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ABSTRACT

Urban flooding has made it necessary to gain a better understanding of how well gully pots perform when overwhelmed by solids deposition

due to various climatic and anthropogenic variables. This study investigates solids deposition in gully pots through the review of eight models,

comprising four deterministic models, two hybrid models, a statistical model, and a conceptual model, representing a wide spectrum of solid

depositional processes. Traditional models understand and manage the impact of climatic and anthropogenic variables on solid deposition

but they are prone to uncertainties due to inadequate handling of complex and non-linear variables, restricted applicability, inflexibility and

data bias. Hybrid models which integrate traditional models with data-driven approaches have proved to improve predictions and guarantee

the development of uncertainty-proof models. Despite their effectiveness, hybrid models lack explainability. Hence, this study presents the

significance of eXplainable Artificial Intelligence (XAI) tools in addressing the challenges associated with hybrid models. Finally, crossovers

between various models and a representative workflow for the approach to solids deposition modelling in gully pots is suggested. The paper

concludes that the application of explainable hybrid modeling can serve as a valuable tool for gully pot management as it can address key

limitations present in existing models.
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HIGHLIGHTS

• Existing models are presented and discussed.

• Integrating data-driven and traditional models enhances performance.

• Explainability could pose a challenge to adopting hybrids.

• A review study is conducted on crossovers between different models to explore their limitations and propose potential improvement.

• A workflow is developed to address the challenges associated with the implementation of explainable hybrids for prediction.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Stormwater is usually evacuated from road surfaces by gullies (Figure 1) connected to municipal sewers via unperforated sub-
surface pipes made to specification (Butler et al. 2018). The kerb and gully drainage systems (Figure 1) are one of the most
common forms of road drainage used in the United Kingdom.

Gullies are placed at defined intervals along the kerb and on the low side of the road surface. In the UK, gullies are placed

50 m apart or one gully for every 200 m2 of road surface (Department for Transport 2020). In practice 100 gullies may be
expected to yield 7 m3 of debris (Butler et al. 2018). The gully grate provides cover to a buried component known as the
gully pot (Figure 2).

Surface runoff and underground drainage networks are connected by these gully pots. They are designed to minimise solids
deposition in drainage systems which contribute to blockages in the drainage network, reduce sewer system efficiency, urban
flooding and increased pollution into water bodies (Forty 1998; British Standards Institution 2021). Trapped gully pots have a

solids collector, sometimes known as a solids trap. Solids traps capture sediments that could otherwise escape through the
grate. The deposition of solids in road gullies is influenced by climatic- and anthropogenic-driven processes, which can be
categorised into three phases: Solids Build-Up (SB), Solids Wash-Off (SW), and Solids Retention (SR) (Rietveld et al.
2020b). SB processes are mostly time-dependent and include variables in the contributing area such as: traffic intensity,

road surface type, solids particle size, and street sweeping frequency. SW processes are mostly climate-dependent and
include: rainfall amount and intensity, surface runoff, wind action and temperature. SR processes directly impact the

Figure 1 | The kerb and gully drainage system.
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accumulation of solids in gully pots including: variables of flow rate, gully cross-section, depth of solids trap, solids type and
gully filling degree or position of outlet pipes. It is important to assess techniques for predicting the interaction between these

processes to better understand their potential effects on the deposition of solids in gully pots (Rietveld et al. 2020b).
On average, gully pots are 750–900 mm deep and 450 mm wide (Figure 2; British Standards Institution 2021). The average

urban road has a solids deposition rate of 14–24 mm/month (Butler & Karunaratne 1995). These numbers imply that gully
maintenance needs to follow a defined interval. Nonetheless, maintenance cycles are not strictly defined (Forty 1998). Coun-

ties decide their own independent road sweeping and gully maintenance cycles with decision-making based on budget
constraints, expert judgment, environmental vulnerability and public complaints (Forty 1998; Fenner 2000) which is
mostly ineffective. For example, South Gloucestershire Council in southwest England has ∼51,175 inventoried gullies

along its 1,533 km of carriageway, 1,391 km footway, and 118 km cycle ways (South Gloucestershire 2015, 2022). From
2017 to 2020, the levels of solids in these gully pots were recorded 28,123 times where 56% of the inspected gully pots
were half-filled (marginal) (Figure 3). This highlights the burden of unnecessary inspection. In a related study, Entwistle

(2021) conducted a survey on eight road networks, encompassing one million gullies where 20–60% of these gullies undergo
unnecessary inspection each year, emphasising the need for an optimised approach to solids deposition prediction.

To find an optimised approach to the deposition of solids in gully pots, conceptual, deterministic, statistical, and hybrid

models need to be further explored to determine the differences and overlap (Obropta & Kardos 2007). For example, a deter-
ministic model may include some stochastic elements to account for uncertainty or variability in the system. Similarly, a
statistical model may use deterministic equations to model the relationship between variables. Since the boundaries between
models are not always clear, it is important to understand the strengths and limitations of these models. By understanding the

crossovers between them, they can be integrated to produce explainable hybrids that offer improved prediction accuracy.
Following the above discussion, the objectives of this work are as follows:

• Highlight the strengths and limitations of existing models that predict solids deposition processes in gully pots.

• Explore the fusion of data-driven and traditional models to develop hybrid models that enhance the overall performance.

• Consider the challenges involved in deploying hybrid models for solid deposition prediction.

• Develop a clear workflow for explainable hybrid modelling.

The remaining sections of this study are organised as follows: Section 2 describes solids deposition procedures in gully pots.
Section 3 presents a review of existing models for the prediction of solids deposition. The limitations in utilising existing

Figure 2 | Gully pot with an integral solids trap (all dimensions are in millimeters).
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models are discussed in Section 4 along with how explainable hybrid models can be used to enhance them. Finally, Section 5
explores ways to ensure that the hybrid models used for prediction are explainable to all stakeholders.

