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Abstract
Given the intricacy and variability of anatomical1

structures in medical images, some methods employ2

shape priors to constrain segmentation. However,3

limited by the representational capability of these4

priors, existing approaches often struggle to capture5

diverse target structure morphologies. To address6

this, we propose SPGNet to guide segmentation by7

fully exploiting category-specific shape knowledge.8

The key idea is to enable the network to perceive9

data shape distributions by learning from statistical10

shape models. We uncover shape relationships via11

clustering and obtain statistical prior knowledge us-12

ing principal component analysis. Our dual-path13

network comprises a segmentation path and a shape-14

prior path that collaboratively discern and harness15

shape prior distribution to improve segmentation16

robustness. The shape-prior path further serves to17

refine shapes iteratively by cropping features from18

the segmentation path, guiding the segmentation19

path and directing attention specifically to the edges20

of shapes which could be most significantly suscep-21

tible to segmentation error. We demonstrate superior22

performance on chest X-ray and breast ultrasound23

benchmarks.24

1 Introduction25

Medical image segmentation has always been critical to med-26

ical image processing. Currently, most mainstream methods27

focus primarily on high-precision pixel-level supervision. De-28

spite significant achievements in a variety of segmentation29

tasks in differing domains, limitations persist when dealing30

with medical images. Primarily, anatomical structures in medi-31

cal images often exhibit shape patterns and geometric informa-32

tion that generic pixel-level supervision could fails to leverage33

fully, especially when shape regularities are prominent and34

perceptibly advantageous.35

Past studies indicate integrating shape prior knowledge36

could benefit traditional segmentation algorithms [Nosrati37

et al., 2016]. For instance, introducing shape priors to level set38
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Figure 1: The first column shows the ground truth masks for a set
of right lung X-rays, benign breast tumor ultrasound, and malignant
tumor ultrasound images. The second to fifth columns present seg-
mentation path visual attention maps in shallow encoder and deep
decoder layers, without or with the collaborative shape-prior path.
The sixth and seventh columns depict segmentation outputs with or
without the shape-prior path. The network guided by shape priors
demonstrates improved shape integrity and smoother edges.

