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Bilinear elastic behaviour allows structural designs to respond in either a stiff or compliant manner depending 
on the load. Here a cylindrical sinusoidal lattice structure is described that stiffens beyond a certain load. 
When subjected to axial compression, the lattice can undergo a topological transformation by forming contact 
connections. This topology change involves a transition from rectangular-like unit cells to kagome-like unit 
cells, associated with an approximately fourfold increase in stiffness. The lattice exhibits negative Poisson’s ratio 
with a step-change from ≈ −0.66 to ≈ −0.23 prior to and during contact formation, respectively. After contact 
formation, it displays a nonlinear Poisson’s ratio behaviour. The mechanics underpinning these behaviours are 
analysed using a combination of experiments and numerical modelling. A comparison with similar planar lattices 
reveals the effect of the global topology of the lattice (e.g. planar, cylindrical) on the unit cell-level topology 
morphing. The proposed topology-morphing cylindrical sinusoidal lattice introduces new design possibilities in 
the application-rich context of tubular structures with nonlinear mechanical properties.
1. Introduction

Cylindrical lattices have received increased interest in recent years 
owing to their advantageous properties. These include low weight [1,

2], shock [3,4] and energy absorption [5–10] capabilities, negative 
Poisson’s ratio (NPR) [11–14], and extension- [15]/compression-twist 
coupling [16–20], making them suitable for diverse applications in 
aerospace [21–25], automotive [26,27], biomedical engineering [28–

32], and soft robotics [33–35]. These lattices are constructed using a 
variety of microstructural unit cell designs [36], which impart the afore-

mentioned macroscopic mechanical properties, while also allowing for 
the tailoring of these properties by tuning their geometric parameters. 
Wang et al. [26] utilised a NPR structure within a jounce bumper to 
improve automotive suspension systems. The study reported that NPR 
jounce bumpers had excellent viscoelastic properties, effectively absorb-

ing impact energy due to their high damping capacity. Moreover, these 
bumpers exhibited mechanical behaviour similar to conventional ones, 
but with a smoother load-displacement curve, which could enhance 
the vehicle’s performance by reducing noise vibration, and harshness. 
Inspired by the shape of a parrot’s beak, Hamzehi et al. [10] pro-

* Corresponding author at: Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.

posed zero Poisson’s ratio cylindrical metamaterials which absorb and 
dissipate energy per unit of mass at high compressive strains with-

out global buckling. Using finite element (FE) analysis and 3D-printed 
specimens, they demonstrated bistable deformation patterns including 
friction-based and interlocking mechanisms and also explored its full 
reversibility upon a heating–cooling process.

Several studies have investigated cylindrical lattices for use as 
biomedical stents [28–32]. Stents play a crucial role in the treatment 
of coronary artery disease and esophageal cancer, which are among the 
leading global causes of mortality [37]. Since certain arteries deform 
auxetically when simultaneously subjected to circumferential strain and 
wall shearing due to blood flow [38], the auxetic behaviour of cylindri-

cal lattice structures can reduce deformation incompatibility with blood 
vessels and this could make them more suitable for angioplasty and 
oesophageal stent applications. Ali et al. [28,29] suggest that auxetic 
oesophageal stents with anisotropic mechanical behaviour can be more 
compatible with the multi-layered oesophageal wall, which exhibits 
nonlinear anisotropic mechanical response. Geng et al. [30] studied 
a 3D-printed cylindrical stent with chiral unit cells and demonstrated 
that its negative Poisson’s ratio can be tailored using unit cell de-
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sign parameters. Clinical stents should also possess high circumferential 
strength and bending flexibility to function effectively [39]. Jiang et 
al. [31] studied the radial mechanical performance of cylindrical sinu-

soidal lattice-based stents using FE analysis and experiments performed 
on 3D-printed prototypes. These auxetic tubular lattices exhibited a 
72.7% increase in ductility compared to conventional diamond tubu-

lar structures. The study also reported that the beam depth-to-length 
ratio of sinusoidal ligaments significantly improves radial stiffness and 
peak load, while the amplitude ratio increases ductility. In another 
study [32], they analysed the bending behaviour, demonstrating that 
these cylindrical sinusoidal lattices exhibit highly compliant behaviour, 
resulting in an 85.4% increase in ductility compared to conventional 
diamond tubular lattices.

Many of these studies primary focus concerns improving/tailoring 
auxeticity, energy absorption and mechanical performance of cylin-

drical lattice designs. However, there is a growing acceptance of us-

ing nonlinear elastic behaviour in large-deformation (geometrically 
non-linear) components to optimise performance. Examples of this ap-

proach can be found across different length scales, including helical 
lattices [22,40–42], compliant mechanisms [43,44], and architected 
materials [45–47].

The potential benefits of geometric nonlinearity can be exploited 
further by allowing structural connectivity to adapt to better meet 
multiple operational requirements [48–54]. This reconfiguration es-

tablishes alternative load paths within the structural system, resulting 
in fundamentally different response modes, such as transitioning from 
high-compliance to high-stiffness behaviour. The formation of new con-

nections leads to a new structural topology, a concept distinct from the 
more conventional approach of altering geometric shape alone. In ar-

chitected materials, self-contact between unit cells often indicates the 
material transitioning into a plastic regime. [8,55–59]. However, with 
careful tuning of the design, self-contact can occur whilst remaining in 
an elastic regime as demonstrated in the study of topology morphing lat-

tice structures [50,54]. Recent studies on metamaterials have attempted 
to achieve topological transformation using external actuators and ma-

terials to reshape the structure into a different topology, thus increasing 
system complexity [48,60,61]. In contrast, our approach achieves the 
topology transformation passively as a result of the applied load in iso-

lation. This offers a new method for designing structures capable of 
morphing their topology, suitable for applications involving energy ab-

sorption initially and load carrying under large strains. The structure is 
designed to remain elastic with predictable nonlinear responses.

