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We present a novel form of Liquid Automata, using this to sim-
ulate autopoiesis, whereby living machines self-organise in the
physical realm. This simulation is based on an earlier Cellular
Automaton described by Francisco Varela. The basis of Liquid
Automata is a particle simulation with additional rules about how
particles are transformed on collision with other particles. Unlike
cellular automata, there is no fixed grid or time-step, only parti-
cles moving about and colliding with each other in a continuous
space/time.
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1 INTRODUCTION

Living systems cannot be understood separately from the environment they
live in. They are organised in a causal circular process of becoming, and it is
this very circularity that is a necessity for living – autopoietic - systems. An
autopoietic system is alive if it produces itself in the physical space, based on
interactions between physical elements that go on to produce new physical
elements necessary for the regeneration of the system [8]. A living system
is a self-referential domain of interactions in the physical space, generally a
network of ’chemical’ relationships. According to Maturana and Varela, “An
autopoietic machine is a machine organized (defined as a unity) as a network
of processes of production (transformation and destruction) of components.”
[8, p78]

However, there are many kinds of chemical networks that aren’t alive,
consider a chemical explosion which exhibits a runaway chain reaction of
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positive feedback. The signature of life is the emergence of a structure that
distinguishes self from non-self, closing it off from its environment, “A uni-
verse comes into being when a space is severed into two. A unity is defined.”
[8, p73] This closure emerges from, and is dynamically and homeostatically
maintained by, the underlying organisation. There are thus two key compo-
nents to autopoiesis:

1. Organisational closure: A network of the processes of production, e.g.
a chemical reaction system

2. Structural closure: The appearance of a homeostatically maintained
boundary that divides self from non-self, e.g. a cell-wall. This is also
described as the maintenance of identity.

Simulated autopoiesis is a demonstration of how autopoiesis works and
enables us to study simpler autopoietic systems not found in nature. We de-
fine an organisationally closed system, with the aim of generating structural
closure. The system explored here is defined as an organisationally closed
chemical reaction system (CRS), bathed in a liquid substrate that provides
the raw materials from which the system builds itself. In figure 1, the seed is
a catalytic agent (triangle) that transforms the substrate (circles) into its struc-
tural building blocks (squares). The system, in effect, feeds off the substrate
particles. The link particles are able to self-organise (blue links) themselves
into a structure akin to a long-chain polymer. This long chain of bonded
links is able to wrap around and close in on itself to form a closed boundary,
analogous to a cell wall enclosing the catalyst.

The basis of this Liquid Automaton is a 2D particle simulation with addi-
tional rules about how particle state changes on contact with other particles.
Unlike cellular automata, there is no fixed grid, just particles moving about
and colliding with each other in a continuous space. By analogy with cellular
automata, the Liquid Automaton is a variety of collision-based system [12].
The simulation is based on just three rules, defined below, based on an earlier
cellular automaton devised by Varela [14] (see section 3). These rules are
invoked on contact (as with rules 1 and 2), or may occur spontaneously (as
with rule 3).

2 DEFINITIONS

A Liquid Automaton, L, is defined as follows. The nomenclature is based on
tools for building particle systems including Box2D and LiquidFun.

2



FIGURE 1: Liquid automaton showing a boundary (blue links) forming
around the catalyst (triangle), distinguishing self from non-self. The catalyst
transforms the substrate (circles) into its structural building blocks (squares).

L = (W,P,B, J,R) (1)

where :

W is a world

P is a set of particle Types

B is a set of bodies, instances of particles

J is a set of joints, that enable bodies to be bonded together

R is a set of reaction rules

The world, W , defines the space, or coordinate system, in which the liquid
automaton operates. There is currently a great deal of interest in 2D particle
simulations, and this work builds on those advances, though the same ideas
extend to three (and higher?) dimensions. A world may, or may not, have
gravity; this simulation does not. The simulation explored here introduces
energy into the system in the form of a random ‘Brownian’ motion defined in
terms of a Wiener process [11] along the x,y dimensions. The force applied
along each dimension is a normally distributed random variable with zero
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mean, and variance, (delta)2dt, correlated with a single parameter delta, and
time period, dt, which varies dynamically.

The set of particle types, P , defines which kinds of particle exist in the liq-
uid automaton. In this example, P = {K,S,L}, representing the catalyst, the
substrate, and the link particle. The reaction rules will be expressed in terms
of these particle types. Each particle type has a distinct shape, which may be
a compound shape including specific sensor sites or regions that can create a
‘neighbourhood’ around a particle extending beyond its visible outline.

Bodies, B, represent the ‘physical’ configuration of the system. Each body
b ∈ B has an associate particle type p ∈ P . Bodies provide the underlying
particle simulation having both a position, orientation and velocity in space,
as well as other properties including mass.

Joints, J , enable particles to bond together, forming compound particles.
This mechanism is analogous to covalent bonding, enabling the formation of
‘molecular’ structures. The underlying particle simulation will typically offer
a range of joint types.