contour evolution techniques proved to enhance the accuracy 39

of segmentation [Chen et al., 2002]. Integrating elastic shape 40

priors into frameworks was also shown to be able to align 41

the outcomes closer to the actual shape variations [Schoene- 42

mann et al., 2007]. However, these conventional segmentation 43

methods often struggle with complex medical image scenar- 44

ios due to constraints in data distribution assumptions and 45

susceptibility to noise and contextual information. 46

Deep learning methods, in comparison, exhibit greater flex- 47

ibility in adapting to diverse shapes and backgrounds [Bohlen- 48

der et al., 2021]. It has been shown that this paradigm of 49

segmentation methods could also benefit from shape priors 50

to better cater for specific task requirements. For example, a 51

model based on sparse representation and local repulsive de- 52

formation was proposed for normalizing the former deep con- 53

volutional neural network segmentation and constraining the 54

segmentation results within an effective shape domain [Xing et 55

al., 2015]. Although post-processing has often demonstrated 56

effective for further improving segmentation [Li et al., 2017; 57

Medley et al., 2019], its usefulness still hinges on the depend- 58

ability of the segmentation model. Another model [Lee et 59

al., 2019] based on template deformation implemented seg- 60



mentation by deforming the shape prior template. However,61

this approach may be constrained by the expressiveness of the62

priors and would likely be undermined by structural variations63

in medical images, such as when handling images of various64

organs with distinct shapes and morphological characteristics.65

While these methods aim to constrain segmentation using66

shape priors, they have not entirely endowed deep neural net-67

works with the capacity to perceive shape patterns in the data.68

We propose to enable deep learning methods to fully incor-69

porate learned priors from training data as a form of regular-70

ization. This enables segmentation networks to be influenced71

by prior shape knowledge when classifying pixels. As shown72

in Figure 1, with shape prior guidance, attention in shallow73

layers concentrates completely on the target area. In deep74

layers, the excellent alignment between the attention map and75

the target area is maintained, while the most activated atten-76

tion areas shift towards the edges which serves to improve77

the accuracy and smoothness of segmentation. Conversely, a78

network without guidance exhibits fragmented and misaligned79

attention highly susceptible to noise and variability.80

As shown in Figure 2, our end-to-end dual-path collabora-81

tive network integrates a multi-class statistical shape model82

for incorporating a wealth of shape priors. The segmenta-83

tion path focuses on dense pixel-level classification, while the84

shape-prior path regresses prior flows. We introduce a col-85

laboration module establishing interactions between encoders86

to enhance robustness by exchanging features. Simultane-87

ously, by collaboratively learning multi-class statistical shape88

model deformation, the segmentation encoder is enabled to89

perceive shape distribution and utilise this explicit shape prior90

knowledge to guide segmentation. We also use cropped local91

features from the segmentation path to refine shapes across92

different scales, guiding attention to focus on boundaries.93

Our contributions are summarized as follows:94

• We propose a novel dual-path collaborative segmentation95

network, SPGNet, which embeds explicit and diverse96

shape priors. The dual-path structure enhances the repre-97

sentation capability of segmentation path encoders. The98

segmentation path, guided by the explicit shape priors,99

reinforces shape understanding and enhances attention at100

target edges, addressing single-path deficiencies in cap-101

turing shape features. We also design a cluster strategy102

to learn shape regularities from the training set.103

• We explore the collaborative effects of SPGNet and104

demonstrate the effectiveness of the shape-prior path105

in improving segmentation accuracy. Specifically, we106

validate the efficacy of each component within the shape-107

prior path.108

• We evaluate SPGNet on a chest X-ray dataset with promi-109

nent shape regularities and a breast ultrasound dataset110

with potential regularities. Results demonstrate superior111

accuracy over baselines and existing state-of-the-art meth-112

ods, particularly in edge smoothness. We also validate its113

adaptability to medical images with low signal-to-noise114

ratios, blurry boundaries, and significant shape and posi-115

tional variations of lesions. The superiority of our method116

has been demonstrated.117

2 Relate Works 118

Shape Clustering and Statistical Modeling. Shape clus- 119

tering groups shapes by extracting descriptors and clustering 120

based on similarity distances. For instance, a skeleton-based 121

approach captures intrinsic structural information for same- 122

class shapes, clustering using a node-matching matrix [Shen 123

et al., 2013]. However, skeleton-based methods often express 124

relatively coarse shape features. In contrast, a hierarchical clus- 125

tering method is used in a different study for contour-based 126

shapes to learn probabilistic models from shape clusters [Sri- 127

vastava et al., 2005]. In another approach, to address unlabeled 128

longitudinal shape data, a flexible nonlinear mixture model 129

is established by learning average shape trajectories and vari- 130

ances for each cluster [Debavelaere et al., 2020]. For instance 131

segmentation, k-means clustering of training masks are used 132

to obtain centres of shape clusters, establishing a linear prior 133

model e.g., [Kuo et al., 2019]. A pipeline combining segmen- 134

tation, clustering, and modeling has also been proposed [Bruse 135

et al., 2017]. With the rise of deep neural networks, exploring 136