The topology-transformation of interest here is from rectangular unit 
cells to kagome unit cells, as studied in [50] for planar lattices. This 
topology change increases the compressive and shear stiffness approxi-

mately fourfold. Kagome-like lattice structures, within an intermediate 
density range, exhibit enhanced shear modulus compared to triangular-

like (stretching-dominated) and hexagonal-like (bending-dominated) 
lattice structures. Moreover, they possess favourable transport and heat-

dissipation properties, improved mechanical strength, and ease of fab-

rication [62].

Here, the potential benefits of elastic tailoring through reversible 
topology transformation are demonstrated in the context of cylindrical 
lattices, which arise in a wide range of physical systems and appli-

cations. In particular, the demonstration of bilinear elastic behaviour 
extends previous research on topology morphing in planar sinusoidal 
lattices [50] to cylindrical sinusoidal lattices. Unlike planar lattices, 
cylindrical lattices do not possess traction-free lateral boundaries. This 
closed geometry can induce out-of-plane flexure (torsion) in the beams, 
leading to a distinct response compared to planar lattices. Consequently, 
another key contribution of our work is physical insight into the differ-

ences in the elastic response of planar and cylindrical geometries, thus 
aiding in the development of tailored elastic responses.

Outline of the paper. This paper proceeds as follows: Section 2 pro-
2

vides a brief overview of topology morphing planar sinusoidal lattices 
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Fig. 1. (a) A sinusoidal unit-cell with a pair of concave sides (vertical) and a 
pair of convex sides (horizontal). (b) A sinusoidal unit-cell with a pair of convex 
sides (vertical) and a pair of concave sides (horizontal). 𝐴0 is the amplitude of 
the vertical sinusoidal beam and 𝐿 its half-wavelength; 𝑅𝐴0 is the amplitude 
of the horizontal sinusoidal beam and 𝑊 is its half-wavelength. This figure is 
reproduced from [50].

as discussed in [50]. Section 3 introduces the cylindrical sinusoidal lat-

tice, including details of the supporting FE analysis and the 3D-printed 
prototypes. Section 4 discusses the bilinear stiffness behaviour of the 
lattice by analysing its buckling and nonlinear static behaviour under 
axial compression. Section 5 compares the behaviour of the cylindrical 
lattice with that of the planar lattice. Finally, Section 6 summarises the 
key contributions of this study and its implications for future work.

2. Topology morphing planar sinusoidal lattice - an overview

The ability to control desirable topology morphing in an analogous 
planar sinusoidal lattice system has been demonstrated by Sundarara-

man et al. in [50]. Such a planar sinusoidal lattice comprises alterna-

tively arranged unit cells, each containing pairs of concave and convex 
sinusoidal beams, as shown in Fig. 1. This cell arrangement gives rise 
to a checkerboard pattern (as seen in Fig. 2a). The vertical sinusoidal 
beams are characterised by an ‘amplitude ratio’, 𝐴0∕𝐿, where 𝐴0 is the 
amplitude and 𝐿 is the half-wavelength. Horizontal beams have a half-

wavelength of 𝑊 and an amplitude of 𝑅𝐴0, where 𝑅 = 𝑊 ∕𝐿 is the 
unit cell aspect ratio. Note that the amplitude-to-half-wavelength ratios 
are equal for the vertical and horizontal beams, and the corners of unit 
cells form right angles.

The design philosophy is that, upon sufficiently large axial com-

pression, contacts are formed between vertical sinusoidal beams within 
unit cells that possess concave vertical beams, as illustrated in Fig. 2b. 
Such contacts change the topology of the lattice from rectangle-like to 
kagome-like unit cells. The compressive load at which contacts would 
occur (by inducing the preferred deformation mode shown in Fig. 2b) 
is called the ‘contact load’. The contact load depends on the amplitude 
ratio.

For small amplitude ratios, the lattice buckles globally at a load 
smaller than the contact load, thereby precluding intra-cell contact. This 
global buckling load also depends on the amplitude ratio. However, 
when a critical amplitude ratio, (𝐴0∕𝐿)crit, is exceeded, the contact load 
becomes less than the global buckling load, thus enabling the desired 
topology change. Such amplitude ratios are referred to as super-critical 
amplitude ratios.

The critical amplitude ratio depends on the three hierarchical geo-

metric parameters of the lattice (i) slenderness ratio of the lattice (ii) 
slenderness ratio of the unit cell and (iii) slenderness of the vertical si-

nusoidal beams. These geometric parameters along with super-critical 
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Fig. 2. Planar sinusoidal lattice. (a) Undeformed state. The two sinusoidal unit-cells shown in Fig. 1 are arranged in a checkerboard pattern. (b) Topology-morphed 
state under compression. Circles in red indicate the contact between the vertical sinusoidal beams.
Fig. 3. Global buckling mode of a planar sinusoidal lattice under axial compres-

sion, obtained from linear buckling FE analysis.

amplitude ratio also enable stiffness tailoring of the sinusoidal lattice, 
as studied in [50].

3. Topology morphing cylindrical sinusoidal lattice

Building on the understanding gained of topology morphing be-

haviour in planar sinusoidal lattices, this phenomenon is now explored 
in cylindrical sinusoidal lattices.