The reaction rules, R, define the organisation of the system. These rules
operate asynchronously, either on collision of two or more particles, or may
occur spontaneously at a given rate. Reaction rules should conserve mass.
The set of reaction rules that define the simulation of autopoiesis are as fol-
lows:

composition : K + 2S → K + L (2)

concatenation : Ln + L → Ln+1 (3)

disintegration : L → 2S (4)

where :

K − catalyst (triangle)

S − substrate (circle)

L− link (square)

A reaction rule has a left-hand side defining the reactants, separated by an
arrow from the reaction products on the right-hand side. The appearance of a
+ (plus) symbol between reactants indicates a collision event where all of the
indicated particles have come into contact. Each particle type may be prefixed
by a number indicating an integer number of particles of the same type, so that
K + 2S is equivalent to K + S + S, the interaction of three particles. The
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use of plus between reaction products, indicates that the reaction produces
many outputs. Bonds are indicated by multiplicative operators, such as the
dot operator (not shown). Consequently, the use of superscripts, such as Ln

in rule 2, denotes n particles of the same type, L, bonded together (by a joint)
[6].

In a liquid automaton we can only define explicit reaction rates for spon-
taneous reactions that don’t involve collisions, such as the disintegration rule.
The remaining rules are triggered as a result of collisions between different
particles. Composition only occurs when a catalyst comes into simultane-
ous contact with a pair of substrate particles, which are then fused together
to form a link particle. Concatenation enables the self-organisation of the
boundary. Links are able to make up to two connections, and when two links
collide, and are able to do so, they form a bond between them (shown as a
blue line). As these links are being formed around the catalyst, it’s likely
that the bonded links will close the circle, enclosing the catalyst. The em-
bodiment of the catalyst as a shape with a certain extent, creates an internal
pressure that holds the links apart, (mostly) preventing them forming useless
tight enclosures. These ‘zombie’ structures without a catalyst at their heart,
lack the organisation necessary to repair themselves. Links are also subject to
decay, and may spontaneously disintegrate back into a pair of substrate parti-
cles. Disintegration triggers the homeostatic repair of incomplete boundaries,
and also serves to recycle ‘waste’ links that may have drifted too far from
the catalyst, along with the aforementioned Zombies. In this experiment, a
single catalyst particle is introduced at the beginning, which is not subject to
disintegration. Autopoiesis is intriguing because reproduction is not seen as
an essential quality of life. Hence, this minimal model is not concerned with
the production of new catalysts, or autocatalysis.

3 HISTORY

The work in this paper was inspired by the Cellular Automaton, or tesselation
model, described by Francisco Varela [14] as a way to explain the process
of autopoiesis in concrete terms. It was intended as a simplified model of
the reaction rules found in living cells. The output shown in Figure 2 is pro-
duced by code based closely on an algorithm provided by Varela [13]. While
the figures in Varela’s paper are hand-drawn based on printed output from a
FORTRAN program [9], the same graphics are reproduced by our code. The
catalyst is shown as an asterisk, substrate particles as circles, and link particles
as squared circles. Unusually for a cellular automaton, bonds are indicated
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FIGURE 2: A simulation of autopoiesis using a discrete time cellular au-
tomaton on a rectangular grid, based on Varela’s original algorithm. In (a) a
pair of substrate (circles) are transformed into a single link (squared circle)
by the catalyst (asterisk). By (c) we see the first bonds forming, then in (i)
these finally form a closed boundary around the catalyst.
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by lines drawn between pairs of cells representing bonded link particles.
It implements the same reaction rules as our liquid automaton, as defined

in equations (2) to (4). Figure 2 illustrates a number of steps from a single
run. In step (a) at time, t = 1, a pair of substrate particles are transformed into
a single link particle by the catalyst. After the production of a number of link
particles, we see the first bonds forming between them by step (c) at t = 3.
The composition rules in Varela’s algorithm are constrained to forming only
obtuse bond angles. This prevents the uppermost link particle at t = 8 (h)
from bonding with the particle immediately below it, so it is only when this
particle disintegrates later at t = 16 (i) that enables the remaining links to
re-bond, and form a closed boundary around the catalyst.

These same rules were re-implemented in a later program called SCL
(Substrate, Catalyst and Link) by McMullin using the SWARM system [10]
where chemical reaction rules were captured in a modular fashion enabling
their reaction rates to be more precisely controlled. This system also intro-
duced a more configurable way to control the random motion of particles
in the 2D space. However, unlike the proposed liquid automata model, the
SWARM system modelled space as a square lattice with a toroidal toplogy,
and discrete time.

Another cellular automaton, Conway’s “Game of Life” [5, 3, 1, 7] is also
amenable to analysis using autopoietic theory [2]. The Game of Life typifies
emergent, self-organized behaviour and in these behaviours it is possible to
identify processes, local transformations in the space of patterns, that are or-
ganisationally closed. Thus we see cyclic transformations of patterns that are
self-reproducing, like the classic ‘blinker’ and ‘glider’. However, the bound-
ary of a self-reproducing form has to be understood in a more abstract way
than a cell-wall, as the set of surrounding cells that need to be specifically on
or off, for it to survive; its contingent neighbourhood. However, this abstract
conception of boundary has no power to contain the form and protect it from
external disruption.