2. DEPOSITION OF SOLIDS IN GULLY POTS – DESCRIPTION OF PROCESSES

The amount of deposited solids in gully pots is influenced by climatic and anthropogenic processes. These processes are

divided into three major phases as described below.
SB processes within a defined catchment area give rise to accumulation of debris, sediments and other particles that are

eventually transported by wash-off processes into gully pots. Some of these time-dependent processes include characteristics
of the contributing area such as leaf fall (Nix 2002), road slope (Muthusamy et al. 2018), traffic intensity (Chow et al. 2015),
road surface roughness (Zhao et al. 2018), particle size distribution, mass and density (Xiao et al. 2022), and street sweeping
frequency (Egodawatta et al. 2013).

SW processes are those by which solids are transported into gully pots. They are mostly climate-dependent and include

contributing area, rainfall characteristics (Sartor et al. 1974; Egodawatta et al. 2007), surface runoff (Zhao et al. 2018),
wind action (Butler & Karunaratne 1995), daily sunshine hours and solar radiation (Nix 2002), temperature (Post et al.
2016), antecedent dry weather period (ADWP) (Post et al. 2016; Rietveld et al. 2020b), solids geometry, which include initial

sediment load and particle size distribution, mass and density (Grottker & Hurlebush 1987; Butler & Karunaratne 1995) and
street sweeping frequency.

SR processes that directly impact accumulation of solids in gully pots are the result of their design geometry (Post et al.
2016) and flow rate (Deletic et al. 1997). These processes have the potential to reduce a gully’s hydraulic capacity at any

given time and can impact on a gully’s trapping efficiency. SR processes include contributing area, rainfall characteristics,
gully cross-sectional area and depth of solid trap or gully pot (Post et al. 2016), gully grate design pattern (Rietveld et al.
2020a), solids geometry and type, and gully filling degree/position of outlet pipes (Post et al. 2016; Rietveld et al. 2020b).

SB over a catchment is washed-off by rainfall and other sediment-transport processes. It is then transferred through gully
pots into sewers although due to their trapping efficiency, gully pots can capture and retain these pollutants through retention
variables implying that, SB, SW, and SR processes are interrelated by a range of overlapping variables. Contributing area is an

example variable relevant to all processes, while specific variables may be important to individual processes.

3. REVIEW OF THE EXISTING MODELLING TECHNIQUES FOR THE PREDICTION OF SOLIDS DEPOSITION

To understand and manage the impact of climatic and anthropogenic changes on SB, SW, and SR processes, several models
have been developed. However, certain models lack the resilience required to handle the uncertainty that arises from limit-
ations, such as scope and applicability (Litwin & Donigian 1978; Driver & Troutman 1989), the use of complex and

Figure 3 | A county’s gully inspection data showing solids deposition levels (South Gloucestershire Council 2022).
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non-linear variables (Bertrand-Krajewski et al. 1993), inflexibility due to reliance on fixed constants and processes (Grottker

& Hurlebush 1987), bias from the use of limited and erroneous variables (Sartor et al. 1974; Egodawatta et al. 2007), sensi-
tivity to outliers, precision and data mismatch (Rietveld et al. 2020b).

Although some models are developed to recognise patterns in non-linear and complex problems and handle uncertainty,

they may not be explainable (Lundberg & Lee 2017; Geng et al. 2022), thereby leading to the risk of misapplication
(Almutairi et al. 2021). Models such as bootstrap aggregating and Adaptive Boosting (AdB) (Behrouz et al. 2022), generally
referred to as ensemble learning, can explicitly integrate deterministic, statistical and stochastic models and potentially
exploit the advantages of each approach to reduce prediction error and uncertainty. Other useful hybrid models in this

regard include Artificial Neural Networks (ANNs), Random Forests (RF) (Breiman 2001), Gradient Boosting Machines
(GBM) (Friedman 2001), and Monte Carlo simulations. Nevertheless, these hybrid models are not explainable and may
require complex and resource-intensive computations (Clark 2005; Gelman & Hill 2006; Post et al. 2015; Lee et al. 2021).
XAI involves developing a model that humans can explain. It is important for ensuring trust, accountability and transparency
in the model.

This study reviewed eight models applied in literature for the study of solids deposition in gully pots and beyond. The

reviewed models are first summarised in Table 1. These models are subsequently discussed in Sections 3.1–3.3.

3.1. Deterministic modelling techniques

Deterministic models are based on mathematical equations. Therefore, they may not be applicable to all types of processes,
for example the complex processes involved in solids deposition (Bertrand-Krajewski et al. 1993). These models struggle with

complex variables, since they are limited in the context of scope and applicability, inflexibility, data limitations, bias, and sen-
sitivity to outliers. These limitations further aggravate uncertainty, which are often calibrated by trial and error (Alley & Smith
1981), with little understanding of the models’ sensitivity to the variables driving solid deposition. Deletic et al. (1997) and
Rietveld et al. (2020b) further suggested that deterministic models may not adequately handle missing data or measurement
errors, leading to inaccurate predictions or inferences. Furthermore, Bertrand-Krajewski et al. (1993) stated that the precision
of a deterministic model relies on how well the calculated values agree with the observed values. This agreement can be
measured through objective functions such as the mean square error (MSE) and least square method (LSM) (Egodawatta

et al. 2007). Nonetheless, this precision accounts for discrepancies such as measurement errors in sampling and the assump-
tion that the deterministic model is only a rough approximation of the complex physical processes.