Consider, conceptually, a planar sinusoidal lattice with 𝑁𝑥 = 20 hor-

izontal unit cells, 𝑁𝑦 = 4 vertical unit cells and overall width 𝜋𝐷. This 
planar lattice is rolled to form a cylindrical sinusoidal lattice with mean 
diameter 𝐷, as illustrated in Fig. 4. The lattice parameters 𝐿 = 24 mm, 
𝑊 = 𝜋𝐷∕𝑁𝑥 = 12.57 mm, 𝐷 = 80 mm, 𝑏 = 5 mm (out-of-plane or radial 
depth) and 𝑡 = 1 mm (wall thickness) remain constant for all the lat-

tices considered in the study with only amplitude ratio and out-of-plane 
depth being varied. The geometry under consideration offers sufficient 
insight into the underlying physics of lattice behaviour and thus serves 
as a representative model of the general system. Fig. 5 illustrates the 
desired topology-morphing behaviour.

3.1. Finite element analysis

Finite element simulations in Abaqus/Standard 2020 [63] were per-

formed to characterise the linear buckling and nonlinear axial compres-

sion behaviours of the lattice.

A linear elastic material model representing multi jet fusion (MJF) 
3D-printed Polyamide 12 (PA 12) was used with the following mate-

rial parameters [64]: Young’s modulus 𝐸 = 1800 MPa, Poisson’s ratio 
𝜈 = 0.4 [65], ultimate stress 𝜎𝑦 = 48 MPa, density 𝜌 = 1010 kg/m3. Four-

noded quadrilateral shell elements (S4R) [63] with an average element 
length of 0.6 mm were used to mesh the lattices in a structured man-

ner. This mesh ensured a convergence tolerance of approximately 0.1% 
on the load of the first buckling mode, and it was also used for the 
nonlinear static analysis.

The lattice was compressed between a pair of rigid surfaces which 
replicates the loading conditions of the test setting. The reference node 
on the bottom rigid surface was fully constrained while the top rigid 
3

surface was constrained to displace vertically. The penalty method [63]
Table 1

Thickness of 3D-printed sinusoidal beams.

Amplitude ratio, 𝐴0∕𝐿 Thickness (mm)

0.12 1.03

0.15 1

0.18 0.99

0.19 1.11

0.20 0.96

with a friction coefficient of 𝜇 = 0.15 was used to model contact be-

tween the rigid surfaces and the lattice. This value allowed close simu-

lation of the lattice behaviour observed during experiments, specifically 
the outward expansion (sliding) of the lattice on rigid surfaces due to 
its NPR behaviour. A friction coefficient of 𝜇 = 0.4 was used between 
the sinusoidal beams to study the general behaviour of the lattice.

If the lattice deformed with radial symmetry, there would be no 
post-contact sliding between the sinusoidal columns. Nevertheless, to 
account for deformations that break symmetry, the FE simulations were 
performed with friction coefficients of 𝜇 = 0.2, 0.4, 0.6, 0.8 and 1. How-

ever, these solutions were, in fact, symmetric, and thus the friction co-

efficient between the sinusoidal beams does not affect the post-contact 
behaviour of the lattices, before global buckling. This effect is shown in 
Figs. 11–14 in Section 4.2.

3.2. 3D-printed prototypes

To validate the behaviour observed in FE analysis, five prototype 
cylindrical lattices with amplitude ratios 0.12, 0.15, 0.18, 0.19 and 0.20 
were fabricated using MJF 3D printing process [66]. These amplitude 
ratios were sufficient to understand the general behaviour of the pro-

posed concept. A HP 3D 4200 Printer was used to fabricate the samples 
with HP PA 12 material, with the same properties [64] as used in the 
FE simulations (Section 3.1).

The MJF process produces parts with near-isotropic material prop-

erties [67]. It does not require support structures which is particularly 
important for fabricating the cylindrical sinusoidal lattices due to the 
orientation of the printing axis and 3D beam curvatures. For example, 
initial fabrication attempts using fused deposition modelling had very 
poor layer-to-layer continuity. An example of the MJF lattice is shown 
in Fig. 6.

The measured mean thickness of the 3D-printed sinusoidal beams 
deviated from the design thickness of 1 mm, as listed in Table 1. The 
error between the design and fabricated thickness was less than 5%, ex-

cept for the lattice with 𝐴0∕𝐿 = 0.19 in which the deviation was 11%. 
Nevertheless, for an accurate comparison, the thickness in the FE anal-
ysis was adjusted to match the thickness of the fabricated samples.
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Fig. 4. (a) A planar sinusoidal lattice consisting of 𝑁𝑥 = 20 unit-cells in the horizontal direction and 𝑁𝑦 = 4 unit-cells in the vertical direction. (b) A cylindrical 
sinusoidal lattice formed by rolling the planar lattice in (a).

Fig. 5. Cylindrical sinusoidal lattice (a) Undeformed and (b) topology morphed under compression through contact connections (circles in red indicate the contact 

between the vertical sinusoidal beams).

Fig. 6. MJF 3D-printed cylindrical lattices.