clustered shape information with statistical models still has 137

significant potential. 138

Shape-prior Guided Segmentation. Numerous methods 139

have attempted to leverage shape priors for segmentation. For 140

example, to address blurred overlapping regions in the cell 141

cytoplasm, a generator utilizing a prior template to generate 142

masked was proposed [Song et al., 2020]. Similarly, a cyclic 143

registration network was also designed to integrate anatomi- 144

cal context specificity with priors [Jiang and Veeraraghavan, 145

2022]. For a different medical application, a deep neural net- 146

work was designed to predict PCA layers for improving the 147

segmentation of the left ventricle in ultrasound images [Mil- 148

letari et al., 2017]. Generating threshold-based priors and 149

optimizing outputs via a spatial transform network was also 150

proposed as another strategy for harnessing prior shape knowl- 151

edge [Zhao et al., 2021]. More recently, it was also found that 152

introducing an additional branch transforms visible regions 153

into complete areas through supervision, and therefore facili- 154

tates holistic shape understanding [Gao et al., 2023]. Similarly, 155

another study proposed a generative invariant shape prior net- 156

work that introduced a branch to learn invariant priors, mimick- 157

ing human perceptual learning of basic shapes [Li et al., 2023]. 158

Other than considering two-dimensional shapes, a different 159

method used three-dimensional reconstructed shapes as priors 160

and reconstructed occluded objects before projecting them 161

to predict complete mask [Li et al., 2022]. However, these 162

methods may struggle to handle complex and heterogeneous 163

targets due to insufficient shape diversity [Zhao et al., 2021; 164

Jiang and Veeraraghavan, 2022]. Implicit priors may fail to 165

generalize [Gao et al., 2023; Li et al., 2023]. In contrast, our 166

approach establishes an explicit multi-class shape statistical 167

model to guide segmentation. 168

3 Methodology 169

3.1 Overview 170

In Figure 2, we introduce SPGNet, a novel image segmen- 171

tation algorithm with embedded shape priors. Section 3.2 172

discusses offline multi-class shape statistical modeling, Sec- 173
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Figure 2: SPGNet is a dual-path collaborative network consisting of three main components: offline multi-class shape statistical modeling,
segmentation path, and shape prior path.

tion 3.3 details SPGNet’s internal modules and Section 3.4174

introduces the hybrid loss function for network training.175

3.2 Offline Multi-class Shape Statistical Modeling176

Shape Preparation. As shown in Figure 3, we derive shape177

data from mask annotations, focusing on regions with height-178

ened curvature to build a statistical model with prominent179

shape features. The shape generation process involves: (i)180

Employing Bézier curves to smoothly fit mask contours, yield-181

ing a set of smoothed contour points. (ii) Determining the182

number of sampling points as p and calculating the absolute183

curvature for each point, followed by normalization. A base184

value is introduced to prevent neglecting points with extremely185

small curvature. The ratio of the sum of normalized curva-186

tures to the number of sampling points serves as the sam-187

pling distance. (iii) Iterating through contour points, saving188

the current sum of curvatures and the number of sampled189

points, denoted as k. When the sum exceeds k times the190

sampling distance, the point is saved as a sample point and k191

increments by 1. The traversal ends when k reaches p. The192

sampled p points constitute the shape contour, represented as193

Si = ((xi
1, y

i
1), ..., (x

i
p, y

i
p))

T ∈ Rp×2.194

Procrustes Shapes Agglomerative Clustering. We em-195

ployed the agglomerative clustering method, utilizing the Pro-196

crustes shape distance as the shape similarity metric, which197

requires aligning shapes before computing distances. The Pro-198

crustes shape distance calculation between two aligned shapes199

S1 and S2 is calculated by:200

Pd =

√√√√ p∑
j=1

[(x1
j − x2

j )
2
+ (y1j − y2j )

2
] (1)

In Figure 3, the agglomerative clustering of shapes involves201

these steps: (i) Standardizing and aligning all shapes using202
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Figure 3: This is the flowchart depicting the process of computing
multi-class shape priors.

the Procrustes analysis [Cootes et al., 1995] in the training set. 203

(ii) Calculating the pairwise distance matrix using Procrustes 204

shape distance. (iii) Determining the number of clusters k. 205

Starting with k = 2 and iteratively incrementing k, we select 206

the k value that maximizes the variance of distances between 207

k cluster centers as the initialization. We limit k to a maxi- 208

mum of 100 to prevent excessive redundancy in categories. 209

(iv) Initiating agglomerative clustering with complete linkage 210

for calculating inter-cluster distances, minimizing dissimilar 211

shape aggregation between clusters. After all iterations, we 212

obtain k shape clusters. 213

Multi-class Shape Priors and Modeling. We compute the 214

mean shape within each cluster and conduct principal compo- 215

nent analysis (PCA) on cluster shapes to derive eigenvectors 216

representing major variations. The number of eigenvectors 217

per cluster aligns with the maximum across clusters, denoted 218

as t. Concatenating mean shapes and eigenvectors yields 219

shape priors, denoted as Priors = {(meani, ρi)
k
i=1} ∈ 220

Rk×(1+t)×p×2. Simultaneously, shape category labels C are 221



obtained from the shape clusters. The Active Shape Model222

(ASM) [Cootes et al., 1995], a statistical model for shapes, ne-223

cessitates a set of shape training samples Set = {(Si)ni=1} for224

model construction. Initially, we compute the average shape225

vector for all shapes:226

S =
1

n

n∑
i=1

Si (2)