A widely used deterministic model in storm water management applications for estimating temporal SB in a defined catch-

ment is the exponential asymptotic-based Stormwater Management Model (SWMM), which is represented by Equation (1)
(Sartor et al. 1974; Alley & Smith 1981). Software applications such as InfoSWMM (Environmental Systems Research
Institute n.d.) and SWMM5 (United States Environmental Protection Agency 2023) have deployed the operational principles

of this model to simulate SB. Suárez et al. (2013) utilised SWMM5 to develop a sand filter system for managing highway

Table 1 | A summary of the existing modelling techniques used for the prediction of solids deposition

s/n Model Type
Deposition
phase

1 Stormwater Management Model (SWMM) (Sartor et al. 1974; Alley & Smith 1981) Deterministic SB

2 Butler and Karunaratne’s gully pot trapping efficiency model (Butler & Karunaratne
1995)

Deterministic SR

3 Grottker’s soilds retention model (Grottker & Hurlebush 1987; Grottker 1990; Butler &
Karunaratne 1995)

Deterministic SR

4 Modified Sartor and Boyd’s model (Sartor et al. 1974; Egodawatta et al. 2007) Deterministic and
statistical

SW

5 The Non-Point Source model (NPS) (Litwin & Donigian 1978) Conceptual SW

6 Driver and Troutman’s model (Driver & Troutman 1989) Statistical SW

7 Debris flow volume model (Lee et al. 2021) Hybrid SW

8 Gully pot sediment accumulation model (Post et al. 2015, 2016) Hybrid SR

Water Science & Technology Vol 89 No 8, 1895

Downloaded from http://iwaponline.com/wst/article-pdf/89/8/1891/1408600/wst089081891.pdf
by guest
on 23 May 2024



runoff by analysing SB and SW within a catchment.

dMa
dt

¼ ACCU �DISP:Ma (1)

where Ma represents the accumulated mass of solids at time t (kg); ACCU is the daily accumulation rate (kg/d); DISP is the
disappearing coefficient (d�1); ACCU and DISP are coefficients that should be calibrated for every catchment prior to the use

of the model, since Ma is influenced by a series of anthropogenic and hydrometeorological patterns such as wind action, traf-
fic intensity, street sweeping frequency, contributing area (land use) and ADWP. Equation (1) considers SB and SW variables
in the deposition process but cannot confidently comprehend the significance of ADWP which is an important variable that
influences first flush (Bach et al. 2010).

Another deterministic model was developed by Butler & Karunaratne (1995) to assess gully pot trapping efficiency
(Equation (2)):

[ ¼ 1

1þ 72Qv
apgd2D2(S� 1)

(2)

where [ represents solids trapping efficiency; a is a turbulence correction factor; g is the acceleration due to gravity (m/s); d
represents solids particle diameter (mm); D is the gully pot diameter (mm); Q is the flow rate (L/s); v is kinematic viscosity

(m2/s); and S is the particle specific gravity (PSG). However, Equation (2) accounts for uniform and laminar flows, which will
result in an inaccurate estimation of solid transport and trapping efficiency due to lack of consideration for turbulence.
Additionally, the model assumes that solid particles are spherical, which can be unrealistic since particles can have non-uni-

form shapes (Collinson et al. 2006). Rietveld et al. (2020b) highlighted the need for a more comprehensive understanding of
the interactions between the limitations in Equation (2), the deposition of solids and the solids’ depth in the gully pot to
enhance the model’s accuracy.

Grottker (1990) developed a deterministic SR model to study gully pot performance given in Equation (3):

M s ¼ M w: x: Qy (3)

where M s represents the mass of solids passing through the gully pot (kg); M w is the mass of solids washed off by rainfall
(kg); Q is the discharge through the gully pot (L/s) and x, y are solids geometry (diameter) – dependent numerical coefficients
within the range of (0:046 , x , 0:791 and0:121 , y , 0:737). It has been further argued that the proposed range of fixed

numerical coefficients x and y might not always represent real-world scenarios indicating that variations from these fixed
values could significantly impact the model’s accuracy (Bertrand-Krajewski et al. 1993). As a result, deterministic models
may be rigid because of their reliance on fixed constants and processes, making it challenging to adapt the model to changes
in processes or new data.

Sartor et al. (1974)’s deterministic pollutant wash-off model given in Equation (4) assumes that every storm event has the
capacity to remove all the available solids from a given surface, if the storm continues for an adequate duration. Egodawatta
et al. (2007) further experimented with Equation (4) to replicate actual wash-off behaviours and proposed the modification,

represented by Equation (5), which includes the capacity factor parameter CF :

W ¼ W0(1� e�klt) (4)

The need for this modification arose because rainfall events have the capacity to mobilise only a fraction of solids on a given
road surface, with the value of CF ranging from 0 to 1. Egodawatta et al. (2007) also cautioned that wrong assumptions could
introduce uncertainty into the modified model (Equation (5)) due to the incorporation of CF :

FW ¼ W
W0

¼ CF(1� e�klt) (5)
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where FW represents the fraction of SW after a storm event; W is the weight of solids mobilised after time t; W0 is the initial

weight of solids on the surface, CF represents the capacity factor; k is a wash-off coefficient (mm�1); and l is rainfall intensity
(mm/hr). Egodawatta et al. (2007) used the LSM to determine the optimal values of k and CF . Moreover, they evaluated
Equation (5) at three sites using statistical techniques such as mean and coefficient of variation to understand each site’s
characteristic data. The coefficient of variation revealed significant inaccuracies in data estimation due to the use of non-
representative build-up data, for each site. Xiao et al. (2022) investigated the applicability of Equation (5) for solids transport
rate and the influence of particle size distribution on wash-off. They recommended the calibration of parameters k and CF for
different particle size distributions on a road surface to reduce model’s uncertainty.