4. Cylindrical sinusoidal lattice behaviour

4.1. Bilinear stiffness

The importance of the critical amplitude ratio for planar lattices has 
been identified previously and has informed our present approach [50]. 
The first step in investigating the behaviour of cylindrical lattices is 
to estimate the global buckling load and the contact load for various 
amplitude ratios. Fig. 7 illustrates, through FE analysis, that as the am-

plitude ratio increases, both the global buckling load and the contact 
load decrease. (The contact load for the lattice with an amplitude ratio 
4

of 0.13 was obtained by inducing the corresponding deformation mode 
Fig. 7. Global buckling load versus contact load of the cylindrical lattice for 
various amplitude ratios obtained from FE analysis.

in the FE analysis.) This decrease in load is a result of the increase in 
the amplitude ratio, which reduces the axial and bending stiffness of 
the sinusoidal beams, as explained in [50].

In fact, cylindrical lattices exhibit two distinct fundamental global 
buckling modes. The first is the twisting mode (see Fig. 8a), which oc-

curs for small amplitude ratios such as 0.11, 0.12, and 0.13. However, 
at amplitude ratios of 0.14 and beyond, the bending mode (see Fig. 8b) 

becomes dominant. This shift in buckling behaviour at an amplitude ra-
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Fig. 8. Global buckling modes of cylindrical lattices (a) Twisting mode and (b) Bending mode.
Fig. 9. Load versus displacement of the cylindrical lattice under compression 
for various amplitude ratios, obtained from FE analysis.

tio between 0.13 and 0.14 can be observed as a change in slope in the 
buckling load curve, Fig. 7.

The shift in global buckling from twisting to bending mode can be 
readily explained. When the amplitude ratio is small, the bending stiff-

ness of sinusoidal beams is relatively higher. Specifically, those vertical 
sinusoidal beams which are perpendicular to the global bending axis 
prevent the lattice from globally bending due to their larger second mo-

ment of area about the global bending axis. As a result, these vertical 
sinusoidal beams tend to twist, i.e. they bend along the circumferen-

tial direction, causing an overall twist of the lattice. However, as the 
amplitude ratio increases, the bending stiffness of the vertical beams 
decreases. This decrease in stiffness causes the vertical beams to start 
bending about the global bending axis.

The global buckling load and the contact load become equal at the 
critical amplitude ratio of 0.14.

Fig. 9 presents the load-displacement curves under compression for 
super-critical amplitude ratios. As the amplitude ratio increases the stiff-

ness of the lattices decreases due to the reduction of the bending stiff-

ness of the sinusoidal beams, as discussed in Sundararaman et al. [50]. 
The increase in amplitude ratio also results in a decreased compression 
requirement for achieving contact between the sinusoidal beams, be-

cause the gap between the sinusoidal beams within a unit cell decreases 
as the amplitude ratio increases.

The lattices exhibit an approximately linear response until the oc-

currence of the first contact, indicated by ‘∗’ in the figures. Here, ‘first 
5

contact’ refers to the first occurrence of self-contact in the lattice. This 
contact occurs simultaneously within all unit cells in the middle two 
layers. Following first contact, the stiffness continues to increase lin-

early until contacts within the unit cells at the top and bottom layers 
(boundary layers) are established. Contacts in unit cells at boundaries 
are formed later due to their relatively higher stiffness provided by the 
boundary conditions. Once contacts in all unit cells (final contact) are 
established, the stiffness further increases linearly, signifying a tran-

sition in topology from a rectangle-like structure to kagome-like unit 
cells. The final contact is denoted by ‘∙’ in the figures.

Because the transition regime between the initial and final contacts 
is relatively small compared to the pre- and post-contact regimes, the 
behaviour of the lattice can be approximately characterised as bilinear. 
When the lattice is subjected to sufficient loading after the topology 
change, post-contact global buckling occurs. This global buckling phe-

nomenon is characterised by a brief flat portion in the curves, followed 
by a drop in load, as shown in Fig. 9.

The solid triangles (▴) in Fig. 9, coloured to match the curves repre-

sent the elastic limit. Here, ‘elastic limit’ refers to the load at which the 
von Mises stress within the lattice reaches the ultimate material stress, 
𝜎𝑢. Typically, the maximum stress point is observed at the joints on the 
boundary layers as they flatten due to compression between rigid sur-

faces. The following discussion focuses on the elastic behaviour of the 
lattice.

For amplitude ratio 0.15, the first contact takes place within the 
elastic limit; however, contacts within all unit cells do not occur in this 
elastic region. For larger amplitude ratios, specifically 0.18, 0.19, and 
0.20, final contact occurs within the elastic limit, resulting in a complete 
elastic transformation of the lattice topology. This topology change in-

creases the compressive stiffness by approximately 3.82, 4.16 and 4.73 
times for amplitude ratios of 0.18, 0.19 and 0.20, respectively. The mag-

nitude of stiffness increase is larger for higher amplitude ratios because 
these lattices undergo a larger membrane effect due to the increased 
contact area with an increase in curvature. Fig. 9 shows a significant 
elastic regime after final contact for these amplitude ratios. A minor 
decrease in stiffness can be observed in the figure at displacements of 
5.2 mm, 4.2 mm, and 3.2 mm, respectively, for these amplitude ra-

tios, denoted by black dots on the curves. This decrease is attributed 
to a change in the deformation behaviour of the lattice. After the es-

tablishment of final contacts, the lattices exhibit a membrane effect 
with increased stiffness. However, under further compression, they en-

ergetically prefer to deform through out-of-plane flexure of the vertical 
beams. This out-of-plane flexural behaviour increases the contact area 
between the beams along the depth of the beams i.e. expanding from 
the inner to the outer edges.