We employ PCA for dimensionality reduction on the n227

shape training samples, creating an approximate model that228

encapsulates the entire training dataset:229

S ≈ S + bΦ (3)

where Φ = (ρ1, ρ2, ..., ρj) ∈ Rj×p×2 represents the first j230

major eigenvectors corresponding to the eigenvalues of the231

covariance matrix. b ∈ R1×j denotes the shape deformation232

parameters. Subsequently, we can utilize a neural network to233

predict the deformation parameters b, facilitating the fitting234

of the shape statistical model to the shapes in the training set.235

Additionally, we introduce an affine transformation function a236

with parameters γ = (sγ , θγ , (t1)γ , (t2)γ) ∈ R1×4. The four237

parameters include the scale parameter sγ , rotation parameter238

θγ , and translation parameters (t1)γ and (t2)γ . For a set of239

points S = (Sx, Sy) ∈ Rp×2, affine transformations can be240

described as:241

a(S, γ) =

[
sγ cos(θγ) −sγ sin(θγ) (t1)γ
sγ sin(θγ) sγ cos(θγ) (t2)γ

][ Sx

Sy

1

]
(4)

In summary, an ASM Transformation model is denoted as:242

Tasm(S,Φ, γ, b) = a(S + bΦ, γ) (5)
The ASM Transformation function is embedded in the net-243

work computational process. Priors are precomputed offline244

before training and inference, entering the network as constant245

parameters.246

3.3 SPGNet247

Dual-path Collaboration Module(DCM). In the encoder248

sections of both paths, we aim for mutual attention during249

training, allowing the segmentation path to attend to learned250

features from the shape-prior path and vice versa. To achieve251

this, we introduce the dual-path collaboration module (DCM),252

incorporating spatial and channel attention for enhanced fea-253

ture interaction. As shown in Figure 4, the DCM takes features254

Fi ∈ RCi×HFi
×WFi and Si ∈ RCi×HSi

×WSi from the two255

paths as input, with Si resized to match Fi dimensions. Spatial256

attention is computed by averaging along the channel dimen-257

sion and applying the sigmoid activation function σ(·). For258

channel attention, global average pooling (GAP) is applied259

along the spatial dimension, and linear layers, along with the260

sigmoid activation function σ(·), calculate channel attention.261

The concatenated features, after passing through consecutive262

convolutional layers, are multiplied separately by spatial at-263

tention and channel attention, before the results are summed.264

This process introduces spatial and channel attention, fostering265

interactive features. A residual structure combines these in-266

teractive attention features with features from each path. The267

resulting features Fi+1 and Si+1 are obtained after passing268

through the encoder blocks of each path.269
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Figure 4: The structure of the Dual-path Collaboration Module
(DCM).

