 

80 microns HP 3D High 
Reusability PA 
12 

380 x 284 x 
380 mm 

 

The benchmark objects are printed in 3-4 orientations, depending on the 3D printing technique as shown in Figure 

33. The typical orientations are (1) Horizontal face down (2) Horizontal face up (3) Vertical and (4) 45-degree angle. 

ArUco Marker ID Elaborate geometrical features 
0 0.5mm chamfered edges 
1 Voronoi Deboss 
2 Voronoi Emboss 
3 Simplex Noise Deboss 
4 Cellular Noise Deboss 
5 45deg Triangular Wave Pattern 
6 Voronoi Bubble 
7 0.5mm Cube Block 
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The printing techniques are chosen based on their relevance in the industry to mass produce and prototype detailed 

3D-printed parts. The 3D printing techniques that were used for fabricating the test objects include DLP (Digital Light 

Processing), SLS (Selective laser sintering) and MJF (Multi Jet Fusion), as outlined in Table 8 for detailed technical 

specifications of each printing system. DLP printers have a resolution of 100 microns whereas MJF and SLS are 500 

and 750 microns respectively. But the MJF and SLS see more industrial use due to their print volume, speed, and 

material choices. All these benchmark objects are printed using the most used printing materials used by each of 

these techniques identified above. That is a polymer resin for DLP and Nylon for SLS and MJF. No further processing 

was done on the surface. 

 

 

Figure 33: Four orientations of the benchmark object for 3D printing. It is noted that, each benchmark object has 8 quadrants which are 8 test 
artefacts. 

7.1.1. Data capture 

The scanning was done using an Alicona InfiniteFocusSL (Alicona, 2023) camera. It uses a multi-focus 3D microscopy 

technique. For this data capture, we used a 5x zoom lens that provided a claimed vertical resolution of 460nm, which 

is considerably higher than the print resolution. Each quadrant is individually scanned in a single shot. The scanned 

surface is segmented into three sections as shown in Figure 33: (1) The whole quadrant. It provides size and 

orientation information; (2) The elaborate geometrical feature. This can be uniquely generated for each print; and 

(3) The flat surfaces in and around the QR code present the intrinsic texture of the surface that is unique to the 
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printing technique. A total of 33 samples were used in the study. These samples were derived from different printing 

materials and orientations, and a total of 273 scans were performed to capture the necessary data. 

 

Figure 34: Three segmented sections of the 3D scanned surface of one test artefact: (1) the whole artefact which provides size and orientation 
information; (2) the geometrical feature (Blue) which is uniquely generated for each 3D printed artefact; and (3) the QR code (Green) that 

presents the intrinsic texture of the surface of the 3D printed artefact. 

7.1.2. Results 

The results presented here are based on the data capture process described in Section 4, focusing on watermark 

authentication as the industry standard. Despite watermarking being a prevalent method, it's noteworthy that there 

has been no established standard benchmark object for evaluating the robustness of watermarking techniques. In 

this research, we introduce new test artifacts designed to serve as benchmark objects. These artifacts are specifically 

created to assess the effectiveness of various watermarking techniques across the three security levels detailed in 

Table 1 of Section 1.1. 

Each test artifact measures 15x15mm, contributing to the total dimensions of the benchmark object, which are 

45x45x4mm. Figure 32 visually represents these test artifacts, while Table 8 provides detailed descriptions of the 

elaborated geometrical features surrounding the QR codes and their associated ArUco marker IDs. 

The Alicona InfiniteFocusSL camera was used for data capture, with the collected data segmented into three distinct 

sections for comprehensive analysis. The evaluation criteria and methods applied to these printed objects are aligned 

with the procedures outlined in Sections 3.1 and 3.2. Table 9 compiles the number of test objects printed for this 
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study, alongside the total number of individual scans executed to gather the necessary data for our analysis. The 

classification of the captured data, based on these criteria, is shown in Figure 34. 

Table 9: The total number of benchmark objects that were 3D printed and the number of individual 3D scans that were conducted for data 
collection and processing to assess the security levels and authentication of 3D printed parts. 

The benchmark objects that were 3D printed 

Material Resolution Total 
benchmark 
objects 

Number of orientations of each benchmark 
object 

Total number of 
benchmark objects that 
were 3D printed 

MJF 500 
microns 

3 4 12 

SLS 750 
microns 

3 4 12 

DLP 100 
microns 

3 3 9 

Total 33 

Individual 3D scans that were conducted for data collection and processing 

Material Total benchmark 
objects 

Total quadrants (test artefacts) to scan per 
benchmark object 

Total number of 3D scans 

MJF 12 8 96 

SLS 12 8 96 

DLP 9 8 81 

Total 273 

 

Analysis of the results revealed that the surface roughness varied among the printing techniques tested. The average 

roughness (Ra) and the maximum peak-to-valley height (Rz) were both significantly different for the horizontal face-

down and face-up MJF parts. However, these amplitude parameters did not fully characterize the surface. 

Below are some of the results that show the deviation analysis between two orientations of print in MJF (Figure 35). 

The scale bar shows the deviation analysis of the figure. And Table 10 shows the deviation values of the orientations, 

where: 

• Dneg: Max. deviation below the reference surface 

• Dpos: Max. deviation above the reference surface 

• Dmean: Mean deviation  
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Figure 35: The error maps that show the difference between two 3D scanned surfaces of Marker ID 2 (left) and Marker ID 7 (right) that were 
3D printed with two orientations of 0 deg and 45 deg using MJF. 

 

Table 10: The deviation values in millimeters of two orientations of 3D prints using MJF, which were measured by comparing the scanned 
surfaces of two different 3D print orientations. The maximum deviation below and above the reference surface, as well as the mean deviation 

were calculated. Dneg stands for Max. deviation below the reference surface. Dpos stands for Max. deviation above the reference surface. 
Dmean stands for Mean deviation. 

Marker ID Dneg Dpos Dmean 

2 1.812 1.093 0.035 

7 1.273 1.258 0.045 

By considering these deviation values and the methodology used to measure them within the context of this study, 

a better understanding of the surface roughness and its relationship with the printing techniques and orientations 

can be achieved. This knowledge can further inform the development and evaluation of authentication techniques 

for 3D-printed parts, as explored in this thesis. 

Figure 36 provides a graph that shows the Ra value of the full characteristic of the surfaces of the QR codes; sampling 

each of the printing methods. 
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Figure 36: The surface roughness of the surfaces of the QR codes of the 3D printed benchmark objects using different AM processes.  DLP 
stands for Digital Light Processing.  SLS stands for Selective laser sintering. MJF stands for Multi Jet Fusion. 

Each feature around the QR code produces a unique roughness signature. The average roughness, Ra, and the 

maximum peak-to-valley height, Rz, are both significantly different for the horizontal face-down and face-up MJF 

parts. However, these amplitude parameters do not fully characterise the surface. In order to enhance understanding 

of surface texture, an additional approach involves the analysis of root mean square roughness, Rq, which constitutes 

a significant parameter in the characterization of surface roughness. The parameter denoted as Rq in surface 

metrology refers to the mathematical operation of taking the square root of the mean value of the squared surface 

profile heights measured over a specified evaluation length. The utilisation of this method yields a heightened level 

of precision in assessing the comprehensive roughness, as it factors in both upward and downward deviations from 

the mean line. This can prove to be particularly advantageous in discerning disparities among the various printing 

methodologies and orientations. 

The roughness profiles for MJF Marker ID 2 in horizontal face-down and horizontal face-up orientations are depicted 

in Figure 37 and Figure 38, respectively. The aforementioned images serve to illustrate the discrepancies in surface 

texture observed between the aforementioned pair of orientations. 



74 
 

 

Figure 37: Roughness profile for MJF Marker ID 2 horizontal face down 

 

Figure 38: Roughness profile for MJF Marker ID 2 horizontal face up 

By examining the roughness profiles in Figure 37 and Figure 38, it becomes evident that there is a significant 

difference in Rq values between the two orientations. This information can be used to better understand the impact 

of different printing techniques and orientations on the surface roughness of 3D-printed parts, ultimately informing 

the development and evaluation of authentication techniques for these parts. 

Summary 

In summary, the artefacts developed and designed for this research establish a benchmark for future studies to 

evaluate their authentication techniques, addressing a critical gap in the current understanding of 3D printing 

authentication. The comparative analysis of different additive manufacturing (AM) processes reveals that each 

process exhibits unique surface roughness characteristics, which are consistent within the same printing technique 

but distinctly vary across different techniques. This differentiation is crucial for the authentication process, as it 

allows for the unique identification of objects based on their surface texture—a key factor in the proposed 

authentication framework. 
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Digital Light Processing (DLP) excels in producing parts with high detail and excellent surface finish, making it ideal 

for objects requiring detailed watermarking features. Selective Laser Sintering (SLS) offers a balance between detail 

and structural integrity, suitable for objects that need to be durable yet possess moderate resolution. However, Multi 

Jet Fusion (MJF) stands out as the most suitable technique for creating benchmark objects for authentication studies. 

Its superior resolution, expansive print volume, and broad material versatility make it adept at accurately capturing 

the intricate details essential for effective authentication techniques. The captured dataset from these processes, 

particularly emphasizing the surface roughness captured through Ra and Rz values, provides invaluable data for 

feature extraction and augments the authentication process. 

Table 11 does a comparative analysis for a detailed overview of the technical specifications of the AM processes (DLP, 

SLS, and MJF), which identifies MJF's suitability for detailed, durable, and scalable authentication applications in 3D 

printing. It is important to note, however, that while Ra and Rz values offer some insight into the surface roughness, 

a more comprehensive analysis is essential to fully understand the surface properties and their implications for 

authentication. This nuanced approach is critical for developing a robust and exhaustive solution for the 

authentication of 3D-printed objects, as outlined in this research. 

Table 11: Comparative Analysis of AM Processes for Authentication Applications 

Feature/AM 
Process 

DLP (Digital Light 
Processing) 

SLS (Selective Laser 
Sintering) 

MJF (Multi Jet Fusion) 

XY Resolution High (130 microns) Moderate (200 
microns) 

High (Approx. 21 
microns, 1200 dpi) 

Z Resolution 
(Layer 
Thickness) 

Very Thin (25 microns) Thicker (100 microns) Thin (80 microns) 

Materials Standard photopolymer 
resin 

Nylon 12 (PA12) HP 3D High Reusability 
PA 12 

Max Printing 
Volume (X, Y, Z) 

Smaller (128 x 128 x 200 
mm) 

Moderate (165 x 165 x 
320 mm) 

Larger (380 x 284 x 380 
mm) 

Detail and 
Surface Finish 

Excellent for intricate 
details and smooth 
surfaces. Ideal for 
creating detailed 
watermarking features 
necessary for 
authentication. 