Complete elastic transformation of the lattice topology would be 

possible also for amplitude ratios between 0.15 and 0.18 if a mate-
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Fig. 10. Load versus displacement of the cylindrical lattice with amplitude ratio 
0.12 under compression.

rial with a greater yield strain (than PA 12) were used. Moreover, 
bespoke multi-linear elastic stiffness responses can be achieved by tai-

loring the hierarchical geometric parameters. Based on the study of 
topology morphing sinusoidal planar lattices [50], the three key geo-

metric parameters of the cylindrical lattice are expected to be: (i) the 
slenderness of the vertical sinusoidal beam, (ii) the ratio of vertical and 
horizontal sinusoidal beam stiffness, and (iii) the ratio of the cylindri-

cal lattice aspect ratio (𝐷∕𝐻) to the slenderness of the vertical beam, 
where 𝐻 is the mean height of the lattice given by 𝐿 ×𝑁𝑦. Addition-

ally, the out-of-plane or radial depth also influences the behaviour of 
the cylindrical lattice. For example, as the radial depth increases, the 
gap at the inner edges of unit cells decreases, which causes contacts 
to occur earlier than in the planar lattice with a uniform gap. The ef-

fect of radial depth on the load-displacement behaviour is discussed in 
Sections 5.3.

4.2. Experimental behaviour

To validate the behaviour of cylindrical lattices observed in the FE 
analysis, 3D-printed lattices with amplitude ratios of 0.12, 0.15, 0.18, 
0.19 and 0.20 were tested under quasi-static compression. The compres-

sion tests were conducted at a displacement rate of 2 mm/min using a 
Tinius Olsen universal testing machine equipped with a 1 kN load cell.

To provide an accurate comparison the experimental results are 
compared with FE analysis that utilise the observed thickness of the 
fabricated specimens (see Table 1). These comparisons are presented 
in Figs. 10–14. However, the experiments are performed primarily to 
demonstrate the qualitative behaviour (bilinear response) of the pro-

posed system and to validate the robustness of the FE model. Supple-

mentary videos S1 to S3 show the compression behaviour of lattices 
during testing, corresponding to amplitude ratios of 0.12, 0.19 and 0.20, 
respectively.

The lattices were tested until post-contact global buckling, and FE 
results (see Fig. 9) demonstrate that some regions of the lattice would 
have undergone plastic deformation. The experimental tests were re-

peated four times for each amplitude ratio. The first test closely matches 
the FE results. A decrease in stiffness was observed for the subsequent 
tests, which can be attributed to the localised effects plastic deforma-

tion. This decrease is particularly evident for amplitude ratios of 0.12, 
0.15, and 0.18.

For amplitude ratio 0.12, the lattice buckles globally before contacts 
occur in unit cells. This global buckling is reflected by the drop in load 
at an approximate displacement of 6.5 mm in the load-displacement 
curves shown in Fig. 10. For amplitude ratio 0.15, the lattice buckles 
globally before reaching the final contact point, except for the first test, 
6

see Fig. 11. This behaviour is explained, as supported by the FE anal-
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Fig. 11. Load versus displacement of the cylindrical lattice with amplitude ratio 
0.15 under compression.

Fig. 12. Load versus displacement of the cylindrical lattice with amplitude ratio 
0.18 under compression.

Fig. 13. Load versus displacement of the cylindrical lattice with amplitude ratio 
0.19 under compression.

ysis, because the lattice reaches its elastic limit before final contact. 
Therefore, during the first test, the lattice would have sustained plastic 
damage in some locations, causing it to buckle at a reduced load.

For amplitude ratio 0.18, during the final test (Test 4 in Fig. 12), the 
lattice buckles globally near the elastic limit, because it had sustained 

plastic damage during its previous tests. However, it is noteworthy that 



V. Sundararaman, M.P. O’Donnell, I.V. Chenchiah et al.

Fig. 14. Load versus displacement of the cylindrical lattice with amplitude ratio 
0.20 under compression.

the FE results suggest that the plastic deformations are primarily local, 
and no visible physical damage or catastrophic failure was observed 
in the lattices. The repeated test results show reasonable consistency, 
especially for amplitude ratios 0.18, 0.19, and 0.20, as illustrated in 
Figs. 12, 13, and 14, respectively.

In addition to bilinear response, the cylindrical sinusoidal lattices 
also exhibit negative Poisson’s ratio. Therefore, examining how changes 
in topology through contact interactions affect the NPR can offer valu-

able insights for system design.

4.3. Negative Poisson’s ratio

Figs. 15a and 15b illustrate variations in mean radius and Poisson’s 
ratio against axial compression, obtained from FE analysis for lattices 
with amplitude ratios of 0.18, 0.19, and 0.20. The mean radius is mea-

sured at the mid-circumferential sinusoidal ring of the lattice, while the 
(tangent) Poisson’s ratio is calculated as the derivative of the nominal 
lateral-longitudinal strain curve. Points A, B, C, and D in both figures in-

dicate transitions in the compressive response of the cylinder, discussed 
in detail in the following paragraphs.

Until B. After an initial compression of about 0.1 mm, contacts be-

tween the lattice and the rigid plates are established at point A. Subse-

quently, the mean radius undergoes an approximately linear decrease 
with compression until the first self-contact, which occurs due to the 
bending of both vertical and horizontal beams. Consequently, the Pois-

son’s ratio remains approximately constant until first contact, with val-

ues of ≈ −0.67, ≈ −0.66 and ≈ −0.65 for amplitude ratios 0.18, 0.19 
and 0.20 respectively. It can be noted that the absolute value of the 
Poisson’s ratio decreases as the amplitude ratio increases. This happens 
because the greater amplitude ratio corresponds to an increased bend-

ing of beams, as discussed in Section 4.1.