Segmentation Path. In Figure 2, the segmentation path em- 270

ploys an encoder-decoder architecture with skip connections. 271

All subsequent encoder blocks, except the initial one, receive 272

interactive attention features from the DCM. Each encoder 273

block is composed of two sets of sub-blocks and a max-pooling 274

layer. The sub-blocks include a convolutional layer, ReLU 275

activation and batch normalization. In the decoder section, 276

features from the preceding layer are initially upsampled us- 277

ing bilinear interpolation. Following concatenation with the 278

skip connection input from the encoder, the combined features 279

enter the decoder. The ultimate layer of the decoder employs a 280

convolutional layer to derive the probability distribution map 281

for dense pixel-wise classification. 282

ASM Transformation. We acquired prior shape knowledge, 283

denoted as Priors, which is loaded into the network before 284

training. We utilised the ResNet18 [He et al., 2016] as the 285

shape classifier backbone in the classification network. During 286

training, the classifier learns the shape category weights for 287

input images, and the appropriate shape prior is obtained by 288

multiplying the classifier output Classes ∈ Rk with Priors. 289

Specifically, the classifier output is used to calculate the shape 290

mean mean ∈ R1×p×2 and t eigenvectors ρ ∈ Rt×p×2. In 291

the shape-prior path, the shape encoder block employs a com- 292

bination of spatially separable convolution and convolutional 293

layers with a stride of 2, focusing on capturing edge and shape 294

features. The output of the last encoder block is fed through 295

continuous convolutional layers to obtain deformable parame- 296

ters δ ∈ R1×t and affine parameters α ∈ R1×4. The shape L0 297

is obtained through ASM Transformation: 298

L0 = Tasm(mean, ρ, α, δ) (6)

Shape-guided Feature Cropping. As illustrated in Figure 299

5, given the input shape points L(t−1) ∈ Rp×2 and the fea- 300

tures F(4−t) from the segmentation path, where t = 1, 2, 3, 301

and setting the relative length of the clipping patch l, we first 302

convert F(4−t) into f(4−t) ∈ Rc×wf(4−t)
×hf(4−t) through con- 303

volution. For a shape point in the spatial direction of f(4−t), 304

denoted as (Lt−1
x , Lt−1

y ), we clip out c patches, each contain- 305

ing n×n sampled feature points. The feature at each sampled 306

point is calculated on f(4−t) using bilinear interpolation, and 307

we retain the bottom-left relative position coordinates of the 308

patch, denoted as (Lt−1
x , Lt−1

y )lt. By using p shape points, we 309
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Figure 5: Shape-guided Feature Cropping

obtain the clipped feature sequence Ωt ∈ R(p×c)×n×n and the310

bottom-left position sequence Lt−1
lt ∈ Rp×2.311

Long-range Refinement Module(LRM). The global corre-312

lation of shape points is crucial for accuracy. In Figure 6, we313

introduce the Long-range Refinement Module (LRM), which314

takes Ωt, Lt−1
lt , and the patch side length l as inputs. This fa-315

cilitates the adjustment of shape points within the patch. LRM316

consists of a parallel structure employing convolution and a317

multilayer perceptron. Additionally, it utilizes a transformer318

encoder [Zheng et al., 2021] to handle the feature sequence. In319

the first direction, a n× n convolutional layer extracts global320

features from Ωt, followed by flattening and passing through321

a multilayer perceptron with two linear layers and ReLU acti-322

vation, resulting in offset1 ∈ Rp×2. In the second direction,323

another n× n convolutional layer extracts Ωt and projects it324

onto token sets with positional embedding. Afterwards, an325

8-layer transformer encoder with multi-head self-attention is326

employed to establish global feature correlations. The output,327

reshaped into linear features, passes through a multilayer per-328

ceptron, yielding offset2 ∈ Rp×2. The refined shape points329

are computed as follows:330

Lt = L
(t−1)
lt + (offset1 + offset2)× l (7)

In our model, the coarse output of the ASM Transformation331

is denoted as L0, and the outputs of the three stages of LRM332

are (L1, L2, L3).333

3.4 Hybrid Loss Function334

We formulated a hybrid loss function for training SPGNet. The335

total loss L is a weighted sum of the segmentation loss Lseg336

derived from the segmentation path and the shape loss Lshape,337

along with the classification loss Lc. The segmentation loss is338

calculated as follows:339

Lseg = λ1Lce(Ŷ , Y ) + λ2Ldice(Ŷ , Y ) (8)

where Ŷ is the output probability segmentation map from340

our segmentation path, and Y represents the ground truth for341

the probability segmentation mask. The losses Lce and Ldice342

correspond to the cross-entropy and dice loss [Li et al., 2019],343

respectively. The classification loss is calculated as:344

Lc = λ3Lbce(Ĉ, C) (9)

where Ĉ represents the predicted shape category probabil-345

ities from classifier, and C refers to the ground truth for346

shape categories. Lbce corresponds to the binary cross-entropy347
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loss [Chen et al., 2023]. The shape loss calculation is as 348

follows: 349

Lshape =

7∑
i=4

λiLl1(L
i−4, L) (10)

where L represents the ground truth for the shape, and Ll1 350

refers to the L1 loss [Feng et al., 2018]. The total loss L is 351

defined as: 352

L = Lseg + Lc + Lshape (11)