3.2. Conceptual modelling techniques

Litwin & Donigian (1978) were the first to develop the Non-Point Source (NPS) conceptualised model, a pollutant loading
model that estimates the quantity of pollutants from land surfaces to a watercourse using Equations (6) and (7):

M w ¼ k: Sci if M w (t) � M a (t) (6)

M w (t) ¼ M a (t) if M w (t) . M a (t) (7)

where M w (t) represents SW over a period of time t (kg/m2); M a (t) represents the accumulated solids over a time period
t (kg/m2); k is a wash-off coefficient; Si is surface runoff on impervious area (mm); and c is a numerical coefficient.

NPS model development was generalised to consider non-point pollutants from a maximum of five land use categories
which include urban, agricultural, forested, and construction areas, whilst interfacing with water quality parameters of temp-
erature, dissolved oxygen, suspended solids, and biochemical oxygen demand (Litwin & Donigian 1978). The model also
considers seasonal variables stemming from construction activities, gritting, and leaf fall. The NPS model aids in estimating

the solids transported by runoff and deposited into gully pots. This helps assess how well gully pots perform in reducing solids
deposition in drainage systems and minimising pollution in receiving water bodies (Post et al. 2016). However, the mathemat-
ical representation of solids deposition and wash-off require rigorous and separate simulation and evaluation. In the absence

of sufficient data, this introduces algorithm complexity and to address this, a simplified representation of processes control-
ling non-point pollution must be established. This raises the dilemma of trading algorithm complexity for reduced uncertainty
and simplicity of application.

Bertrand-Krajewski et al. (1993) further argued that the simplified representation of processes used in the NPS Model
(Equations (6) and (7)) may not accurately reflect the reality of SW and pollutant transport. This is due to its failure to account
for the temporal fluctuations in precipitation, runoff, and pollutant concentrations commonly observed in hydrometeorolo-

gical variables. As a result, the NPS model must be meticulously calibrated whenever it is applied to a new watershed
which is a time-consuming and complex process (Yuan et al. 2020).

3.3. Hydrid modelling techniques

The statistical model of Driver & Troutman (1989) established a linear regression model presented by Equation (8). The
model was developed to estimate storm-runoff solids deposition in urban watersheds across the United States:

M w ¼ 14:374: R1:211
h : A0:735:R�0:463

d (8)

where M w represents SW during rainfall event (kg); Rh is the total rainfall depth (mm); A is catchment area (km2); and Rd is
rainfall duration (minutes). Linear regression models were developed for three different regions which were delineated based
on mean annual rainfall to improve the accuracy of the models. However, the validity of the model is limited to arid western
United States where annual rainfall is less than 500 mm.

According to Kunin et al. (2019) and Burden & Winkler (2008), Bayesian regularisation is a mathematical process that
converts a non-linear regression into a statistical problem. Using a Bayesian Regularised Artificial Neural Network
(BRANN) model, Lee et al. (2021) conducted an analysis of solids deposition prediction accuracy using historical extreme

rainfall events and 15 climatic and anthropogenic solids variables, i.e. a hybrid model. They found that BRANN had a
higher accuracy with a coefficient of determination (R2) of 0.911, compared to the Multiple Linear Regression Equations
(MLRE) of Marchi & D’Agostino (2004) and Chang et al. (2011), which had R2 values of 0.693, 0.688, and 0.670. Although
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Lee et al. (2021)’s research is not unique to solids deposition prediction in gully pots. BRANN model has been applied in

natural gas explosion risk analysis (Shi et al. 2019), rainfall prediction model for debris flow (Zhao et al. 2022) and optim-
isation of diesel engine combustion events (Ankobea-Ansah & Hall 2022). BRANN combines the deterministic Bayesian
Regularisation Algorithm (BRA) with the stochastic ANN and is known to improve the prediction accuracy of complex sys-

tems, incorporate stochasticity, handle uncertainty, and capture data variability (Papananias et al. 2017).
According to Burden & Winkler (2008), BRANN offers a probabilistic interpretation of both model parameters and pre-

dictions. It aims to find the optimal model parameters by balancing the model’s fit to the data and its complexity, and by
minimising the objective function found in simplified linear adaptations of Burden & Winkler (2008) (Equations (9) and (10)):

S(w) ¼ L(w)þ mR(w) (9)

wherew is a vector of the model parameters; L(w) is the loss function that measures the difference between the predicted values
of the model and the actual values of the data; R(w) is the regularisation term that penalises the complexity of the model by
adding a penalty term that increases as the magnitude of the model parameters; and m, the regularisation parameter that con-

trols the trade-off between the fit of the model to the data and the complexity of the model.
By adding a prior distribution over the model parameters, which represents the belief about the parameter values before

seeing the data, the model is encouraged to learn simpler representations that are more likely under the prior distribution.

This can prevent overfitting. The objective function is then modified to include the negative log-likelihood of the data
given the prior distribution over the model parameters (Equation (10)):

S(w) ¼ L(w)þ mR(w)þ b log p(w) (10)

where the prior distribution is explained by b the hyperparameter that controls the strength of the prior distribution and p(w),
the prior distribution over the model parameters.

Despite the improved prediction accuracy, the output of uncertainty-proof models such as BRANN, bagging, boosting, and
stacking are often difficult to interpret due to their complex ‘black box’ architecture (Lundberg & Lee 2017; Geng et al. 2022).
ANN, for example, contains several layers of nodes and hidden neurons that can detect intricate patterns and relationships in

data, but their architecture and the use of hidden layers (Figure 4) make it difficult to interpret how the network arrives at its
final predictions. Lee et al. (2021)’s ANN achieved better prediction accuracy than various MLRE, but utilised unexplainable
neurons in the hidden layer.