B to first contact. At point B, the Poisson’s ratio decreases (becomes 
more negative) by about 7%; the corresponding nonlinearity in the load-

displacement curves is shown in the pre-contact regime of Fig. 9. This 
effect could be due to a change in the relative magnitudes of the axial 
(membrane) and bending behaviour of the beams.

First contact to final contact. The occurrence of first contact restrains 
the bending of vertical beams, leading to a decrease in the rate of de-

crease of cylinder radius with compression. As a result, the Poisson’s 
ratio sharply increases, reaching ≈ −0.25, ≈ −0.22, and ≈ −0.21, re-

spectively. Subsequently, the Poisson’s ratio remains relatively constant 
7

until final contact (i.e. complete topology transformation) occurs. The 
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increased gap-to-contact for a smaller amplitude ratio results in the ex-

pected increase in compression required before first and final contact 
occurs.

Final contact to C. Now that the topology has transformed, and con-

tacts established between vertical beams in all unit cells, further com-

pression increases the bending resistance of the beams. The subsequent 
membrane-dominated response increases the mean radius by ≈ 0.02%
between final contact and point C in Fig. 15a. The membrane behaviour 
also explains the observed increase in stiffness upon final contact in 
the load-displacement curves (Fig. 9) in Sections 4.1 and 4.2. In this 
membrane-dominated regime, the lattice behaves more like a conven-

tional material (i.e. less bending) and the Poisson’s ratio increases to 
positive values of ≈ 0.08, ≈ 0.14 and ≈ 0.20, respectively. Higher am-

plitude ratios result in a larger peak Poisson’s ratio due to the increased 
contact area associated with increased curvature of the beams. This ex-

planation is further supported by the observation that higher amplitude 
ratios exhibit relatively larger increases in stiffness, as discussed in Sec-

tion 4.1.

From C. From point C, the Poisson’s ratio decreases sharply to negative 
values of ≈ −0.1, ≈ −0.16 and ≈ −0.24, respectively. This sharp change 
in Poisson’s ratio happens because of the decrease in mean radius that is 
shown in Fig. 15a. Additionally, the load-displacement curves in Fig. 9

suggest the onset of out-of-plane flexural behaviour, characterised by a 
slight drop in stiffness upon increased compression after the final con-

tact, as discussed in Section 4.1. (The black dots in Fig. 9 correspond to 
the points C in Fig. 15.) ratios. FE simulations corroborate this expla-

nation by revealing that, as compression increases, the contact region 
between the vertical beams enlarges from inner edges to outer edges.

As the amplitude ratio increases, the compression range in which 
the lattices display a positive Poisson’s ratio decreases. With higher 
amplitude ratios, there is a reduction in bending stiffness, and out-of-

plane flexural behaviour of the vertical beams becomes energetically 
favourable at an earlier stage.

After this sharp drop at point C, the Poisson’s ratio continues to de-

crease until the elastic limit, to values of ≈ −0.32, ≈ −0.32 and ≈ 0.23, 
respectively. This decrease is due to the nonlinear decrease in mean ra-

dius from point C as shown in Fig. 15a. A small jump in Poisson’s ratio 
at point D could be attributed to a slight degree of nonlinearity in the 
mean radius versus compression curves, similar to that discussed for the 
decrease at point B. However, no significant changes in the deformation 
behaviour were observed at points B and D during FE simulations.

Summary of change in Poisson’s ratio. The lattices experience an initial 
step-increase in Poisson’s ratio upon first contact, followed by a linear 
decrease after a sharp decrease at point C. These changes coincide with 
notable alterations in the physical behaviour of lattices. Nonetheless, 
the mean radius change displays an approximate bilinear behaviour due 
to topology change, indicating the bimodular response of Poisson’s ratio 
in these lattices. The close agreement between the FE and experimental 
load-displacement results, as presented in Section 4.1, demonstrates the 
robustness of the FE model. In particular, this close agreement suggests 
sufficient accuracy of Poisson’s ratios estimated using FE analysis, even 
though they were not validated directly experimentally. However, the 
predicted synclastic deformed shapes of the cylindrical lattice, which 
result from NPR, were observed and are clearly shown in Fig. 16.

5. Comparison of cylindrical and planar lattices

5.1. Global buckling and contact load

A key motivation for this study was to characterise the geometrical 
transition from a two-dimensional planar to a three-dimensional cylin-

drical structure. Therefore, to understand the behavioural difference 

between these geometries, the behaviour of unrolled planar versions of 
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Fig. 15. (a) Mean radius versus compression and (b) Poisson’s ratio versus compression of the cylindrical lattice for amplitude ratios 0.18, 0.19 and 0.20, obtained 
from FE analysis.
Fig. 16. Synclastic shapes of cylindrical sinusoidal lattice exhibiting nega-

tive Poisson’s ratio behaviour under axial compression (a) 𝐴0∕𝐿 = 0.19 and 
(b) 𝐴0∕𝐿 = 0.20.

Fig. 17. Global buckling load versus contact load of the cylindrical and planar 
lattices, obtained from FE analysis.

the cylindrical lattices with the same geometrical parameters is investi-

gated.