4 Experiment 353

4.1 Dataset and Pre-Processing 354

In our comprehensive evaluation, we utilized two publicly 355

available datasets: chest X-rays and breast ultrasound image 356

data. Below, we outline the databases employed for these 357

experiments. 358

JSRT Dataset. The JSRT database [Shiraishi et al., 2000] 359

consists of 247 high-resolution X-ray images, comprising 360

154 conventional chest X-rays with lung nodules selected 361

from 14 medical centers and 93 chest X-rays without lung 362

nodules. The dataset provides manually annotated masks for 363

three anatomical structures of interest: the left lung, right lung, 364

and heart. We separated the masks for these three anatomical 365

structures for individual evaluations. 366

Breast Ultrasound Dataset (BUS). The Breast Ultrasound 367

Dataset (BUS) [Al-Dhabyani et al., 2020] includes 780 breast 368

ultrasound images categorized into three classes: 133 normal, 369

437 benign, and 210 malignant images. For our experiments, 370

we combined samples from both benign and malignant classes. 371

The dataset offers manually annotated masks for tumor re- 372

gions. 373

4.2 Implementation Details and Metrics 374

We implemented all evaluation methods on a server equipped 375

with an NVIDIA GeForce RTX 4090 GPU. For a fair quan- 376

titative comparison, all methods for dense pixel-level clas- 377

sification underwent evaluation using the same 5-fold cross- 378

validation scheme, maintaining a standardized input resolution 379

of 256× 256. To prevent overfitting, consistent data augmen- 380

tation was applied in experiments, including random rotation, 381



Left Lung Right Lung Heart
Method Dice↑ Jaccard↑ HD95↓ Dice↑ Jaccard↑ HD95↓ Dice↑ Jaccard↑ HD95↓
UNet [Ronneberger et al., 2015] 97.87 95.87 5.06 97.26 94.72 5.92 95.63 91.70 9.48
AttUnet [Oktay et al., 2018] 97.88 95.87 4.57 97.32 94.83 5.71 95.72 91.88 8.34
UNet++ [Zhou et al., 2020] 97.91 95.94 4.35 97.27 94.74 5.58 95.63 91.71 8.88
TransUnet [Chen et al., 2021] 97.53 95.20 5.76 96.87 93.99 7.34 94.85 90.31 10.77
SAUNET [Sun et al., 2020] 97.64 95.90 4.51 96.89 94.03 7.00 95.01 90.57 8.71
SPGNetseg(ours) 98.01 96.10 3.91 97.40 95.01 5.64 95.96 92.27 8.09

HybridGNet+2IGSC [Gaggion et al., 2022] 93.51 87.9 8.64 91.72 84.82 11.45 90.05 82.11 12.12
Joint+HDC [Bransby et al., 2023] 95.83 92.05 6.78 94.84 90.29 8.70 93.14 87.28 9.83
SPGNetshape(ours) 97.39 94.93 4.57 97.28 94.73 5.62 94.97 90.33 9.95

Table 1: Comparison with state-of-the-art methods on JSRT. Above the central horizontal line, a comparison is made for methods based on
dense pixel-level classification, while below, a comparison is conducted for methods based on points regression.