Good for complex 
geometries and 
stronger parts. Might 
not capture fine details 
as DLP but offers a 
balance between detail 
and structural 
integrity. 

Excellent for fine details 
and smoother surfaces. 
Suited for authentication 
objects requiring high 
detail and quality. 

Suitability for 
Authentication 
Objects 

Highly suitable for small, 
detailed objects. The 
smaller printing volume 
may limit application for 
larger objects. 

Suitable for objects 
requiring a balance of 
detail and structural 
integrity. 

Optimal for creating 
benchmark objects for 
authentication studies 
due to high resolution, 
material versatility, and 
larger print volume. 

 



76 
 

7.2. Capture Method Testing 

The aim of the experiment is to capture 3D surface texture and surface geometry information of printed objects at 

various scales (macro and micro) using different capture methods identified in Section 3.2 

In order to effectively test the existing surface characterisation algorithms at micro and macroscales, this experiment 

requires data from various sources. As discussed above in Section 3.1 and Section 3.2, there are various 3D printing 

methods and capture methods for authentication currently being used in the industry currently. 

For this testing, the 3D model used in this experiment is of an extruder bracket that has been printed by the HP Multi 

Jet Fusion (MJF) 3D printer in PA12 material. The experiments focus on capturing the surface topography of the 

authentication glyph (Figure 39) and evaluating the performance of different 3D scanners in capturing this 

information. By doing so, the best possible 3D scanner for authentication purposes can be identified.  

 

Figure 39: The authentication glyph printed on the extruder 

7.2.1. Multi-focus 3D microscopy  

The first surface dataset was captured at a microscale using Alicona InfiniteFocusSL (Figure 40). It uses a multi-focus 

3D microscopy technique. For this data capture, a 5x zoom lens was utilised, achieving a vertical resolution of 460nm, 

significantly surpassing the layer height of the 3D-printed objects involved in this research. This makes this data 

capture method ideal to obtain ground truth data for future experiments. 

In this technique, the depth of the surface is measured by finding the depth of field of the optics corresponding to 

the sharpness of the image captured. The optics are moved vertically along the optical axis varying the optical focus, 
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scanning the sharpness of the image captured under its small depth of field (Figure 41). A proprietary algorithm is 

then able to convert the captured data into 3D information with full depth of field and is stored as a STL file. It can 

provide a very high vertical resolution depending on the mounted lens. Figure 42 illustrates the output obtained. This 

method is not implemented in the AM industry for authentication due to its speed of capture1 (30 seconds or higher, 

depending on resolution) and price, but it provides highly accurate surface data.  

 

Figure 40: InfinitefocusSL (Alicona, 2023), the multi-
focus 3D microscopy, which was used for 3D scanning 
of authentication artefacts of the 3D printed objects 

(Alicona, 2023). 

 

Figure 41: The schematic diagram of the multi-focus 
3D microscopy (Zamofing and Hugli, 2004) 

  

 

Figure 42: An example of the 3D reconstructed surface in the form of the STL format which was produced from the 3D scanned data by the 3D 
measurement system: InfiniteFocusSL  

Observation 

As seen in Figure 43, there are some missing patches in the surface data captured. These could be due to specular 

dust particles on the apparatus or on the object.  
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Figure 43: Holes in data captured (marked in red) 

Some of the missing surface data is due to the angle of capture. The camera could not focus on the edge. As per the 

specification sheet for the system, the camera is unable to detect edges steeper than 87° from the horizontal surface.  

7.2.2.  Photometric Stereo at microscale 

First implemented by Woodham in 1980, photometric stereo estimates the surface normals of a surface based on 

images captured from a fixed source with varying angles of light (Figure 44). Each pixel of the images captured 

corresponds to the same point on the object. The shading created by the varying light angles on the object is used to 

acquire the geometry. 

To test photometric stereo at the microscale, the Alicona InfiniteFocusSL is used as a compound microscope. On a 

compound microscope, the image is formed between the objective and ocular lens (Figure 45). This image is then 

captured by the camera mounted behind the ocular lens at a fixed focus.  

  

Figure 44: Principle of Photometric Stereo (Pernkopf and O’Leary, 2003) 
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Figure 45: Image formation for a compound microscope (Cole, 2008) 
 

Since the Alicona InfiniteFocusSL has a very shallow field of focus, the Alicona capture software can capture multiple 

images along the z-axis and merge them into a single 2D sharp image. The object is illuminated using an array of 16 

lights mounted around the lens placed inside a diffuser. Each light was individually controlled to capture 16 different 

images with very low exposure (Figure 46). The combination of those images provided the output obtained in Figure 

47. 

In this setup, we are capturing 16 images for 16 different light positions. This method is based on the approach 

proposed by Li et al. (2016) but at a much smaller field of view. 
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Figure 46: 16 images obtained using each rotating light source 

  

 

(A)                                                                                       (B) 

Figure 47: Photometric Stereo output (A) compared to Output from Alicona camera (B) 

Observation 

The light was rotated around the object to capture the images as seen in Figure 46. As compared to the ground truth 

in Figure 47, the image does not seem to have captured the topography at a high resolution. The camera was 



81 
 

orthogonal to the object. The resultant image does not seem to capture the topography of the test object at a similar 

resolution as compared to the multi-focus capture method and has a lot of noise. This could be due to the incident 

lights being diffused causing infinite points of source illumination. Due to this, it is difficult to determine a precise 

illumination direction. The noise could also occur if the specular components in certain images were not able to 

overlap with all the images due to a lack of structure at that capture scale.  

7.2.3. Structured Lighting (SL)  

In a structured light 3D scanner, a projector is used to project a known narrow fringe pattern onto a 3D object. The 

illumination appears distorted from a slightly offset angle as compared to the projector. The camera mounted at that 

slightly offset angle from the projector, captures the distortion of the pattern on the surface of the object to calculate 

the depth and surface information of the object (Figure 48). To capture the overall geometry of the object, HP 

Structured Light Scanner Pro S3 (Figure 49) was used with a 2-camera setup. This allows the system to capture surface 

data as a stereo vision setup without the need to calibrate the projector position. The camera positions are calibrated 

using a 90-degree V-plate calibration target (Figure 50). The HP system can get a resolution of up to 0.05mm. The 

object is placed on a turn table and the scan is repeated 16 times at 22.5ᵒ rotations to capture all sides of the object. 

This system can produce up to 32 different patterns and can also capture the colour information of the object. 

 

Figure 48: Working of Structured Light setup(Rubinsztein-Dunlop et al., 2017) 
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Figure 49: HP Structured Light Scanner Pro S3 (HP, 2023), a structured light scanner that was used for 3D capturing of the 3D printed objects. 

 

 

Figure 50: Calibration Target 
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Observation 

Figure 51 shows data captured using the HP Structured Light Scanner Pro S3 system. We can observe that the system 

is unable to capture the 3D surface of the object in its entirety. Parts of the 3D surface are missing, which could be 

accounted for by the presence of shadows cast by the projector or the inclination of the surface. The system was 

used with its proprietary software called HP 3D Scan 5. It has an automatic function to align multiple scan surfaces 

to form one 3D object but was not very successful due to a lot of background noise. This background noise is caused 

by other surfaces captured in the background of the 3D object. This can be mitigated by manually cropping the 

background from the capture(Zhang, 2018). 

 

Figure 51: The scanned point cloud data from different scanning angles using HP Structured Light Scanner Pro S30 

Summary 

From the above experiments, it is observed that the Alicona InfiniteFocusSL provides the highest resolution of 3D 

data capture among the methods tested. With a minimum vertical resolution of 100nm at 10x magnification, it 

surpasses the resolution offered by other capture methods. Despite the capture area being limited to 2x2mm, the 

captured data can be stitched together to form a larger dataset. This capability makes the Alicona InfiniteFocusSL 

particularly valuable for applications requiring high-detail imaging over a relatively small area. Although this Multi-

focus 3D microscope has been validated for accuracy by the manufacturer, additional testing is necessary to verify 

the manufacturer's claims thoroughly. 

Adding to the context of 3D scanning technologies, the HP 3D Structured Light Scanner Pro S3 presents a different 

approach to data capture. It offers a resolution of up to 0.05% of the scan size, equating to a maximum of 0.05 mm 
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or 50 microns. This structured-light 3D scanner is notable for its ability to measure with an accuracy of up to ±0.05 

mm, showcasing its proficiency in capturing detailed 3D models of larger objects where such precision is sufficient. 

Moreover, with the Alicona InfiniteFocusSL camera using a 5x zoom lens, a vertical resolution of 460nm is achievable. 

This specification indicates that while the InfiniteFocusSL model provides superior resolution at higher 

magnifications, the InfiniteFocusSL offers a competitive resolution at a lower magnification, broadening the scope of 

applications for which Alicona's technology can be employed (Figure 52). 

 

Figure 52: Alicona InfiniteFocusSL lens specification with the selected lens highlighted (Alicona, 2023). 

The comparative capabilities of the various scanning methods can be summarized in the following table: 

Table 12: Comparative Scanning Capabilities 

Method Accuracy Resolution Speed 
(Points/second) 

Suitable 
Scan Size 

Colour 
Texture 
Capability 

Triangulation Moderate High High Small to 
Medium 

Yes 

Structured Lights 
(HP S3) 

High (up to 
±0.05 mm) 

High (up to 
0.05mm) 

Moderate Medium to 
Large 

Yes 

Time of Flight Low (1mm 
to 1cm) 

Moderate Very High Large No 

Multi-focus 3D 
Microscopy 
(Alicona) 

Very High 
(up to 
460nm) 

Very High Low Microscale No 

Photometric 
Stereo 

Low to 
Moderate 

Moderate Moderate Microscale No 
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This table illustrates the distinctive strengths and limitations of each scanning technology in terms of accuracy, 

resolution, and scanning speed, highlighting the Multi-focus 3D Microscopy (Alicona) as particularly suited for 

capturing detailed images on the microscale. The choice of scanning method will depend on the specific requirements 

of the application, including the level of detail required and the scale of the object to be scanned. 

7.3. Capture Method Validation 

As the capture method to obtain the ground truth data has been identified, the device needs to be validated. This 

will also validate the accuracy and precision of the ground truth data that will be captured for this research. This is 

achieved by conducting two experiments to ascertain the repeatability of the device. First is by measuring deviation 

between multiple captures from the same position; Second is by measuring deviations between multiple captures at 

various angles. 