4 PARTICLE SYSTEMS

Particle systems are game physics engines designed to reproduce naturalistic
phenomena based on objects moving around, typically in a 2D space. The
system used for this simulation described in this paper is Box2D (specifically
pybox2D), a rigid body simulation library for games. Interestingly, Box2D
has been used as the game engine for a number of implementations of “Angry
Birds.” Each particle is a 2D body with mass and velocity, so particles have
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FIGURE 3: Absolute quantities of substrate, links, and bonds. The quantity
of substrate drops rapidly at the start as they collide with the exposed catalyst.
Conversely, the number of links increases as they are produced in the reaction
of the substrate with the catalyst. Bonds form as links are produced.

three degrees of freedom; translation in x,y coordinates, and rotation. Each
body is associated with one or more shapes which can be any geometrical
construct, such as the squares, circles, and triangles used here. Joints define
constraints on the relative motion between two bodies, used here to create
bonds between neighbouring links. Forces, torques, and impulses are applied
to bodies to make them move. Box2D includes a high performance iterative
constraint solver that resolves joint constraints, particle motion and resulting
collisions [4]. Particles can bounce off each other in elastic collisions, or
slide against each other based on a realistic simulation of the frictional forces
between them.

5 ANALYSIS

For liquid automata to be more than a pretty picture, we must be able to
perform some analysis on the system. We must ask ourselves, “what does the
system do?” Firstly, we can inspect the raw quantities of different elements
in the system over time. The system starts out with a single catalyst and
a predefined number of substrate particles, which is initialised to 700 as a
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FIGURE 4: Rates of change of substrate, links, and bonds based on a 20 sec-
ond moving average. The relationship between rates of change for substrate,
∆S, and links, ∆L, is ∆S = −2∆L.

default. There are initially, no link particles or bonds. Figure 3 shows the
typical progress of the system over the first 100 seconds. The number of
substrate particles drops rapidly at the start as they come into contact with
the exposed catalyst. Conversely, the number of link particles increases as
they are produced in the reaction of the substrate with the catalyst. After a
while we begin to see the number of substrate particles increase again, as the
effect of the disintegration rule becomes more prominent. As expected, these
quantities are perfectly anti-correlated (Pearson correlation coefficient = -1).

As the link particles come into contact with each other they form mutual
bonds. There can never be more bonds than link particles, and there will be
fewer bonds than links on the whole, except in the unlikely state where the
link particles form a perfect ring. We expect these quantities to be correlated;
the Pearson correlation coefficient between the links and bonds is 0.68 (with
a p-value significant at 1% level).

A more informative plot shows the rates of change of each of these vari-
ables. Figure 4 plots the rates of change over the first 100 seconds, using a
20 second moving average; the plot is too spiky to make sense of without
averaging. It’s easier to observe that for rates of change for substrate, ∆S,
and links, ∆L, the relationship between them is ∆S = −2∆L, in accordance
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FIGURE 5: Phase plot of the average rate of change in the number of links
versus bonds. The origin is an attractor, with larger vectors at greater dis-
tances from the origin.

with the 2:1 ratio of substrate to link composition and disintegration.
These tests merely show that the code is working properly as an imple-

mentation of the reaction rules, in order to achieve organisational closure. To
evaluate the system’s capacity for self-preservation, we must look deeper into
what the system is actually doing. We hypothesize that the system is acting
as a simple feedback controlled regulator, acting to limit the flow of substrate
particles to the catalyst.

One way to visualise this is to plot a phase diagram of the system as seen in
Figure 5. This shows the mean direction of travel at each state visited by the
system, in terms of the rates of change of the substrate versus bonds. The rate
of change of bonds was selected as the horizontal axis, because a comparable
phase plot of substrate against links would lie on a straight line, as there is
a simple linear relationship between them. We can think of this diagram
as showing the flux of substrate being composed into links, forming bonds,
before disintegrating back into substrate. The data points themselves are not
averaged, so we see only integer differences in quantity. Observe that the
vectors point towards the origin, with larger magnitudes at greater distances
from the origin. With more bonds, fusion of substrate particles to form links
is throttled back, reducing bond formation. As links disintegrate back into
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substrate, bonds break, and the flow of substrate to the catalyst increases. The
origin is an attractor, and the system therefore tends to move towards dynamic
equilibrium around zero substrate flux.

6 CONCLUSION

We presented a Minimal Autopoietic Simulation, demonstrating both organ-
isational and structural closure. This simulation was created within a novel
Liquid Automata framework that enables us to define the system in terms of
moving bodies within a continuous space/time (of course, realised discretely
at some lower level), rather than a fixed grid and discrete time-steps, as in
a cellular automaton. It invites investigation of more interesting chemical
networks with more sophisticated metabolisms.
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