Fig. 17 shows the comparison of the global buckling and contact 
load (both obtained from FE analysis) of the planar lattice with that of 
the cylindrical lattice. Unlike the cylindrical lattice (see Fig. 3), the pla-

nar lattice exhibits only the lateral buckling mode as its fundamental 
8

buckling mode for all amplitude ratios. Hence, the decrease in global 
buckling load against the increase in amplitude ratio appears relatively 
more linear. For amplitude ratios until 0.13 (i.e. for amplitude ratios 
with twist global buckling mode), the global buckling load of the cylin-

drical lattice is approximately constant and is higher than that of the 
planar lattice. However, beyond an amplitude ratio of 0.14 (i.e. for am-

plitude ratios with bending mode as their global buckling mode), the 
global buckling load linearly decreases and becomes less than that of 
the planar lattice at an amplitude ratio of 0.16. This decrease in the 
global buckling load of the cylindrical lattice suggests that the influ-

ence of the decreasing amplitude ratio is relatively larger in the case of 
the cylindrical lattice.

For all amplitude ratios, the contact load is larger for the planar 
rather than for the cylindrical lattice, because the planar lattice is stiffer 
reflecting the lack of twist deformation during bending of the sinusoidal 
beams. Also, the traction-free lateral boundaries of the planar lattice 
make it effectively stiffer than the cylindrical lattice. However, similar 
to the cylindrical lattice, the contact load follows an approximately lin-

ear decreasing trend with an increase in amplitude ratio. These effects 
in combination increase the critical amplitude ratio from 0.14 in the 
cylindrical lattice to 0.15 in the planar lattice.

5.2. Bilinear behaviour

As shown in Section 4.1, the cylindrical lattice exhibits bilinear 
elastic behaviour under compression for super-critical amplitude ra-

tios of 0.18, 0.19, and 0.20. These amplitude ratios also fall into the 
super-critical range for the planar lattice. Fig. 18 compares the load-

displacement behaviour of the planar lattice at these amplitude ratios 
with that of the cylindrical lattice. For all amplitude ratios, initial con-

tact in cylindrical lattices occurs earlier than in planar lattices. This 
effect can be explained by considering the gap-to-contact response in 
the cylindrical lattice, between the inner edges (in the radial direction) 
of the vertical sinusoidal beams, being smaller than the uniform gap be-

tween the beams in the planar lattice. Therefore, in cylindrical lattices, 
contact initially occurs at the inner edges. As compression increases, the 
contact area gradually expands, progressing toward the outer edges of 
the beams.

For the planar lattice with an amplitude ratio 0.18 the elastic limit 
is reached before contacts occur in all unit cells. However, for an am-

plitude ratio 0.19 the elastic limit is reached immediately after the final 
contact. Increasing the amplitude ratio to 0.20, a significant second lin-

ear stiffness regime is observed after the final contact, i.e. after topology 
change. In this case, the stiffness increases by 6.88 times from that of 

its initial topology, which is greater than the increase observed in the 
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Fig. 18. Load versus displacement under compression for cylindrical and planar 
lattices with amplitude ratios 0.18, 0.19 and 0.20, obtained from FE analysis.

Fig. 19. Load versus displacement under compression for the planar lattice with 
amplitude ratio 0.20, obtained from FE analysis and experiment.

cylindrical lattice. Also, as shown in Fig. 18, the pre-contact stiffness of 
planar lattices is higher than that of the cylindrical lattices.

The larger stiffness in the initial and transformed topologies of the 
planar lattice results from the presence of traction-free lateral bound-

aries. These lateral boundary effects are not present in the cylindrical 
lattice. However, the nature of cylindrical geometry induces out-of-

plane flexure of sinusoidal beams resulting in relatively lower stiffness 
compared to the planar counterpart. The effects of out-of-plane (or ra-

dial) depth on load-displacement and NPR behaviours are discussed in 
Sections 5.3 and 5.4, respectively.

To validate the FE results for the planar lattices, a 3D-printed planar 
lattice with an amplitude ratio of 0.20 was subjected to experimental 
testing under quasi-static compression using the same material proper-

ties as those used in Section 3.2. The actual thickness of the fabricated 
lattice was 1.03 mm. FE analysis was performed using this same thick-

ness, and the resulting load-displacement behaviours are presented in 
Fig. 19. The close agreement between the FE and experimental results 
highlights the robustness of the FE model in accurately predicting pla-

nar lattice behaviour.

5.3. Effect of out-of-plane (or radial) depth

For a given out-of-plane (or radial) depth, the unit cells of the planar 
lattice possess a uniform gap between the sinusoidal beams. However, 
in the unit cells of the cylindrical lattice, the mean gap is greater than 
that between the inner edges but less than that between the outer edges. 
Hence, the radial (out-of-plane) depth of the cylindrical lattice influ-
9

ences its topology morphing behaviour.
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Fig. 20. Load versus displacement under compression for cylindrical and planar 
lattices with amplitude ratio 0.20 for various depths, obtained from FE analysis.

Fig. 21. Reaction moment about vertical axis versus compression of the cylin-

drical lattice with amplitude ratio 0.20 for various depths, obtained from FE 
analysis.

As the out-of-plane depth increases, the relative decrease in stiff-

ness of pre- and post-contact stiffness of cylindrical lattice increases. 
This effect is illustrated in Fig. 20 for amplitude ratio 0.20. For the 
depth of 5 mm, the pre-contact stiffness of the cylindrical lattice is 
approximately 11% less than that of the planar lattice while this differ-

ence increases to approximately 17% and 20% for depths 7.5 mm and 
10 mm respectively. Similarly, the post-topology transformation stiff-

ness is approximately 39% less than that of the planar lattice while this 
difference increases to approximately 42% and 47% for depths 7.5 mm 
and 10 mm, respectively.