The object that was scanned was a cube of 40x40x40mm dimensions 3D-printed in PLA using Alicona InfiniteFocusSL. 

Only the surface marked in green was captured repeatedly. The object was placed at the centre of a turntable. The 

capture size was 2.043 x 2.043 mm (2040x2040 pixels) with a vertical resolution of 1.02µm at 10x zoom.  

 

In the first experiment, the same area was captured three times without any changes to the setup. The multiple 

captures of data were plotted in 3D using MATLAB and overlayed on top of each other (Figure 54). The distance 

between each of the closest points was measured to calculate the root mean square (RMS) deviation in capture. 

Figure 53: Test object with the scanned surface 
indicated in green 



86 
 

 

Figure 54: Captured surfaces overlayed on top of each other 

In the second experiment, the same object, with the same surface capture was rotated clockwise about the z-axis, 

and the surface data was captured at 30-degree intervals. The captured data was then aligned using the iterative 

closest point (ICP) algorithm. ICP is used to minimise the difference between 3D datasets. This is done by keeping 

one dataset as the reference while transforming the other dataset to best match the reference. The mean deviation 

between the overlapping surface was measured to observe an error in capture. 

 

Figure 55: Captured surfaces aligned and overlayed 
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Observation 

In the first experiment, a 0.04µm RMS between the 3 surfaces was observed. And the results for the second 

experiment are in Table 13. These values are within the manufacturing specification for the capture devices as well 

as the ISO standards for a metrological device. 

This successfully validates the capture device's precision and repeatability. As for accuracy, although it is not directly 

addressed in these tests, the high repeatability of the data implies that the capture device can produce reliable 

measurements for this research. 

Table 13: Mean deviation between two angles 

 
 

7.4. Data Augmentation 

The amount of data required to perform feature extraction using deep learning may not be possible to obtain just by 

using the captured data. There needs to be a reliable method to augment data based on real data that is captured. 

Standard image augmentation techniques would not be sufficient as they may create bias in the dataset. To 

successfully model a 3D-printed surface, we would just need to model the surface texture of a particular printing 

technique (Figure 56). 
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Figure 56: Surface augmentation 

In order to generate the texture model, a Gaussian mixture modelling (GMM) is used to fit the surface topology of a 

real-world capture(Keselman and Hebert, 2019). A Gaussian mixture model is a probabilistic model in which all data 

points are assumed to be generated by a mixture of a finite number of Gaussian distributions with unknown 

parameters that form a cluster. In this case, the data points are the Z-axis distribution of the point cloud data and 

the number of GMM clusters is dynamically selected to best fit the surface topology based on the log-likelihood score 

for each cluster. 

Mathematically, a Gaussian Mixture Model can be expressed as follows: 

𝑃(𝑥) = '𝜋!𝑁(𝑥|𝜇! , Σ!)
"

!#$

 

Where P(x) is the probability of a data point x, K is the number of Gaussian components, πk is the mixing coefficient 

of the kth Gaussian component, and N(x | μk, Σk) is the probability density function of the kth Gaussian distribution 

with mean μk and covariance matrix Σk. The Expectation-Maximization (EM) algorithm is typically used to estimate 

the parameters of the GMM, optimising the log-likelihood of the data. 

 

Figure 57: Z-axis distribution (a)with GMM clusters overlayed (left) (b) with GMM distribution (right) 
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Number of 

points 

Rather than using a generalised random noise to generate the surfaces, this GMM distribution is used to generate a 

one-dimensional Perlin noise model. Perlin noise is particularly appropriate for this application due to its several 

desirable properties: it produces smooth, continuous gradients, leading to realistic surface textures that appear 

natural and consistent; it exhibits self-similarity across different scales, ensuring that the noise patterns look similar 

when zoomed in or out, which is essential for modelling the surface texture of 3D-printed objects; it is 

computationally efficient, enabling quick generation for large-scale data augmentation processes; and it is easily 

customizable by adjusting parameters such as amplitude, frequency, and number of octaves to match the specific 

characteristics of the 3D-printed surface textures. These properties make Perlin noise an ideal choice for generating 

realistic surface texture models in the context of 3D-printed object authentication.  

This noise model is then applied to normalised real-world surface data to generate the new augmented data. This 

will model the randomness of the surface texture. The noise function can be described as: 

𝑓(𝑥) = '𝐴%

&

%#'

⋅ 𝑔(𝐵% ⋅ 𝑥) 

Where f(x) is the Perlin noise function, N is the number of octaves, 𝐴% is the amplitude for the nth octave, g(x) is a 

gradient noise function, and Bn is the frequency for the nth octave. 

 

 

Figure 58: Perlin noise based on GMM 

Summary 

Fr
eq

ue
nc

y 



90 
 

In this section, the reliable method to augment data based on the real data that is captured was summarised and 

discussed. The one-dimensional Perlin noise model, when applied to the normalised surface data, produces the 

simulated data successfully. Figure 59 demonstrates the resultant data and a comparison of the Z-axis distribution 

between the real-world data and the captured data. Figure 59 shows the resultant data and a comparison of the Z-

axis distribution between real-world data and captured data. Augmented data is able to mimic the surface texture 

of real-world data. This will help in forming a substantial dataset for the feature extraction techniques to be trained 

and evaluated. 

 

 

Figure 59: (left) Generated data (right) Z-axis distribution of real-world data (orange) compared to generated data (green) 

7.5. Feature Extraction 

The feature extraction techniques aim to successfully extract information at different levels of authentication as 

established in Section 6.1. These features are extracted using a combination of 2D and 3D analysis as described in 

Section 6.3. 

7.5.1. 3D-2D conversion – Ray tracing 

Section 6.3 highlights the rationale behind extracting features using different techniques. As the data captured is a 

3D point cloud, it needs to be converted into 2D data for some levels of authentication. One method for performing 

this conversion is ray tracing, which can be used to generate a height map of the given point cloud data. 

Ray tracing is a computer graphics technique that simulates the path of light rays through a 3D scene, enabling the 

creation of photorealistic images by accounting for shadows, reflections, and refractions. In the context of 3D-2D 
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conversion, ray tracing can be employed to generate a height map that represents the surface of the object, 

preserving the z-axis information of the original point cloud. This is achieved by directly mapping the projections of 

the point cloud on the ray-traced surface, as illustrated in Figure 60: Ray tracing. 

 

Figure 60: Ray tracing 

Some of the results of this technique are in Figure 61.  

 

Figure 61: Ray-traced image of DLP test object 
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Using ray tracing for 3D-2D conversion offers several benefits. Firstly, it enables the whole surface to be resampled 

to the desired image size without losing any z-axis information. This is particularly important for maintaining the 

fidelity of surface features when converting from 3D to 2D representations. Secondly, ray tracing provides a means 

to incorporate realistic lighting and shading into the 2D image, which can further enhance the visibility of surface 

features and improve the overall quality of the resulting 2D representation. 

However, it is important to note that ray tracing can be computationally expensive, particularly for high-resolution 

images and complex 3D scenes. As a result, efficient implementations of ray tracing algorithms, such as parallel 

processing and adaptive sampling, may be necessary to ensure reasonable processing times when converting 3D 

point clouds to 2D images for feature extraction and authentication purposes. 

In terms of authentication, the ray-traced 2D images can provide different levels of information based on the 

resolution and quality of the generated height map: 

Level 1 Authentication: At this level, the ray-traced 2D image can be used for basic pattern recognition and texture 

analysis, similar to the QR code verification example. It can also be utilised for simple feature extraction and 

comparison, allowing for a basic level of authentication and object identification. 

Level 2 Authentication: At the second level, the ray-traced 2D image can provide more detailed information about 

the surface texture and complex patterns. The improved visibility of surface features, enabled by realistic lighting 

and shading, can enhance the authentication process by allowing for more sophisticated feature extraction and 

comparison techniques. This level of authentication can potentially identify specific printing techniques and materials 

used in the object's manufacturing process. 

Level 3 Authentication: At the highest level of authentication, the ray-traced 2D image can reveal intricate details 

about the object's surface, including microscopic structures and unique surface profiles. By leveraging advanced 

feature extraction methods and statistical analysis techniques, this level of authentication can provide a higher 

degree of confidence in the identification and verification of 3D-printed objects. 

In summary, ray tracing for 3D-2D conversion plays a crucial role in the authentication process by enabling the 

extraction of features from different levels of detail. This flexibility allows for a more comprehensive and robust 

authentication framework that can accommodate various applications and security requirements. Ray tracing can 
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produce 2D images that more accurately reproduce the surface characteristics of the 3D object due to the improved 

visibility of surface features made possible by realistic lighting and shading. Effective authentication requires an 

accurate representation of surface features like surface roughness, gradients, and subtle height variations. These 

features in the 2D image are highlighted by realistic lighting and shading, which helps to make them more noticeable 

and facilitates more precise feature extraction and comparison during the authentication process. 

7.5.2. Level 1 Authentication: Basic Surface Patterns and Texture Analysis 

2D Level 1 - 2D authentication based on detection of 2D ArUco QR code or embedded ArUco marker via the 

authentication information stored within the 3D QR code and embedded ArUco marker 

At level 1, only the 3D QR code is scanned and verified for authentication. The information stored within the QR code 

can also be used to provide essential authentication information. In this case, as described in Section 7.1, ArUco 

numbers are encoded. 

To implement the ArUco detection, a simple convolutional neural network (CNN) based AI is utilised in conjunction 

with the ArUco 4x4 dictionary. The CNN is designed to recognize and decode the ArUco markers embedded in the 

QR code. The architecture of the CNN consists of multiple convolutional layers, pooling layers, and fully connected 

layers, which are trained to detect the presence of the ArUco markers and classify them according to the 4x4 

dictionary. To implement the ArUco detection, a simple convolutional neural network (CNN) based AI is utilised in 

conjunction with the ArUco 4x4 dictionary. The CNN is designed to recognise and decode the ArUco markers 

embedded in the QR code. The architecture of the CNN consists of multiple convolutional layers, pooling layers, and 

fully connected layers, which are trained to detect the presence of the ArUco markers and classify them according 

to the 4x4 dictionary. 

CNN was implemented because standard ArUco detection algorithms were unable to decode the glyphs effectively. 

Template matching and other traditional algorithms were found to be less effective in our experiments, due to the 

blurred edges on the printed surfaces and the high level of noise in the captured data. This challenge is compounded 

by the intricate textures and complex patterns found in 3D-printed objects, which standard algorithms struggled to 

accurately interpret. As a result, a CNN was chosen due to its proven robustness and adaptability across a wide range 

of conditions, including lighting and occlusion variations, resulting in more reliable detection and decoding of the 

embedded ArUco markers. 
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The detection process begins by pre-processing the captured image to enhance the visibility of the ArUco markers. 