Apart from its ‘black box’ nature, complexity (Uzair & Jamil 2020), weight initialisation (Manish Agrawal et al. 2021), and
use of activation functions (Uzair & Jamil 2020; Brownlee 2021) are some of the reasons why the hidden layer tends to be less
explainable. According to Uzair & Jamil (2020), hidden layers are designed to perform non-linear transformations of the
inputs entered into the network. These transformations can become increasingly complex as more hidden layers are

added to the network.
The ‘circles’ in Figure 4 represent nodes. Thus, the model has n input nodes (nþ 1bias), denoted by vector X (x1, x2...n), a

hidden layer with m input nodes (mþ 1“bias”), and an output layer. The additional node with the value, b is called the bias

node, which is a scalar value. The ‘arrows’, w1, w2, and w3 (Figure 5) are a combination of weights which represent the
impact of a preceding node on the next node. Using Figure 5 as an example, the inputs (x1, x2...n) contribute weights
(w1, w2...n), to the weighted sum, S to each of the node in the hidden layer which has a predefined activation function,

w( � ). The activation function defines if the receiving node will be activated or how active it will be (Brownlee 2021).
The weights (w1, w2...n) can be randomly assigned, fine-tuned and calibrated through the process of back propagation

(Ognjanovski 2019). In any case, the weights can be difficult to interpret and understand (Manish Agrawal et al. 2021). Further-
more, the neurons in the hidden layer take in a set of weighted input and produce an output through an activation function,

whose choice can have a significant impact on the behaviour of the hidden layer. Some activation functions such as Rectified
Linear Unit (ReLU) and Softmax can be more difficult to interpret than others (Agarap 2018) and misleading (Ozbulak et al.
2018). Simos&Tsitouras (2021) proposed amodification to the commonly used non-linear activation function,Hyperbolic Tan-

gent (tanh), with the aim of reducing the computational complexity of neural networks (NNs).
Generalised Linear Mixed Models (GLMM) are an extension of linear mixed models (LMMs) and allow response variables

from different distributions, such as binary responses. Alternatively, one could think of GLMM as an extension of generalised
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linear models (e.g., logistic regression) to include both fixed and random effects (hence mixed models) (University of

California Los Angeles 2023). The general form of the model is shown in Equation (11):

y ¼ Xgþ Zaþ u (11)

where y is a N � 1 column vector, the target variable; X is a N � i matrix of the i predictor variables; is a i� 1 column vector

of the fixed-effects regression coefficients (the gs); Z is the N � j design matrix for the j random effects (the random comp-
lement to the fixed X); a is a j� 1 vector of the random effects (the random complement to the fixed g); and u is a N � 1
column vector of the residuals, that part of y that is not explained by the model, Xgþ Za.

Figure 4 | Architecture of the ANN model.

Figure 5 | Schematic of an artificial neuron with inputs (x1,2…n), weights (w1,2,…n), bias (b), transfer function (
P

), activation function (w(�)) and
output (y).
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The matrix dimensions are as follows:

y: N � 1; X: N � i; g : i� 1; Z: N � j; u : N � 1; y: N � 1

From Equation (11), the target variable y is a linear combination of the fixed-effects part (Xg), the random effects part (Za),
and the residuals (u). The equation assumes a linear model with fixed and random effects, and the residuals u are assumed to

be independent and identically distributed with mean zero. The GLMM thus incorporates both deterministic (Xgþ Za) and
stochastic (u) elements (Penn State University n.d.).

To clarify further, u is the residual or the random error component of the model. It captures the variability in the target

variable y that is not explained by the fixed-effects predictor variables X and the random effect variables Z. The residual u
introduces the stochastic or random element in the equation, accounting for the unexplained variability in the data (uncer-
tainty), which can arise from measurement bias or unobserved variables. To improve the predictive performance and
uncertainty quantification of the GLMM, an autoregressive (AR) component within a Bayesian framework (a stochastic pro-

cess) is incorporated. This is achieved by using priors and posterior distributions as shown in Equations (12) and (13).
Considering a time series-based gully pot accumulation model with an AR(p) component, where p represents the order of

the AR process, the model can be written as:

y(t) ¼ b0þ b1y(t� 1)þ b2y(t� 2)þ . . .þ bp � y(t� p)þ u(t) (12)

where y(t) represents the target variable at time t; b0, b1, b2, . . . , bp are the AR coefficients; u(t) is the residual term at time

t, assumed to follow a specific distribution.
To incorporate a Bayesian perspective, we assign prior distributions to the parameters b0, b1, b2, . . . , bp and estimate

the posterior distributions using Bayesian inference. The prior distributions can be specified based on prior knowledge or

assumed distributional assumptions. For example, a common choice is to assign a normal prior distribution to the AR coeffi-
cients as shown in Equation (13):

bi � N(mi, si2) (13)

where mi and, si2 are the mean and variance of the prior distribution for bi.
Given the observed data y(1), y(2), …., y(T ), some Bayesian inference techniques, such as Gibbs sampling (Casella &

George 1992) and Metropolis-Hastings algorithms (Chib & Greenberg 1995) that are based on Markov Chain Monte
Carlo (MCMC) methodology can be used to obtain posterior distributions for the parameters. These posterior distributions

provide information about the uncertainty in the estimates. Thus, AR models a time series as a linear combination of its pre-
vious values. By acknowledging uncertainty about the model parameters, this approach enables probabilistic predictions
about future values of the time series (Martin et al. 2021).

The PyMC3 (Salvatier et al. 2016) is a probabilistic model which can be used to define the GLMM with a binary response
variable and an AR component, and then sample from the posterior distribution using MCMC methods. For multiclass
response variables, a multinomial logistic regression model with an AR component could be deployed (Chan 2023).