The difference in stiffness of the transformed topology between the 
cylindrical and planar lattice is greater than that observed for the initial 
topology. This difference is due to the presence of twist deformation 
(out-of-plane flexure of beams) in the cylindrical lattice, as is evident 
from the reaction moment about the vertical axis of the lattice shown in 
Fig. 21. The reaction moment is negligible until the topology changes 
and then increases approximately linearly with compression. However, 
no such reaction moment is present in the case of the planar lattice. This 
approximate linear increase in reaction moment after topology change 
is due to the increased resistance to twist deformation caused by the 
contact connections.

5.4. Poisson’s ratio

Similar to the cylindrical lattice, the planar lattice also exhibits 

NPR behaviour. Fig. 22 compares a planar lattice with an amplitude 
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Fig. 22. (a) Lattice width versus compression and (b) Poisson’s ratio versus compression of the cylindrical and planar lattices with amplitude ratio 0.20 for various 
depths, obtained from FE analysis.
ratio of 0.20 and equivalent cylindrical lattices with various depths. 
Fig. 22a compares the change in lattice width (or hoop length) with 
compression, and Fig. 22b compares the variation of Poisson’s ratio un-

der compression. (The hoop length for the cylindrical lattice is 𝜋 times 
the mean diameter, 𝐷.)

As shown in Fig. 22a, the width versus compression of the planar 
lattice is nominally the same for all depths with minor differences ob-

served near the contact regions. The lattice width varies in a piecewise-

linear manner. The width decreases with compression until final con-

tact, but at a slower rate after first contact. After final contact, the 
width increases with compression. Hence, the Poisson’s ratio is approx-

imately constant (≈ −0.65) until first contact. Poisson’s ratio increases 
after first contact, remaining approximately constant (≈ −0.16) until fi-

nal contact. Under further compression, it reaches a positive value of 
≈ 0.22 which remains until the elastic limit. In contrast to cylindrical 
lattices, planar lattices do not display a nonlinear Poisson’s ratio after 
final contact. This absence of nonlinearity is attributed to the absence of 
out-of-plane flexural behaviour in the vertical beams within the planar 
arrangement.

In contrast to planar lattices, cylindrical lattices exhibit variations 
in Poisson’s ratio at different depths. Specifically, the Poisson’s ratio 
value increases before the first contact with an increase in the depth 
of beams, as illustrated in Fig. 22b. This decrease can be attributed 
to the reduced bending of sinusoidal beams, given their larger cross-

sectional area at greater depths. Following the first contact, a significant 
step-increase occurs, and after the final contact, nonlinear behaviour is 
observed, as discussed in Section 4.3. However, with an increase in ra-

dial depth, the nonlinearity observed in Poisson’s ratio after the final 
contact reduces, suggesting potential tunability for achieving a bimod-

ular NPR response. Nevertheless, unlike planar lattices, the Poisson’s 
ratio of cylindrical lattices remains negative at the elastic limit across 
all depths.

6. Conclusions

This paper presented a novel concept of passive topology morphing 
of unit cells within cylindrical sinusoidal lattices. Under sufficient axial 
compression, self-contact within the unit cells transforms rectangle-like 
topology into kagome-like topology, resulting in bilinear stiffness and 
bimodular Poisson’s ratio response. Critical geometries exhibiting the 
desired behaviour were identified by analysing the buckling and com-

pression behaviours of lattices using FE analysis. The load-displacement 
behaviour observed in FE analysis was validated by experiments per-

formed with MJF 3D-printed prototypes. FE results reveal that the mag-
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nitude of the friction coefficient between sinusoidal beams does not 
influence the post-contact compressive behaviour before global buck-

ling occurs.

Topology transformation from rectangle-like to kagome-like unit 
cells results in an approximately four-fold increase in compressive 
stiffness. The lattice undergoes a step change in auxetic behaviour 
during topology transformation and exhibits nonlinear Poisson’s ratio 
behaviour afterwards. Geometric parameters, such as amplitude ratio 
and out-of-plane depth, allow for the tuning of bilinear and bimodular 
NPR behaviour. By comparison with planar lattices, critical differences 
between the responses of different global topologies (planar and cylin-

drical), have been identified. Notably, the cylindrical lattice exhibits 
bilinear behaviour with smaller amplitude ratios compared to an equiv-

alent planar lattice with the same geometric and material parameters. 
However, the planar lattice possesses a relatively higher stiffness in its 
initial topology and also exhibits a greater increase in stiffness (6.88 
times) after topology transformation than the cylindrical lattice (4.73 
times). The negative Poisson’s ratio of planar lattices undergoes step-

changes to become positive after topology transformation. The cylindri-

cal lattice presents a different response due to (i) the presence of lateral 
boundary effects in planar lattices increasing the relative stiffness and 
(ii) the out-of-plane flexure of the sinusoidal beams in cylindrical lat-

tices reducing the relative stiffness.

The physical insights gained from studying these topology morph-

ing systems could potentially encourage their exploitation in adaptive 
engineering designs. The compliant behaviour of the lattice in its initial 
topology can be useful for energy absorption under compression while 
the membrane behaviour after topology transformation can be useful 
for load-carrying applications. Due to their NPR and strain-stiffening 
behaviour, which is similar to that of biological tissues, these struc-

tures can also find applications in biomedical devices. Future research 
could investigate stiffness tailoring to obtain bespoke elastic responses 
by tuning hierarchical geometric parameters, and also explore the tor-

sional behaviour.
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