This may involve applying filters, such as Gaussian blur or contrast stretching, to improve the image quality. The pre-

processed image is then fed into the CNN, which detects the presence of the ArUco markers and decodes their 

encoded information. 

Upon successful detection of the Level 1 authentication markers, the CNN also provides additional information, such 

as the translation and angle of the scanned QR code. This information is crucial for Level 2 and 3 authentications, as 

it enables the system to accurately align and analyse the 3D surface data in subsequent stages. 

The ArUco detection framework can be implemented using popular computer vision libraries, such as OpenCV or 

TensorFlow, which provide built-in functions for training and deploying CNN-based object detection models. By 

leveraging these libraries, the Level 1 authentication system can be efficiently designed, tested, and optimized to 

achieve robust and accurate ArUco marker detection. 

 

 

  

Figure 63: The detected ArUco marker on the 3D printed object (left) and 
the ArUco marker from the ArUco dictionary with the corresponding 
pattern - marker (right) 

Figure 62: The detection of 2D ArUco QR code or embedded ArUco marker using the 
custom trained convolutional neural network (CNN) model. 
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3D Level 1 - 3D authentication based on detection of the ArUco QR code via advanced geometrical features such as 

curvature and normal estimation stored within the ArUco QR code 

At Level 1 authentication, the goal is to extract simple geometric features such as shape and size from the 3D object. 

As discussed in Section 6, in the case of ArUco QR codes, the additional complexity of extracting more advanced 

features does not provide extra useful information for authentication. This is because the ArUco QR codes 

themselves store the necessary authentication information in their encoded patterns. Extracting more advanced 

features (e.g., curvature, normal estimation) from the ArUco QR code may not add significant value to the 

authentication process, as the authentication information is already encoded in the QR code itself. 

Therefore, for Level 1 authentication, focusing on simple geometric features is sufficient for ArUco QR codes. More 

advanced feature extraction methods may not provide additional benefits in this context, as the primary 

authentication information is contained in the encoded patterns of the QR codes. 

Statistical Level 1 - Authentication based on detection of the ArUco QR code via the statistical information about shape, 

size, and orientation of the ArUco QR code 

Using Python’s OpenCV library to extract statistical information about an ArUco QR code's shape, size, and 

orientation can enhance Level 1 security. Using the 2D ArUco detection code used above, the input image containing 

the glyph is analysed. Next, the ArUco QR code detected in the image is used to compute its geometric features, such 

as size, orientation, and centroid.  

 

Figure 64: An example about the statistical information about the shape, size, and orientation of the ArUco QR code. 

The size of the QR code can provide an estimate of its scale, while the orientation helps determine its rotation relative 

to the image plane. The centroid gives an indication of the QR code's position within the image. 
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The visual output highlights the detected ArUco QR code, its corners, and centroid. This visualization aids in 

understanding the code's orientation and position in the image, which can be useful for aligning and analysing the 

3D surface data in subsequent authentication stages. Multiple runs of the code were performed on the same object 

with added noise to simulate realistic data capture conditions. The results demonstrated an accuracy of 87% in 

obtaining values within a 1% error margin. Furthermore, each scan during the data capture process produced unique 

results, showcasing the robustness of the method in extracting features from 3D objects under varying conditions. 

This highlights the potential of the proposed approach for use in practical authentication and identification 

applications. 

Summary 

In the Level 1 authentication stage, the research focused on extracting basic features from the ArUco QR code to 

provide essential information for object identification and verification. The experiment involved utilising Python and 

OpenCV to analyse the QR code's shape, size, and orientation. The detection and decoding of the ArUco QR code 

were facilitated by a Convolutional Neural Network (CNN) that effectively recognised and classified the markers 

embedded in the code. The computed geometric features enabled a better understanding of the QR code's scale, 

rotation, and position within the image. 

The visual output generated in the experiment highlighted the detected ArUco QR code, its corners, and its centroid. 

This visualization provided valuable insights into the code's orientation and position in the image, which could be 

useful for aligning and analysing the 3D surface data in subsequent authentication stages. The successful extraction 

of basic features at Level 1 authentication laid the groundwork for more advanced feature extraction and comparison 

techniques at higher authentication levels. 

Each scan during data capture produced different results, demonstrating the system's sensitivity to variations in the 

scanning environment and the object's placement. This variability underscores the robustness of the approach, as 

the system was still able to achieve an accuracy of 87% in identifying and decoding the ArUco QR codes, even with 

added noise simulating realistic conditions. This accuracy level within a 1% error margin indicates the method's 

reliability in extracting and processing features from 3D objects under varying conditions, showcasing its potential 

for practical authentication and identification applications. 
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Overall, the Level 1 authentication experiment demonstrated the feasibility of extracting essential geometric and 

statistical features from an ArUco QR code for basic authentication purposes. This approach contributes to the 

development of a comprehensive and robust authentication framework that can accommodate various applications 

and security requirements in the field of 3D printing and object identification. 

7.5.3. Level 2 Authentication: Detailed Surface Texture and Complex Patterns 

2D Level 2 - 2D authentication based on detailed surface texture and complex patterns, via analysis of the advanced 

texture patterns within the 2D representation of the object 

At Level 2, advanced texture pattern classification methods, such as Local Binary Patterns (LBP) and Gabor filters, can 

be applied to the 2D representation of the object. These methods allow for more elaborate geometrical feature 

analysis and can provide insights into complex patterns and structures present on the surface. 

The experiment involved applying the LBP method to analyse the local texture patterns within the 2D representation 

of the object. This approach compared the intensity of each pixel to its neighbouring pixels, producing binary patterns 

that served as texture descriptors. 

The LBP features visualization highlighted the local structures and patterns within the 2D image, revealing intricate 

details that were not apparent in the original image. This enhanced texture representation allowed for more accurate 

classification and comparison of surface properties, contributing to a more reliable authentication process. 

 

Figure 65: LBP uniform image 
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Another approach employed in the experiment was the use of Gabor filters to analyse the frequency and orientation 

information present in the 2D image. Gabor filters are a set of linear filters that can capture localised frequency 

information in different orientations. 

The Gabor filters provided different views of the 2D image at various orientations, enabling a more comprehensive 

analysis of the texture and frequency information. By applying the Gabor filters, the resulting images are used for 

further analysis and comparison, allowing for the identification of similarities and differences in the texture and 

frequency information between captured data and ground truth. This multi-orientation approach contributed to a 

more robust authentication process by capturing a broader range of surface properties. 

              

Figure 66: Gabor filter at various angles applied to captured data (left). Gabor filter at various angles applied to ground truth data (middle) 
Difference between filtered images (right) 

The results of the Level 2 authentication experiments demonstrated the effectiveness of LBP and Gabor filters in 

extracting detailed texture and frequency information from the 2D representation of the object. The visual outputs 

generated by these methods revealed complex patterns and structures that were not evident in the original image, 

offering valuable insights for object authentication. 

The successful application of these advanced texture pattern classification methods at Level 2 authentication 

reinforced the robustness of the proposed authentication framework. By incorporating both LBP and Gabor filters, 

the authentication process was able to capture a wider range of surface properties, leading to more accurate and 

reliable identification and verification of 3D-printed objects. 
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3D Level 2 - 3D Authentication based on 3D point cloud datasets and the deep learning architecture for point cloud 

classification and detection of geometrical features and patterns 

For 3D data, point cloud classification techniques, such as PointNet and Normal Estimation, can be employed to 

analyse more detailed surface features. Advanced mesh parameter analysis can include crease points, border points, 

and curvature analysis, providing a deeper understanding of the object's 3D structure. 

In the Level 2 authentication stage, the research investigated point cloud classification techniques, specifically 

PointNet and Normal Estimation, as well as advanced mesh parameter analysis methods, such as crease points, 

border points, and curvature analysis. These methods were applied to 3D data to extract and analyse more detailed 

surface features, providing a deeper understanding of the object's 3D structure and enhancing the authentication 

process. 

PointNet 

The experiment utilised PointNet, a deep learning architecture for point cloud classification, to analyse and classify 

the 3D point cloud data. PointNet has the ability to learn complex patterns and features within the point cloud data, 

providing valuable insights into the 3D structure. 

The PointNet classification results provided valuable information on the 3D point cloud data, revealing complex 

patterns and features that contributed to a more accurate and reliable authentication process. 

To provide a complete understanding of the PointNet classification process, it is essential to describe the training 

process of the PointNet model. In this experiment, we utilised the Keras deep learning library for training the 

PointNet model. 

PointNet Training 

Before applying the PointNet model to the classification task, it was necessary to train the model using a labelled 

dataset of 3D point clouds. In this experiment, we used the dataset created for Level 2 classification, which is the 

dataset comprising Elaborate geometrical features. The dataset contains 8 categories, with each scan represented 

by a point cloud. 

During the training process, the PointNet model learns to recognise and classify the 8 elaborate geometrical features 

present on the captured dataset. The model's performance is monitored using the validation data, and the training 
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is stopped when the validation loss stops improving for 10 consecutive epochs. The best-performing model, as 

determined by the validation accuracy, is saved as a checkpoint. 

Once the PointNet model is trained, it can be applied to the classification task as described in the previous section 

6.3. The trained model is capable of recognising patterns and features within the 3D point cloud data with an accuracy 

of 91% (Figure 68: Training output), providing valuable insights into the 3D structure for Level 2 authentication. 

 

  

Figure 67: Sample results 

 



101 
 

 

Figure 68: Training output for PointNet on classification of elaborate geometrical features 

The classification results showed that the PointNet model was able to distinguish between various classes of objects, 

such as different types of geometric shapes or categories of manufacturing defects. Moreover, the model 

demonstrated a high level of precision in detecting minute differences in surface textures, capturing even subtle 

variations in the object's surface that may result from different manufacturing processes or materials. These insights 

into the 3D structure contribute to a more accurate and reliable authentication process. 

In addition to the overall accuracy of 91%, the model's performance was further evaluated by examining the 

confusion matrix, which provided a detailed view of the classification results. The confusion matrix revealed that the 

model was able to correctly classify most objects, with only a few misclassifications occurring between objects with 

similar surface properties or structures. This analysis helped identify areas where the model could be further 

improved, such as fine-tuning the architecture or adjusting the training parameters. 
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Furthermore, the PointNet model's robustness was assessed by testing its performance on unseen data or objects 

with varying levels of noise. The model demonstrated its ability to maintain a high level of accuracy even under 

challenging conditions, highlighting its potential for use in real-world applications where data may be noisy or 

incomplete. 