Post et al. (2015) combined the GLMM with an AR component from a Bayesian perspective. Their objective was to exam-
ine the impact of geometrical and catchment variables (c.f. Post et al. 2015) on the filling rates of gully pots, based on monthly
measurements of solid bed levels from 300 gully pots for one year. Their results provided insights into the effect of different
designs on accumulation in gully pots, allowing for better optimisation of maintenance activities and improved gully pot

design.
Post et al. (2015)’s Bayesian approach over the quasi-likelihood technique may not accurately represent the true underlying

distribution of the data, as it can be prone to inaccuracies, is sensitive to outliers and not well-suited for modelling non-linear

relationships between variables (Spiegelhalter et al. 2002). Therefore, by utilising a combination of GLMM and AR from a
Bayesian perspective, their model development was able to effectively capture the complex time series data that exhibited
both temporal autocorrelation and dependence or clustering of observations.
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However, Clark (2005) and Gelman & Hill (2006) suggested that the combination of GLMM and AR from a Bayesian per-

spective can lead to increased computational complexity and intensity. Also, the model results interpretation can be more
challenging for some researchers and stakeholders not familiar with Bayesian statistics.

4. ADDRESSING THE LIMITATIONS IN THE PREDICTION OF SOLIDS DEPOSITION THROUGH THE USE OF
HYBRID MODELS

Conceptual and deterministic models rely on physically based equations and linear models to demonstrate SB over a
catchment, SW and passage through gully pots where the solids are either deposited or transferred to sewers. However,

these models are limited due to uncertainties arising from scope and applicability, precision, inflexibility, data limitations,
bias, and sensitivity to outliers. Statistical models, which assume normality and linearity often rely on linear regression,
also face similar limitations when dealing with complex relationships or non-linear patterns in data, as reported by

Marchi & D’Agostino (2004), Chang et al. (2011), and Lee et al. (2021). Although hybrid models have been employed to
handle uncertainties, they create new issues such as risk of misapplication, computational complexity and intensity, poor
model interpretability and explainability. Therefore, the use and benefits of XAI tools will be discussed in this section to
address the limitations of these hybrid models. Table 2 presents a summary of crossovers between models and how they

may be addressed.

4.1. The limitation of complex and non-linear variables

Deterministic and statistical models may not be applicable to all types of systems (Equation (1)) and may struggle with com-
plex variables, for example poor understanding of the impact of ADWP in SB. However, feature selection techniques have
been used within climate studies to identify the relative contribution and significance of explanatory variables in forecasting.

Warton et al. (2015) utilised a residual correlation matrix to examine how 65 alpine tree species (explanatory variables)
responded to snowmelt (the target variable). They evaluated the degree of correlation between the tree species and identified
their significance and relevance across 75 different sites. Moreover, by utilising residual correlation matrix, they identified the

environmental variables that were strongly correlated with the tree species data. This highlights the effectiveness of the
approach in analysing complex community ecology data with multiple variables.

Haidar & Verma (2018) used a combination of genetic algorithm (GA) and particle swarm optimisation (PSO) algorithm

(Kennedy & Eberhart 1995) to optimise climate features in rainfall forecasting. Their model outperformed three established
standalone models while highlighting the effectiveness of hybrid models in selecting the most relevant climate variables and
optimising the network parameters of a NN-based model.

Caraka et al. (2019) used the PSO algorithm which combines deterministic and heuristic techniques to identify the most

relevant features for accurately predicting particulate matter 2.5 (PM2.5), making it a useful tool for feature selection.
Hu et al. (2018) utilised minimum redundancy maximum relevance (mRMR) algorithm to identify the most significant fea-

tures for local climate zone classification. The mRMR algorithm achieved high classification accuracy and outperformed

other established feature selection techniques, such as principal component analysis (PCA) and correlation-based feature
selection, due to its stochastic feature selection process, producing varied results in different algorithm runs. The utilisation
of statistical measures to assess feature relevance and redundancy led to the selection of a feature subset that maximises

relevance while minimising redundancy by Mazzanti (2021).
In developing a flash flood susceptibility model, Bui et al. (2019) used the FURIA-GA feature selection technique which is a

combination of the fuzzy rule-based feature selection method and the GA, in selecting the most informative features for their

flash flood susceptibility model. FURIA algorithm uses a DT to generate a set of fuzzy rules from the input data. Subsequently,
the GA is utilised to search for the optimal subset of features (Bera 2020).

In identifying the main variables of solids deposition in gully pots, Rietveld et al. (2020a) utilised regression trees (RTs).
Their study revealed that RTs provided slightly more accurate feature prediction when compared with LMMs, due to their

capability to describe relationships between variables, under varying conditions. Lee et al. (2021) utilised Pearson’s corre-
lation analysis to identify the four most significant variables out of 15 that affect debris flow volume. The four prominent
variables were then used to train the model.

It is important to acknowledge that the effectiveness of a chosen feature selection technique can be influenced by numerous
variables present in a complex feature system. These variables may include high correlation, overfitting, large feature space
leading to computational intensity, and imbalanced data (Cherrington et al. 2019). Therefore, it is crucial to determine an
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Table 2 | Crossovers between solids deposition models

Model type

Traditional Hybrid
Data-driven

Deterministic Conceptual
Deterministic

BRANN GLMM-AR Statistical
Deposition
phase SW SR SB SW SR SW

Explanatory
variables

Rainfall
intensity,
kinetic energy
of rainfall and
characteristics
of solids

Catchment area,
solids
accumulation
rate, and
ADWP

Surface runoff
and
contributing
area (land
use)

Rainfall
intensity

Flow rate, PSG,
diameter of
gully pot,
diameter and
depth of
solids, and
kinematic
viscosity

Rainfall amount
and flow rate

ACCU and DISP
(dependent on
land use,
ADWP etc).