Breast Tumor
Method Dice↑ Jaccard↑ HD95↓
UNet [Ronneberger et al., 2015] 73.15 63.89 43.2
AttUnet [Oktay et al., 2018] 74.60 66.05 30.25
UNet++ [Zhou et al., 2020] 72.94 64.52 31.76
TransUnet [Chen et al., 2021] 71.84 62.66 38.27
SAUNET [Sun et al., 2020] 73.52 65.00 31.28
UNext-L [Valanarasu et al., 2022] 67.03 56.73 46.11
AAUNet [Chen et al., 2023] 77.68 68.94 29.10
SPGNetseg(ours) 78.40 69.70 26.46

Table 2: Comparison with state-of-the-art methods based on dense
pixel-level classification on BUS.

random vertical flipping, and random changes in brightness382

and contrast. We performed 150 epochs of training on the383

JSRT dataset and 300 epochs on the Breast Ultrasound Dataset384

(BUS) while keeping the remaining training hyperparameters385

consistent. The batch size was set to 16, utilizing the Adam386

optimizer. The initial learning rate was 0.0001, with weight387

decay at 0.0005, and a learning rate decay of 90% every 15388

epochs. During the validation phase, we assessed segmenta-389

tion performance using the Dice coefficient(%) (Dice), Jac-390

card index(%) (Jaccard), and 95% Hausdorff Distance(mm)391

(HD95).392

4.3 Comparison with State-of-the-art393

Results on JSRT. Table 1 summarizes the experimental out-394

comes for the left lung, right lung, and heart components in395

JSRT. Our method, employing a shape point sampling of 128,396

surpasses other dense pixel-level classification approaches in397

the average Dice score. Although the improvement in average398

Dice may not be as pronounced compared to other methods,399

as depicted in Figure 7, our approach distinctly excels in edge400

smoothness and accuracy. Moreover, in methods based on401

points regression, our approach (with a shape point sampling402

of 64) achieves significantly higher average Dice scores in403

the shape path than other state-of-the-art points regression404

methods. Training was conducted in both scenarios, using405

our parameters and the optimal parameters specified in their406

respective papers. Compared to the state-of-the-art method407

[Bransby et al., 2023], our method demonstrates improve-408

ments in Dice scores of 1.56%, 2.44%, and 1.83% for the409

left lung, right lung, and heart, respectively. These results410
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Figure 7: Qualitative experimental examples were conducted on the
BUS and JSRT datasets, where errors in the comparative method are
highlighted with red rectangular boxes.

highlight the superior performance of SPGNet on datasets 411

exhibiting prominent shape patterns. 412

Results on BUS. Table 2 presents the experimental re- 413

sults on the BUS dataset. The segmentation path of our 414

method(with a shape point sampling of 128) achieved an av- 415

erage Dice score superior to other state-of-the-art methods 416

based on dense pixel-level classification. For SPGNet, the 417

Dice and Jaccard scores reached 78.4% and 69.7%, respec- 418

tively, This represents an improvement of 0.72% and 0.76% 419

compared to the previous state-of-the-art method [Chen et 420

al., 2023]. As illustrated in Figure 7, our method excels in 421

accurately identifying the location of breast tumors and main- 422

taining overall shape and edge smoothness. The experimental 423

results demonstrate that SPGNet can leverage shape priors 424

to enhance performance on datasets with underlying shape 425

patterns. 426



Method Lseg Lc Lshape
Dice of

BUS
Dice of

Right Lung
Baseline - - - 74.04 97.49

DCM λ1λ2 - - 75.69 97.52
DCM+Tasm λ1λ2 λ3 λ4 78.56 97.64

DCM+Tasm +
(Crop+LRM)×1

λ1λ2 λ3 λ4λ5 78.86 97.66

DCM+Tasm +
(Crop+LRM)×2

λ1λ2 λ3 λ4λ5λ6 79.37 97.69

DCM+Tasm +
(Crop+LRM)×3

λ1λ2 λ3 λ4λ5λ6λ7 79.63 97.71

Table 3: Ablation study on the effectiveness of components in the
shape-prior path, with fold 1 of the BUS dataset and fold 4 of
JSRT(right lung) as the validation set.
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Figure 8: Ablation on the number of clusters in BUS and JSRT
(Heart), with fold 1 of the BUS and JSRT as the validation set.