 

Figure 69: Confusion Matrix for Level 2 texture detection 

In summary, the PointNet model's successful application in the classification task demonstrated its effectiveness in 

recognising patterns and features within the 3D point cloud data. The detailed results, such as the confusion matrix 

and robustness analysis, provided valuable insights into the model's performance, contributing to the development 

of a reliable Level 2 authentication process for 3D-printed objects. 

Normal Estimation 

Another approach employed in the experiment was normal estimation, a technique for estimating the normal vectors 

at each point within the point cloud. This information is crucial for advanced mesh parameter analysis and can 

provide insights into the surface properties and curvature of the 3D object. 

The normal estimation results provided a detailed representation of the object's surface properties and curvature, 

contributing to a more in-depth analysis of the 3D structure. 

The results of the Level 2 authentication experiments using PointNet, and normal estimation demonstrated their 

effectiveness in extracting and analysing complex patterns and features from the 3D point cloud data. The visual 
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outputs generated by these methods revealed intricate details of the object's 3D structure, providing valuable 

insights for object authentication. 

The successful application of these point cloud classification techniques and advanced mesh parameter analysis 

methods at Level 2 authentication reinforced the robustness of the proposed authentication framework. By 

incorporating both PointNet and normal estimation, the authentication process was able to capture a wider range 

of 3D surface properties, leading to more accurate and reliable identification and verification of 3D-printed objects. 

Statistical Level 2 - Authentication based on the statistical distribution of geometrical features on the 3D surface, and 

to identification of similarities and differences between the surface textures 

At Level 2, the researchers employed Gaussian Mixture Models (GMM) to model the distribution of features on the 

object's surface. GMM is a probabilistic model that represents the distribution of data as a combination of multiple 

Gaussian distributions. By comparing the GMMs of different objects, the researchers were able to identify similarities 

and differences between their surface textures, providing more robust authentication results. Based on previously 

presented Gaussian Mixture Modelling (GMM) techniques for augmented surface generation in Section 7.4, a 

statistical model of the elaborate geometrical feature can be obtained. The GMMs obtained are all unique with slight 

variations between similar patterns. This is convincing evidence to support my hypothesis of all 3D-printed parts are 

unique.  

The researchers analysed the GMMs of the surface features and found that they are unique with slight variations 

between similar patterns. Figures 68 and 69 show the GMM results and the GGM score of the entire dataset. 
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Figure 70: (a):  Z-axis distribution of the elaborate geometrical feature (y-axis: frequency; x-axis: z-axis distribution of elaborate 
geometrical feature). (b):  GMM (y-axis: frequency; x-axis: z-axis distribution of elaborate geometrical feature). (c) 2D 

raytracing of captured data. 

 

 

Figure 71: The GGM score of the entire dataset. It illustrates the GGM scores for all the objects in the dataset, with the y-axis representing the 
score and the x-axis representing the object index. The GGM scores provide a quantitative measure of similarity between the surface textures 

of the objects, with lower scores indicating greater similarity and higher scores indicating more significant differences. By observing the 
distribution of scores, researchers can gain insights into the degree of variation between objects and the effectiveness of GMM-based 

authentication. 

By comparing the GMMs of different objects, the researchers can assess the similarities and differences between 

their surface textures, which can be used to improve the authentication process at Level 2. For example, if two 

objects have very similar GMMs, it might indicate that they share a common manufacturing process or material, 

making it more challenging to differentiate between them based on surface features alone. 

On the other hand, if the GMMs of two objects are significantly different, it could suggest that they were produced 

using different techniques or materials, which could provide a basis for distinguishing between them and potentially 

enhancing the authentication process. 

In conclusion, the use of Gaussian Mixture Models at Level 2 enables a more detailed analysis of the object's surface 

features, providing valuable insights into the patterns and structures present on the surface. This additional 

information can improve the robustness of the authentication process, allowing for a more accurate assessment of 

the object's identity and origin. 

 



105 
 

Summary 

During the Level 2 authentication phase, the study investigated sophisticated techniques for classifying texture 

patterns in 2D data, such as Local Binary Patterns (LBP) and Gabor filters, as well as point cloud classification methods 

and advanced mesh parameter analysis techniques for 3D data, such as PointNet and normal estimation. These 

techniques proved to be efficacious in extracting intricate texture, frequency, and surface information from the 

object's representation, thereby exposing intricate patterns and structures that were not discernible in the original 

image or point cloud data. 

The framework also includes a deeper analysis of the printing methods, as discussed in detail in Section 8, which 

allows for an enhanced understanding of the object's manufacturing process. This comprehensive approach to data 

analysis supports a robust authentication process by providing multiple layers of verification. 

The robustness of the proposed authentication framework, as outlined in Section 8, is significantly enhanced by the 

effective utilization of LBP, Gabor filters, PointNet, and normal estimation during Level 2 authentication. The 

integration of these sophisticated methodologies has broadened the scope of authentication to include a wide range 

of surface characteristics, resulting in increased precision and reliability in the identification and verification of three-

dimensional printed entities. 

Moreover, Gaussian Mixture Models (GMM) were employed at Level 2 to model the distribution of surface 

characteristics, providing significant insights into the surface's patterns and structures. The comparison of GMMs 

among different objects aided in identifying both similarities and differences in surface textures, advancing the 

authentication process. 

In addition to the modalities explored, the framework, as elaborated upon in Section 8, leverages machine learning 

classifiers to discern between the surface textures characteristic of different printing methods. 

The experiments on Level 2 authentication have demonstrated the capability of sophisticated feature extraction and 

analysis techniques to reveal intricate details regarding the structure and surface properties of objects. This has 

greatly contributed to the formulation of a comprehensive and reliable authentication framework for the 

identification of 3D-printed objects, as thoroughly discussed in Section 8. The integration of these advanced 
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techniques into the framework solidifies its adaptability and scalability in response to the continuous advancements 

in printing technologies and authentication needs. 

7.5.4. Level 3 Authentication: Microscopic Structures and Unique Surface Profiles 

2D Level 3 - 2D authentication based on Microscopic Structures and Unique Surface Profiles of 3D printed objects such 

as those related to material properties and internal structures 

At Level 3, advanced authentication techniques aim to capture microscopic details and unique surface profiles of the 

3D-printed object. Intrinsic surface features, such as those related to material properties and internal structures, are 

particularly challenging to extract from 2D images due to their complexity and lack of explicit visual cues. Intrinsic 

features are often related to the shape and texture of the surface, which can only be properly captured in 3D space. 

To demonstrate the difficulty of extracting intrinsic surface features using 2D features, a simple experiment can be 

conducted. A set of 2D images with varying resolutions is generated from a 3D object using ray tracing. The images 

are then processed using basic feature extraction techniques, such as LBP and Gabor filters, to extract texture and 

pattern information. 

The results show that, while some surface features can be captured in the 2D images, the intrinsic details of the 

object are largely lost. Subtle variations in surface curvature and texture, which are important for identifying unique 

surface profiles, are not well-represented in the 2D features. This highlights the limitations of relying solely on 2D 

data for advanced authentication applications. 

The visual output of the experiment clearly shows that while some texture and pattern information can be extracted 

from the 2D images, the subtle variations in surface curvature and texture, which are crucial for identifying unique 

surface profiles, are not well-captured. This highlights the limitations of relying solely on 2D data for advanced 

authentication applications, particularly when it comes to capturing intrinsic surface features. 

3D Level 3 - 3D authentication based on Microscopic Structures and Unique Surface Profiles with feature extraction and 

classification, and computed surface normals from point cloud data 

This section will delve into the experiments carried out at Level 3, with a particular emphasis on sophisticated 3D 

methodologies employed for the purpose of feature extraction and classification. The experimental techniques 
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employed in this study comprise Normal Estimation and Octrees. The procedural aspects of executing these 

methodologies will be expounded upon, accompanied by a delineation of the anticipated outcomes. 

To obtain the surface normals from point cloud data, a numerical differentiation technique, such as the Principal 

Component Analysis (PCA), was applied. This technique was carefully implemented, and additional pre-processing 

steps, such as smoothing and outlier removal, were used to preserve the accuracy of the extracted normals. 

Normal estimation is a computational method utilised to determine the normal vectors for individual points within 

a point cloud. These normal vectors are indicative of the surface orientation at each respective point. Normal vectors 

offer insights into the surface's local geometry and can be utilised for feature extraction and object authentication. 

Through the process of approximating the normal vectors of a three-dimensional printed entity, it is anticipated that 

valuable knowledge regarding the specific surface characteristics will be obtained. This knowledge can subsequently 

be utilised to differentiate between authentic and counterfeit objects. 

As shown in Figure 70, Normal Estimation was applied to the entire test object, providing a visualization of the normal 

vectors for each point in the point cloud. 

 

Figure 72: Normal Estimation of the whole test object 

Octrees are a type of hierarchical data structure that is commonly employed for the purpose of efficiently 

representing point cloud data in three dimensions. The process involves partitioning the three-dimensional space 
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into octants, followed by iterative subdivision of these octants until the desired level of intricacy is attained. The 

utilisation of Octrees in feature extraction enables the effective processing and analysis of point cloud data of 3D-

printed objects. It is anticipated that the utilisation of Octree representation will facilitate the identification of distinct 

spatial patterns within the object, thereby serving as a means of authentication. 

As seen in Figure 71, the Octree output displays the hierarchical data structure representing the point cloud data of 

the 3D-printed object. 

Octree with origin: [-1.02659, -1.0375, -2.85924], size: 46.2193, max_depth: 30 

Figure 73: Octree output 

By implementing sophisticated 3D methodologies, distinctive and intricate attributes can be derived from objects 

that have been printed in 3D. The aforementioned characteristics possess the potential to augment the process of 

authentication and furnish an elevated degree of assurance in discerning authentic entities. 

Upon comparing the methodologies, it becomes evident that each approach presents distinct advantages and 

disadvantages. Normal Estimation is a technique that offers valuable insights into the local properties of a surface. 

This information can be utilised to distinguish between objects that exhibit different surface qualities or have been 

produced using distinct printing methods. Octrees provide a proficient approach for the processing and analysis of 

point cloud data, facilitating the detection of distinctive spatial patterns within the object. 