Variables of
morphology,
rainfall and
geology

Road type, depth
of trap,
contributing
surface area,
catchment
slope, position
of outlet pipe,
and presence of
water seal

Catchment area
and rainfall
attributes

Model
constraint

Bias Complex and non-linear variables Inflexibility Complex and non-
linear variables

Explainability and
transparency

Computational
complexity and
intensity

Scope and
applicability

Suggested
improvement

DT models, cross-validation, data
balancing, and feature selection
techniques

Ensemble
Learning

DT models, label encoding, and
one hot encoding

Ensemble
Learning

mRMR algorithm,
hybrid (PSO &
FURIA)

Linear models, DT, feature importance
analysis or partial dependence
plots, XAI techniques

TL,
hyperparameter
tuning, ML
models

Target variable Mass of washed-off solids Mass of retained solids/gully
trapping efficiency

Mass of built-up
solids

Debris flow
volume

Filling rate of gully
pots

Mass of washed-
off solids

References Sartor et al.
(1974);
Egodawatta
et al. (2007)

Servat (1984);
Bertrand-
Krajewski
et al. (1993)

Litwin &
Donigian
(1978),
Bertrand-
Krajewski
et al. (1993)

Bujon (1988);
Alley &
Smith (1981)

Butler &
Karunaratne
(1995);
Rietveld et al.
(2020b)

Grottker (1990);
Butler &
Karunaratne
(1995)

Sartor et al.
(1974);
Alley & Smith
(1981)

Lee et al. (2021) Post et al. (2015,
2016)

Driver &
Troutman
(1989)
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optimal feature selection method based on the characteristics of the data and the problem at hand. It is also equally important

to validate the chosen features, to ensure their ability to generalise well to new data.
Equation (2) underlines the problem of inaccurate estimation of solid transport and trapping efficiency due to lack of con-

sideration for turbulence and an assumption that solid particles are spherical. ML techniques are well-suited for handling

various categories of shape and flow patterns (laminar, turbulent, steady, and unsteady) by converting the shapes and patterns
into a numerical format that the algorithm can process. This process is known as label encoding (Table 3) (Scikit-learn
Developers 2023). An example of label encoding could be assigning numerical values to recognised shape categories
before developing a model (Table 3). This is exemplified in the Geng et al. (2022) study on predicting litterfall in forests

by categorising forest types. Label encoding was used to convert categorical variables such as forest type, vegetation type,
and climate zone into numeric variables to predict litterfall production.

To address the issue of not accounting for turbulence in Equation (2), one possible solution is to use one hot encoding to

represent fluid flow as a binary categorical variable rather than use the conceptualised turbulence correction factor, a. One
hot encoding assigns a value of either 0 or 1 to indicate laminar or turbulent flow, respectively. Gong & Chen (2022) argues
that one hot encoding is better as it avoids a misleading ranking between categories. However, in cases where a categorical

variable has a natural order, such as rating the level of risk posed by solids in a gully (e.g., low, medium and high), label encod-
ing may be a more suitable approach.

To prevent algorithmic complexity, a simplified version of Equations (6) and (7) is used to represent the NPS model. How-

ever, this simplified approach disregards non-linear relationships and fluctuations in hydrometeorological variables, which
can result in model uncertainty. As a result, the model may require frequent recalibration for each specific application.
Whilst deterministic and statistical models may not be easily adjusted for complex fluctuations in hydrometeorological vari-
ables (Litwin & Donigian 1978) and changes in a contributing area (Deletic et al. 1997), ensemble learning techniques such

as Adaptative Boosting (Freund & Schapire 1995), GBM (Friedman 2001), and Stochastic Gradient Boosting combine several
base models to produce one optimal predictive model and can easily learn complex relationships. Thus, they are well trained
to reduce the need for frequent recalibration. Furthermore, the performance of the trained model can be evaluated and vali-

dated on a separate test dataset, using evaluation metrics such as MSE and mean absolute error (MAE), along with
resampling techniques like cross-validation (Refaeilzadeh et al. 2009).

In addition to the use of ensemble learning to resolve the recalibration issues identified in Equations (6) and (7) and the use

of one hot encoding to deal with lack of consideration for turbulence in Equation (2), DT-based models such as RF (Breiman
2001) and RTs (Morgan & Sonquist 1963) can combine multiple trees for improved model performance and handle categ-
orical variables without the need for one hot encoding (Gross 2020).

4.2. The limitation of scope and applicability

Transfer Learning (TL) (Bozinovski & Fulgosi 1976) is a technique that allows NN to adapt from pre-trained models for new
tasks or datasets. By leveraging the knowledge learned from a previous task, the model can improve its performance on a
different problem, thus increasing its applicability and widening its scope. However, it is important to note that TL alone

does not automatically select the best variables, algorithms, and hyperparameters for a given problem, as discussed by
Yogatama & Mann (2014). To address this, hyperparameter tuning (Feurer & Hutter 2019), which involves selecting the

Table 3 | The use of label encoding to illustrate solids shape, as a categorical explanatory variable in soilds retention prediction

Solids shape category Representative numerical value

Spherical 0

Angular 1

Flaky 2

Rod-like 3

Discoid 4

Ovoid 5

Irregular 6
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optimal set of hyperparameters for a given model and project by learning from historical training data (Brownlee 2019) is

necessary. Therefore, combining TL with hyperparameter tuning is crucial in dealing with scope and applicability issues.
For example, the dataset used in generating the regression model for Equation (8) can be fine-tuned for applications in
higher annual rainfall areas. Furthermore, the use of TL ensures the continual use of the existing model.