4.4 Ablation Study427

Ablation of Each Component in Shape-prior Path. Table428

3 illustrates the performance enhancement trends of the seg-429

mentation path with the introduction of each component in430

our dual-path collaborative network compared to the baseline.431

To validate each module, various coefficients in the mixed432

loss function were adjusted to reflect the combined effects.433

It was observed that three factors primarily contributed to434

the improvement: (i) DCM (Dual-path Collaboration Mod-435

ule): Coefficients λ1 and λ2 for Lseg were set during training436

to highlight the impact of DCM. Utilizing DCM, which en-437

ables collaborative learning of input image features by dual-438

path encoders, yielded enhancements of 1.65% for BUS and439

0.03% for the right lung, emphasizing the effectiveness of our440

dual-path collaborative network structure. (ii) Supervision on441

Shape: Building upon the first factor (DCM), coefficients λ3442

and λ4 for Lc and Lshape were introduced. This supervises443

the shape weights and guides the ASM Transformation out-444

put shape, leading to a significant 2.87% improvement for445

BUS and 0.12% for the right lung. This underscores the ef-446

fectiveness of our offline-modeled, multi-class shape priors in447

guiding the segmentation network, demonstrating that deep448

learning segmentation networks, guided by diverse shape prior449

information, can significantly compensate for deficiencies in450

shape perception. (iii) Multi-stage Shape Refinement: Build-451

ing upon the second factor (DCM+Tasm), coefficients λ5, λ6,452

and λ7 were sequentially introduced for each stage of shape453

refinement. With the introduction of each refinement stage,454

there has been a relative improvement of 0.3%, 0.81% and455

1.07% for BUS, and 0.02%, 0.05% and 0.07% for the right456
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Figure 9: Ablation on the number of shape points in BUS and JSRT
(Heart) was performed, with fold 1 of BUS, fold 3 of JSRT (Heart)
and fold 4 of JSRT (Right Lung) as the validation sets.

lung, respectively, compared to the result of (DCM+Tasm). 457

This demonstrates that our combination of multi-stage shape 458

refinement modules (Crop+LRM) is effective. The experi- 459

mental results indicate that the shape-prior path could lead to 460

improved performance in the segmentation path. 461

Ablation on the Number of Clustering. We validated the 462

impact of the number of clusters in Procrustes shapes agglom- 463

erative clustering on segmentation performance. Our criterion 464

is to select the value that maximizes the variance of cluster 465

distances as the offline clustering quantity for SPGNet. As 466

shown in [Figure 8 (a)], when we chose the clustering quantity 467

k value according to our rule (our rule selected 30), the vari- 468

ance of cluster centers reached 9.31%, and SPGNet achieved 469

a dice value of 79.63%. The segmentation performance is 470

higher compared to situations when we chose the values of the 471

cluster of numbers (k) around the one selected according to 472

our criterion. A similar trend can be observed in [Figure 8(b)]. 473

This suggests that selecting the value that maximizes the vari- 474

ance of cluster distances can approximate an optimal quantity 475

of shape types, avoiding situations with insufficient categories 476

or redundancy. This serves as a suitable rule for selecting the 477

clustering quantity to enhance segmentation performance. 478

Ablation on the Number of Shape Points. We assessed the 479

impact of varying quantities of shape points on segmentation 480

performance, as depicted in Figure 9. Seven scenarios, ranging 481

from 32 to 256 shape points, were selected to observe their 482

influence on segmentation performance. As the number of 483

shape points increased, our segmentation performance gradu- 484

ally improved, reaching optimal performance at 128 points. It 485

can be observed that the number of points (e.g., 96, 128, 192, 486

256) that effectively represent shapes leads to a significant im- 487

provement in model performance, with little variation among 488

them. Therefore, selecting sufficient and reasonable numbers 489

of points can better promote model performance improvement. 490

5 Conclusion 491

In this paper, we introduce a novel shape-prior guided seg- 492

mentation network. The core concept is to enable the network 493

to grasp the shape distribution within the data by learning 494

from statistical shape model enriched with shape prior knowl- 495

edge, thereby enhancing segmentation accuracy. We validate 496

the effectiveness of the proposed network through extensive 497

experiments on two public datasets. 498
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