The approach to ascertain the optimal authentication method for 3D-printed objects involves the utilisation of a 

blend of these techniques. Through the utilisation of the unique advantages offered by each individual method, it is 

possible to establish an authentication process that is both more resilient and all-encompassing in nature. The 

integration of Normal Estimation and Octrees has the potential to yield comprehensive insights into the object's local 

geometry and spatial arrangements, thereby enhancing the precision of the authentication procedure. 

Statistical Level 3 - Authentication based on sophisticated statistical methodologies employed for feature extraction 

and classification 

This section will delve into the experiments carried out at Level 3, with a particular emphasis on sophisticated 

statistical methodologies employed for feature extraction and classification. The experimental techniques employed 

in this study comprise Curvature Estimation, Signed Distance Function (SDF), Fast Point Feature Histogram (FPFH), 
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and Wavelet Transform. The present study aims to explicate the procedural aspects of executing the aforementioned 

methodologies, accompanied by a comprehensive elucidation of the anticipated outcomes. 

The local curvature of each point on the surface of the three-dimensional printed object is determined using the 

curvature estimation method. In this study, the average curvature at each point was determined by calculating mean 

curvature, which produced a single scalar value. Curvature values were used to identify distinctive surface 

characteristics that are crucial to the authentication process. The estimation of an object's surface curvature 

provided important insights into the distinctive shape characteristics that separate genuine objects from counterfeit 

ones. As shown in Figure 72, the output of Curvature Estimation displays the calculated mean curvature values for 

the points on the object's surface. 

 

[2.9290968  2.46683347 2.53119056 ... 9.99303878 5.88614614 6.64378732] 

Figure 74: Curvature Estimation Output 

 

The Signed Distance Function (SDF) is a mathematical tool that calculates the distance between a reference plane 

and every point on the surface of an object. This method offers a concise way to represent the shape of the object. 

The aforementioned data may be utilised for the purpose of extracting features and authenticating objects. The 
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utilisation of the SDF is anticipated to yield a depiction of the comprehensive structure of the entity, which can be 

employed to distinguish and discriminate between authentic and fraudulent entities. 

The Fast Point Feature Histogram (FPFH) is a technique utilised to extract the local geometric characteristics of a 

point cloud. This method is applicable in the fields of object recognition and authentication. The FPFH technique 

produces a histogram of geometric characteristics for individual points within a given point cloud. It is anticipated 

that these histograms will furnish an intricate depiction of the nearby geometry, which can be leveraged to recognise 

and verify 3D-printed items. By representing the Fast Point Feature Histogram (FPFH) characteristics as hues, one is 

effectively examining a three-dimensional (3D) entity's point cloud, wherein each point is chromatically 

differentiated according to its proximate geometric attributes. The FPFH characteristics extract data pertaining to 

the immediate geometry surrounding individual points within the point cloud, which is then depicted as a histogram. 

Through the process of assigning a colour map to the FPFH features, it is possible to visually represent the variations 

of these features throughout the object's surface. Points that exhibit analogous Fast Point Feature Histogram (FPFH) 

characteristics will display comparable hues, thus signifying their akin local geometric attributes. Figure 73 presents 

the visualization of the Fast Point Feature Histogram, wherein the FPFH features are represented as hues in the 3D 

point cloud. 

 

Figure 75: Fast Point Feature Histogram 

The Wavelet Transform methodology can be utilised to analyse point clouds and extract features at multiple scales. 

This approach has potential applications in object authentication. The utilisation of wavelets to decompose point 
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cloud data into multiple frequency bands is anticipated to enable the capture of distinct shape characteristics of an 

object at varying scales. This approach is expected to yield a more comprehensive representation of the geometry of 

the object. Figure 74 displays the Wavelet Transform output, showcasing the extracted features at different scales. 

 

Figure 76: Wavelet Transform Output 

By utilising sophisticated statistical methodologies, it is possible to derive distinctive and intricate characteristics 

from three-dimensional printed artefacts. The aforementioned characteristics possess the potential to augment the 

process of authentication and furnish an elevated degree of assurance in discerning authentic entities. 

Upon comparing the methodologies, it becomes evident that each approach presents distinct advantages and 

disadvantages. Curvature Estimation and the Signed Distance Function are two methods that respectively offer 

insights into local surface features and capture the overall shape of an object. The FPFH method presents an intricate 

account of the nearby geometry, while the Wavelet Transform provides multifaceted characteristics across various 

scales. 

To ascertain the optimal approach for verifying the authenticity of 3D-printed items, a blend of these methodologies 

could be utilised. Through the integration of the unique advantages of each approach, a more resilient and all-

encompassing authentication mechanism can be established. The utilisation of FPFH and Wavelet Transform in 

tandem has the potential to yield a comprehensive depiction of approximate geometry in conjunction with multi-

scale attributes, thereby enhancing the precision of the authentication procedure. 
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Summary 

In Level 3, the research centred on utilising advanced authentication techniques in both 2D and 3D spaces, along 

with sophisticated statistical methodologies, to capture microscopic details and unique surface profiles of 3D-printed 

objects. The experimental results utilising LBP and Gabor filters underscored the constraints of extracting intrinsic 

surface features in the 2D space using 2D features. The results underscore the significance of considering three-

dimensional data for sophisticated authentication purposes. 

The study mainly focused on two methods in the 3D space: Normal Estimation and Octrees. These methods 

significantly increased the precision of the verification process by revealing important information about the local 

surface properties and spatial configurations of the entities. The combination of these two methods produced a more 

thorough authentication procedure. 

The study explored various statistical techniques such as Curvature Estimation, Signed Distance Function (SDF), Fast 

Point Feature Histogram (FPFH), and Wavelet Transform. Each methodology presented distinct benefits in capturing 

diverse facets of the object's geometry and surface characteristics. Through the combination of these approaches, a 

more robust and comprehensive authentication procedure was established. 

The Level 3 authentication experiments exhibited the potential of sophisticated techniques and statistical 

methodologies in revealing intricate details pertaining to the structure and surface characteristics of 3D-printed 

entities. The acquisition of this knowledge facilitates the advancement of a thorough and dependable authentication 

framework for the purpose of identifying and verifying 3D-printed entities. 

  



113 
 

7.6. Printing Method Identification 

This section outlines the experimental procedures employed to determine the printing methodology of 3D-printed 

objects utilising PointNet in conjunction with a triplet loss function. The objective of the experiments is to evaluate 

the efficacy of the model in categorising the print techniques by analysing the characteristics of the 3D-printed 

entities. 

The dataset comprises of surfaces of 3D-printed objects that were captured previously. The dataset is partitioned 

into training and testing subsets utilising an 80-20 ratio. The objects produced through 3D printing are depicted by 

point clouds that have been extracted from the meshes of said objects. The point cloud is configured to contain a 

fixed number of 2048 points. The dataset is subject to augmentation through the implementation of random 

perturbations and permutations of the data points. 

The PointNet framework has been instantiated through the utilisation of Keras in conjunction with TensorFlow. The 

utilised model employs input tensors with a shape of (NUM_POINTS, 3), whereby the value of NUM_POINTS has 

been predetermined to be 2048. The proposed model comprises a pair of T-Net transformations, succeeded by a 

sequence of convolutional and fully connected layers. The ultimate layer of output employs a SoftMax activation 

function in order to forecast the probabilities of the print method class. The quantity of courses has been established 

as three. 

The Triplet Loss is a loss function used in deep learning for training neural networks. It is designed to learn 

embeddings of images or other data points in a way that maximises the distance between embeddings of different 

classes and minimises the distance between embeddings of the same class. This loss function is commonly used in 

tasks such as face recognition and image retrieval. 

The utilisation of triplet loss is aimed at augmenting the model's capacity to discriminate among comparable and 

disparate entities. The dataset has undergone pre-processing to generate triplets that comprise anchor, positive, and 

negative images. The anchor and positive images are classified under the same category, whereas the negative image 

is categorised differently. The dataset is partitioned into training and validation sets and subsequently supplied to 

the model in batches. 
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Figure 77: Triplet Loss minimises the distance between anchor and positive and maximises the distance between anchor and negative 

The optimisation algorithm utilised in the model is Adam, with a learning rate of 0.001 and the loss function employed 

is sparse categorical cross-entropy. The evaluation of the model's effectiveness is conducted through the utilisation 

of sparse categorical accuracy. The training of the model was conducted over a period of 20 epochs, utilising the 

train_dataset for this purpose. The test_dataset was employed for validation purposes during this process. The study 

determined that the approach exhibited an overall classification accuracy of 92%. 

The evaluation of the model's performance is demonstrated through the utilisation of 3-dimensional scatter plots, 

which depict point clouds derived from a subset of the test data. The visual representations exhibit the anticipated 

category and factual classification for every entity. The evaluation of the model's performance can be conducted 

through both qualitative and quantitative methods. Qualitative assessment involves examining the scatter plots, 

while quantitative assessment involves reporting the evaluation metrics such as accuracy, precision, recall, and F1-

score, which are obtained during the training and validation phases.  

 

Figure 78: Print Method identification output 
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The conducted experiments provide evidence for the viability of utilising PointNet in conjunction with a triplet loss 

function for the purpose of identifying print methods in 3D-printed objects. The model exhibits the ability to acquire 

significant features from point clouds, which can be employed for the categorization of objects based on distinct 

printing techniques. The overall classification accuracy of the approach confirms its effectiveness in identifying 

printing methods. 

 

Figure 79: Confusion Matrix for Printing Method Identification 
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8. Authentication Framework 

This chapter describes a comprehensive solution architecture that aims to enforce a strong, multi-layered 

authentication system for 3D-printed objects. The proposed architecture, which aims to protect the authenticity of 

these objects along the supply chain, systematically integrates three unique layers of authentication, makes use of a 

range of data capture technologies, and applies advanced algorithms for surface feature extraction and analysis. This 

methodical methodology ensures a rigorous and dependable process for certifying 3D-printed objects, ensuring their 

validity and quality from manufacturing to end-use. 

The architecture is structured around four primary components, each playing a critical role in the authentication 

process. These components, along with their subcomponents, are designed to comprehensively address the 

multifaceted nature of 3D object authentication: 

• Watermark Formation 

• Data Capture 

• Surface Feature Extraction and Texture Analysis 

• Authentication Process 

These components are further divided into various subcomponents to address different aspects of the authentication 

process. 

8.1. Watermark Formation 

The watermark formation process is a critical component of the security feature architecture for 3D-printed 

objects. It serves as the foundation of a multi-layered authentication system designed to secure the integrity of 

these objects throughout their lifecycle. This section delves into the intricacies of each level of authentication, 

explaining how they collectively forge a unique, indelible signature for every 3D-printed item.: 

Level 1 - Glyph Verification (3D QR code) 

The Glyph Verification process is a Level 1 authentication method that uses a 3D QR code as its primary means of 

authentication. This QR code is more than just a surface-level addition; it is intricately integrated into the 3D object's 
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design, ensuring that it is an inseparable part of the item throughout its life. The 3D QR code serves a variety of 

purposes: 

Visual Indicator: It serves as a distinct, easily identifiable marker that denotes the specific area of the object 

designated for authentication checks. This ensures that the verification process is simple and effective. 

Embedded Information: The QR code contains important information embedded within its pattern. This 

information can range from simple identification details to more complex data about the object's 

manufacturing process, origin, and intended use. 

Ease of Access: While offering a significant level of security, the QR code remains accessible for scanning and 

verification with standard equipment, ensuring compatibility with existing infrastructure. 

Level 2 - Elaborate geometrical features  

Building on the foundational security provided by Glyph Verification, Level 2 adds Elaborate Geometrical 

Features to improve the authentication process. These features are meticulously designed and placed on the 

object to achieve two primary goals: 

Increased Security: By incorporating specific shapes and patterns that are difficult to replicate or alter 

without a thorough understanding of the design process, this level significantly increases the barrier for 

potential counterfeiters. 

Unique Identification: The elaborate geometrical features are chosen or designed to be unique to each 

object or batch, allowing for more precise authentication and traceability. 

Level 3 - Naturally occurring surface texture 

The use of naturally occurring surface texture as the ultimate authentication measure marks the pinnacle of the 

watermark formation process. This level capitalises on the inherent surface characteristics that emerge during 

the printing process, which include: 

Unique to Each Print: The microscopic variations in texture that occur naturally during the 3D printing 

process give each item a distinct surface pattern, similar to a fingerprint. 
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Irreplicable: Due to the random and uncontrollable nature of these variations, replicating an object's exact 

surface texture is nearly impossible, providing the highest level of security. 

Advanced Verification: Authenticating an object at this level necessitates sophisticated scanning and analysis 

technology capable of capturing and analysing minute details of the surface texture. 

The combination of these three levels of authentication to the watermark formation process results in a 

comprehensive and resilient security system for 3D-printed objects. From simple glyph verification to in-depth 

analysis of naturally occurring surface textures, this multi-layered approach ensures that each 3D-printed object has 

a distinct, indelible signature. This not only prevents counterfeiting and unauthorised replication, but it also allows 

for a consistent method of verifying the authenticity and integrity of objects throughout their supply chain journey 

and lifecycle. 

8.2. Data Capture 

The 3D-printed objects' high-resolution surface data must be captured via the data collection component. Multi-

focus 3D Microscopy has been chosen as the method for this application. This method was selected because of its 

accuracy, speed, affordability, and capacity to collect data at various scales. 

The best resolution at the microscale level is provided by multi-focus 3D microscopy, enabling a thorough 

examination of the surface details. With this method, it is possible to stitch together many microscale data captures 

to create a thorough and precise depiction of the object's surface. The authentication process becomes more 

dependable by capturing high-resolution data, safeguarding the integrity of 3D-printed goods along the supply chain. 

The effectiveness of the authentication system is considerably increased using multi-focus 3D microscopy. It ensures 

that the features that are extracted are precise and accurate in addition to capturing the fine details of the distinctive 

signature created during the watermark generation process. As a result, the authentication procedure becomes 

extremely dependable and solid, making it challenging for imitators to imitate the distinctive signatures and 

jeopardise the object's quality 3D printing process. 
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8.3. Surface Feature Extraction and Texture Analysis 

The surface feature extraction and texture analysis component process the captured data to derive unique signatures 

for authentication. It employs a combination of 2D, 3D, and statistical models for characterising the surface features 

at various levels of authentication: 

Level 1 - QR code verification 

This first level uses advanced 2D image processing to authenticate the pattern encoded in the QR code. The QR code, 

a glyph embedded on the object's surface, acts as a gateway to critical information required for the authentication 

process. This stage leverages: 

Advanced Pattern Recognition: Algorithms meticulously scan and decode the QR code, ensuring alignment with 

previously registered data, allowing for quick and efficient preliminary verification. 

Geometric Analysis: Essential for confirming the QR code's adherence to predefined dimensional and orientational 

specifications, ensuring that the first layer of authentication is both rigorous and accurate. 

Level 2 - Elaborate geometrical feature 

This level delves into the object's surface, highlighting the elaborate geometrical features that enhance security. 

Extraction of these features involves: 

Texture Pattern Classification: Using algorithms such as Local Binary Patterns (LBP) and Gabor filters, this process 

examines the surface to identify specific patterns that are naturally difficult to replicate. 

Point Cloud Classification: Using point cloud models like PointNet, this method deciphers the 3D structure, 

identifying and categorising the elaborate geometrical features that contribute to the object's distinct identity. 

Comprehensive Statistical Surface Analysis: This technique uses statistical analysis to dissect the surface's textural 

distribution, providing insights into the object's distinct topographical nuances. 

Level 3 - Intrinsic texture 

Level 3 makes use of the object's inherent, random surface characteristics—the unclonable signature created by the 

3D printing process itself. This stage leverages: 
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Advanced Point Cloud Analysis: Goes deeper into the point cloud data to find unique, random surface characteristics 

that are hard to replicate. 

Detailed Statistical Analysis: Looks at the statistical properties of the object's surface texture to identify features 

unique to each print. 

By combining these methods, the system generates a comprehensive signature for each object, making 

authentication more precise and reliable. This method ensures that objects can be authenticated on multiple levels, 

ranging from easily visible QR codes to intricate surface textures unique to the printing process. This strong 

authentication framework improves security against counterfeiting and ensures the integrity of 3D-printed objects 

throughout their lifecycle. 

8.4. Authentication Process 

The authentication process is a critical phase in the proposed architecture that unifies the previously described 

components into a seamless, operational system for authenticating 3D-printed objects. 

Registration 

At the outset, the registration process establishes the object's identity by capturing and storing its unique fingerprint. 

This is achieved through a detailed scan of the object, which includes all three levels of the watermark: 

• Level 1 captures the glyph verification using the 3D QR code. 

• Level 2 captures the elaborate geometrical features added into the object's design. 

• Level 3 captures the naturally occurring surface texture that is unique to each print. 

The resulting composite signature is securely recorded and will serve as the baseline for all future authentication 

checks of that 3D printed object. 

Verification 

The verification stage is initiated whenever there is a need to authenticate an object, whether at the point of entry 

into the supply chain, during transit, or before final delivery to the consumer. A new scan of the object is performed 

to obtain real-time surface data, which is then meticulously processed to reconstruct the object's unique signature 
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as captured during the registration stage. This stage is critical as it must accommodate any natural variations in the 

object's surface that may occur over time without compromising the integrity of the authentication process. 

Comparison 

The comparison phase is where the authentication decision is made. The newly extracted signature from the 

verification scan is rigorously compared against the registered signature. This involves a detailed analysis across all 

three levels of authentication: 

• Level 1 Comparison: Here, the system matches the QR code patterns, ensuring that the basic glyph 

information aligns with the registered data. 

• Level 2 Comparison: At this intermediate level, the system delves deeper, comparing the detailed 

geometrical features to detect any discrepancies or alterations. 

• Level 3 Comparison: This is the most granular level, where the intrinsic surface textures are matched. Due to 

the unique and random nature of these textures, this level provides the strongest assurance of authenticity. 

If the comparison across all three levels affirms that the signatures are consistent, the object is authenticated as 

genuine. This layered approach to validation is designed to be highly reliable, akin to the authentication principles 

employed in advanced security systems, where multiple checks and balances are in place to verify identity. 

The authentication process, as described in this section, forms the cornerstone of the proposed multi-layered 

authentication system. It ensures a robust and comprehensive method for verifying the authenticity of 3D-printed 

objects. The process is not only about confirming the identity but also about safeguarding the integrity and quality 

of these objects from the manufacturing stage through to the end-user. By meticulously detailing each stage of this 

process and ensuring that each level of authentication is clearly defined and implemented, the proposed architecture 

offers a robust framework for securing the supply chain of 3D-printed components (Figure 80). 
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Figure 80: Proposed authentication framework for the identification of 3D-printed objects 
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9. Conclusion 

This study provided a thorough analysis of surface fingerprinting methods for 3D-printed object identification and 

authentication. The study concentrated on the creation and assessment of various approaches to extract distinctive 

characteristics from the surfaces of 3D-printed items, enabling their trustworthy verification under varying levels of 

examination. The study was divided into three primary portions that dealt with distinct facets of the surface 

fingerprinting issue: 2D, 3D, and statistical techniques. 

The 2D methodologies investigated in this study comprised advanced image processing algorithms, texture pattern 

categorization, and QR code verification. By examining the surface patterns and textures of the 3D-printed items, 

these techniques attempted to offer a fundamental level of verification. 

Mesh parameter analysis, point cloud classification, and high-precision microscopic feature extraction were the 3D 

methods that were examined in this study. These techniques gave a deeper comprehension of the geometry, 

topology, and distinctive surface characteristics of the 3D-printed items, providing a better level of authentication. 

The statistical techniques used in this study also included multivariate analysis, machine learning-based 

methodologies, and basic feature distribution analysis. To provide a thorough understanding of the surface 

characteristics of 3D-printed objects, these approaches sought to elucidate underlying patterns and correlations 

between the retrieved features. 

The research hypothesis, which proposed that each manufactured 3D-printed object would present a unique 

signature on the surface that defines the PUF (Physically Unclonable Function) due to highly random microscale 

features, was successfully proven. Through the combination of 2D, 3D, and statistical techniques, this study 

demonstrated that these intrinsic surface characteristics can be used for reliable and repeatable identification of 3D-

printed objects, making it extremely difficult to counterfeit them and thus providing the highest security. 
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9.1. Key Findings and Contributions 

The key findings of this study can be summarised as follows: 

• The integration of 2D, 3D, and statistical methods presents a robust and comprehensive solution for the 

surface profiling and authentication of 3D-printed objects. This multidimensional approach ensures a higher 

level of precision and security in identifying and authenticating 3D-printed items. 

• The hierarchical approach to authentication, encompassing Level 1 (glyph verification), Level 2 (elaborate 

geometrical features), and Level 3 (naturally occurring surface texture), introduces a flexible and adaptable 

framework. This framework enhances the system's ability to accurately identify and secure objects against 

unauthorized replication and counterfeiting. 

• A novel algorithm has been developed for identifying and characterizing the unique signatures of glyphs and 

watermarks on the surfaces of 3D-printed objects. This algorithm plays a crucial role in the detailed 

authentication process, significantly improving the accuracy of object identification. 

• The study's exploration into precision surface analysis techniques at Level 3 authentication emphasizes the 

use of microscopic surface details. This method sets a new standard for security protocols in additive 

manufacturing by utilizing unique 'fingerprints' of each object for authentication. 

The contributions of this study to the field of 3D printing and surface fingerprinting include: 

• A comprehensive analysis of the latest techniques for surface profiling in the context of 3D-printed objects, 

highlighting the importance of integrating various methods for a more secure and reliable authentication 

process. 

• The development of a hierarchical approach to authentication that incorporates multiple levels of scrutiny, 

enabling a more sophisticated and nuanced verification system capable of addressing the complexities 

inherent in 3D-printed objects. 

• The introduction of innovative feature extraction techniques that enhance the process of authentication and 

identification. These techniques enable the detailed analysis of surface textures and geometries, providing a 

more accurate means of distinguishing between genuine and counterfeit objects. 
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State-of-the-Art Comparison: 

Table 14 shows how this research, through its methodical examination of Level 1, Level 2, and Level 3 

authentication methods, surpasses existing solutions in additive manufacturing security. This study stands 

out for its holistic and detailed approach to authentication, significantly advancing the field by offering: 

• Defined additive manufacturing security protocols that incorporate both digital and physical aspects of 

object security, ensuring comprehensive protection across the supply chain. 

• Precision surface analysis techniques that leverage microscopic details for authentication, offering an 

advanced method for verifying authenticity that is challenging for counterfeiters to bypass. 

• A comprehensive approach to cyber-physical system security that integrates physical object authentication 

with cyber security measures to create a robust defence against various threats. 

• An assessment of 3D print output quality that extends the study's relevance beyond security, ensuring that 

3D-printed objects not only are secure but also meet high-quality standards. 

By offering these advancements, the study contributes significantly to enhancing the trustworthiness, 

security, and quality assurance of 3D printing technologies. 

Table 14: Comparative Analysis of State-of-the-Art Authentication Solutions in Additive Manufacturing 

Authors & Research Groups 

State of the art and emerging research topics and challenges in the areas of  

Authentication Methods in Additive Manufacturing 

SOTA 
Authenticatio
n Solutions 

Define Additive 
Manufacturing 
Security 
Protocols 

Precision 
Surface 
Analysis 
Techniques 

Comprehensiv
e Cyber-
Physical 
System 
Security 

Assessment of 
3D Print 
Output 
Quality 

Belikovetsky et al. (2016) 
 

X 
 

X 
 

Chen et al. (2019) X X 
 

X 
 

Cai et al. (2021) X 
  

X X 

Peng et al. (2019) X X 
   

Gao et al. (2021) X X 
 

X 
 

Ahn et al. (2009) 
  

X 
 

X 
Tey et al. (2021) 

    
X 

Suzuki et al. (2017) X X 
   

This Research  X X X X X 
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9.2. Limitations and Future Work 

9.2.1. Limitations 

Despite the comprehensive approach and rigorous methodology employed in this study, there are some limitations 

that should be acknowledged: 

• Material scope: This may limit the applicability of the authentication system to other materials, such as 

metals and ceramics. 

• Data capture techniques: The data collection methods used in this study were chosen based on their 

accuracy, speed, and cost; however, other emerging techniques could potentially enhance the 

authentication procedure. 

• Feature extraction and texture analysis algorithms: The algorithms used for feature extraction and texture 

analysis are based on existing methods, and there may be space for improvement or more sophisticated 

algorithms that can improve the authentication process. 

• Printing techniques: The study only addresses a limited number of 3D printing techniques, and the 

authentication system may need to be adapted for other printing techniques not covered by this study. 

• Adversarial attacks: The authentication system is intended to prevent attempts at forgery; however, it is 

difficult to predict and account for all potential adversarial strategies, particularly as technology continues 

to advance. 

9.2.2. Future Work 

To address the limitations and build upon the foundation laid by this study, several avenues for future work are 

proposed: 

• Expand material scope: Examine the applicability of the authentication system to other materials, such as 

metals and ceramics, to expand the range of 3D-printed objects that can be secured. 

• Explore emerging data capture techniques: Continuously monitor and assess emerging data capture 

technologies that could potentially enhance the authentication process's precision, speed, or cost. 

• Improve feature extraction and texture analysis algorithms: Develop new or refined algorithms for feature 

extraction and texture analysis to improve the efficacy and robustness of the authentication system. 
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• Incorporate additional printing techniques: Extend the research to include additional 3D printing 

techniques, adapting the authentication system as needed to accommodate a broader array of 

manufacturing techniques. 

• Address potential adversarial attacks: Conduct in-depth analyses of potential adversarial attacks and 

develop countermeasures to bolster the authentication system against sophisticated attempts at forgery. 

• Evaluate real-world performance: Assess the performance and efficacy of the authentication system in 

securing 3D-printed objects across various supply chains and industries using real-world scenarios. 

By addressing these limitations and pursuing the proposed future work, the authentication system can continue to 

evolve, providing a robust and dependable solution to secure 3D-printed objects and prevent counterfeiting in a 

swiftly expanding industry. 

This research has contributed to the development and comprehension of surface profiling techniques for 3D-printed 

objects. The findings and contributions of this research have the potential to have a significant impact on the security 

and authentication of 3D printing, paving the way for future solutions that are more reliable and robust. 
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11. APPENDIX 

Table 15: Taxonomy of anomalies 

Printing 
technology 

Materials 
Used 

Benefits Anomalies Characteris
tics 

Anomaly sources 

FDM PLA Low Cost Under-Extrusion, Over-
Extrusion, Gaps in Top Layers, 
Stringing or Oozing, 
Overheating, Layer Shifting, 
Layer Separation and Splitting, 
Stops Extruding Mid Print, 
Weak Infill, Blobs and Zits, 
Gaps Between Infill and 
Outline, Curling or Rough 
Corners, Scars on Top Surface, 
Gaps in Floor Corners, Lines on 
the Side of Print, Vibrations 
and Ringing, Gaps in Thin 
Walls, Inconsistent Extrusion, 
Warping, Poor Surface Above 
Supports, Dimensional 
Accuracy, Poor Bridging 

Dimension
al 
Accuracy: 
±0.5% 
 
Layer 
Thickness 
Range: 50-
400 μm 
 
Surface 
Roughness
/Texture: 
Can vary 
widely 
depending 
on settings 

Material: 
temperature, 
viscosity, density, 
type of material and 
mechanical 
properties.  

  ABS High print speed Platform: 
temperature, 
pressure, vibrations, 
position of the 
platform, system 
coordinates and 
heat evacuation. 

  PETG Easy to use Printer head: speed, 
angle of inclination, 
diameter of 
extrusion, position 
of the extruder, 
vibration and 
acceleration. 

Polyjet/ 
DLP/SLA 

Photopolymer High print speed Layer Shifting, Layer 
Separation and Splitting, 
Warping, Curling or Rough 
Corners, Scars on Top Surface, 
Gaps in Thin Walls, Poor 
Surface Above Supports, 
Dimensional Accuracy 

Dimension
al 
Accuracy: 
±0.1% 
 
Layer 
Thickness 
Range:  
16-100 μm 
 
Surface 
Roughness
/Texture: 
Very 
smooth 
surfaces 

Material: viscosity, 
density and 
mechanical 
properties.  

    Fine resolution Platform: position of 
the platform and 
system coordinates. 

    Smooth surface 
finish 

Light source: 
intensity, 
wavelength, and 
exposure time. 

    Complex 
geometries 

Curing: layer 
compression and 
layer separation 

MJF Nylon based 
Polymer 

Fine resolution Top layer compression, 
Overheating, Layer Shifting, 
Layer Separation and Splitting, 
Weak Infill, Blobs and Zits, 
Gaps Between Infill and 
Outline, Curling or Rough 
Corners, Scars on Top Surface, 
Gaps in Floor Corners, Lines on 
the Side of Print, Vibrations 
and Ringing, Gaps in Thin 

Dimension
al 
Accuracy: 
±0.3% 
 
Layer 
Thickness 
Range:  
80 μm 
 

Material: 
temperature, 
viscosity, density, 
type of material, and 
mechanical 
properties.  

    High quality 
print 

Platform: 
temperature and 
vibrations. 

    Strong tensile 
strength 

Laser: speed, angle 
of inclination, 
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Walls, Inconsistent powder 
deposition, Warping 

Surface 
Roughness
/Texture: 
Very 
smooth 
surfaces 
but 
depends 
heavily on 
the powder 
used and 
post-
processing 

intensity, and 
acceleration. 

    High print speed 
 

SLS Polymer Fine resolution Overheating, Layer Shifting, 
Layer Separation and Splitting, 
Stops Extruding Mid Print, 
Weak Infill, Blobs and Zits, 
Gaps Between Infill and 
Outline, Curling or Rough 
Corners, Scars on Top Surface, 
Gaps in Floor Corners, Lines on 
the Side of Print, Vibrations 
and Ringing, Gaps in Thin 
Walls, Inconsistent Extrusion, 
Warping, Poor Surface Above 
Supports, Dimensional 
Accuracy 

Dimension
al 
Accuracy: 
±0.3% 
 
Layer 
Thickness 
Range:  
100-120 
μm 
 
Surface 
Roughness
/Texture: 
Slightly 
rougher 
than MJF 
but can be 
improved 
with post-
processing 

Material: 
temperature, 
viscosity, density, 
type of material and 
mechanical 
properties.  

  Ceramic High quality 
print 

Platform: 
temperature, 
pressure, vibrations, 
position of the 
platform, position of 
the laser, system 
coordinates and 
heat evacuation. 

  Composites Strong tensile 
strength 

Laser: speed, 
accuracy, laser 
intensity, diameter 
of extrusion, 
vibration, and 
acceleration. 

LOM Metal foil Low material 
cost 

Poor surface quality, low 
resolution, weak part strength, 
slow process 

Dimension
al 
Accuracy: 
±1% 
 
Layer 
Thickness 
Range:  
20-200 μm 
 
Surface 
Roughness
/Texture: 
Depends 
on the 
material 

Material: adhesive 
type, material 
properties, and 
sheet thickness. 

    Laser or cutting 
blade: accuracy, 
power, and cutting 
speed. 

    Adhesion process: 
pressure, 
temperature, and 
bonding uniformity. 

    Platform: 
positioning accuracy 
and stability. 

 