Subel et al. (2023) applied TL in sub-grid scale turbulence modelling by enhancing the capabilities of convolutional
neural networks (CNNs), thus enabling them to extrapolate from one system to another. This was achieved by introducing
a general framework that identifies the best re-training procedure for a given problem based on physics and NN theory.
Hyperparameter tuning was then used to optimise the performance of the NN by searching over a specified hyperpara-

meter space and finding the best layers to re-train. TL has also been used to improve the efficiency of distinct
wastewater treatment processes. Pisa et al. (2023) used TL to develop a control system for wastewater treatment plants.
Data from a source plant were used to train a deep NN and then the network was fine-tuned by data from the target

plant. They evaluated the transfer suitability of the trained network by comparing its performance on the target plant
with that of a network trained only on the target plant. Russo et al. (2023) used a combination of algorithms which
includes RF, support vector regression, and ANN, to predict sediment and nutrient first flush. Their framework was

used to identify the most influential variables that contribute to sediment and nutrient pollution in any geographical
region, thus eliminating scope and applicability limitations.

4.3. The limitation of inflexibility

As revealed in Equation (3), over reliance on fixed constants and processes makes it challenging for deterministic models to
adapt to changes in processes or new input data. Nevertheless, models that combine deterministic and stochastic elements
have been used to address the limitations of deterministic models. These hybrid models can be used to capture the relation-

ship between the explanatory variables (varying discharge, solids geometry, rainfall characteristics) and the target variable
(mass of solids passing through the gully pot). This approach may not rely on any predefined numerical or fitting coefficients
and can learn the underlying patterns in the data to make accurate predictions as demonstrated by Lee et al. (2021)’s debris
flow volume model. Their NN model outperformed various multiple linear regression models with fitting coefficients. Kim
et al. (2022) proposed a novel hybrid model for water quality forecasting. The methodology of their research involved the
use of data decomposition, ML and error correction, which eliminates the reliance on fixed deterministic constants and ident-
ifies underlying patterns and trends in data. Furthermore, they built an error correction framework similar to Figure 6 by

combining variational mode decomposition (VMD) algorithm (Dragomiretskiy & Zosso 2013) and Bidirectional Long
Short-Term Memory (BiLSTM) NN (Schuster & Paliwal 1997), which in turn improved the forecast accuracy, by correcting
errors in the data.

As shown in various studies, the hybrid model’s ability to handle real-time data and correct errors makes it more accurate
than depending on fixed deterministic constants (Li et al. 2021; Peng et al. 2022).

Figure 6 | A VMD and BiLSTM-based error correction flowchart (modified from Kim et al. 2022).
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4.4. The limitation of bias from the use of non-representative data, missing data, and outliers

Egodawatta et al. (2007) introduced Equation (5) as a modification to Sartor and Boyd’s pollutant wash-off model (Equation
(4)) to address the issue of biased and unreliable predictions, resulting from erroneous assumptions. This suggests that deter-

ministic models may not always address bias by simply adding constraints to the model. However, when Equation (5) was
subjected to a basic statistical evaluation using data from different sites, it became apparent that using non-representative
build-up data could exacerbate bias in modelling.

Uncertainties with the modified model (Equation (5)) could be addressed by implementing advanced statistical and sto-

chastic techniques that deal with outliers and high-dimensional or redundant data. These techniques can extract
information from the data before training the model to effectively deal with bias. For example, in predicting nitrogen, phos-
phorus, and sediment mean concentrations in urban runoff, Behrouz et al. (2022) made use of RF, an algorithm known for its

ability to handle noisy data and outliers. Lee et al. (2021) used cross-validation in the development of their debris flow volume
model. Their study randomly partitioned the data associated with the four prominent variables into 10 subsets of approxi-
mately equal size, with a 7:3 ratio for training and validation datasets. They then trained their model on the training data

and evaluated its performance on the validation data. This process was repeated 10 times, with each of the 10 subsets
being used as the validation set once. The average performance of the model over the 10 iterations was then calculated to
provide a more reliable estimate of its performance on unseen data. By using cross-validation, Lee et al. (2021) ensured
that their model was valid and unbiased, and that it was not overfitting to a particular subset of data.

Most traditional statistical models such as linear regression, logistic regression, and analysis of variance (ANOVA) are
known to be sensitive to outliers and biased towards certain groups within the variables. This implies that the choice of mod-
elling technique can affect the accuracy and validity of the models. According to Maharana et al. (2022), the use of more

representative and robust data preprocessing techniques can effectively address missing data, bias, and data quality issues
in solid deposition modelling.

5. ADDRESSING THE CONCERNS OF USING HYBRID MODELS IN GULLY POT SOLIDS DEPOSITION
PREDICTION

Hybrid models that incorporate data-driven techniques have been recognised to handle uncertainties where traditional

models may struggle (Post et al. 2015; Lee et al. 2021). However, these models require intricate and resource-intensive com-
putation (Figure 4) and may be unexplainable due to their black box nature, posing the risk of model misapplication. As
suggested in Section 4.1 and Table 4, the use of algorithms such as PDP, mRMR, PCA, FURIA-GA, RT has demonstrated
effectiveness in model misapplication by selecting features during model development.

It is imperative to understandwhy andwhen stakeholders need insights from the ‘black box’models that are used in predicting
the performance of variables in solids deposition. These include the needs for informed stakeholder decision-making, directed
future data collection planning, data troubleshooting, informed feature extraction and anomaly detection and embedding trust.

Data troubleshooting plays a crucial role due to the prevalence of ‘dirty’ data, potential errors in preprocessing code, and the
riskof target leakagewhichoccurswhen the training datacontains information about the target, but similar datawill not be avail-
able during model prediction. This can adversely impact the overall performance of the model as shown in Post et al. (2016)’s
robust outlier detection regime while developing their hybrid model for solids deposition in gully pots. Understanding the pat-
terns identified by models allows for the identification and resolution of errors. Additionally, an understanding of model-based
insights will enable feature extraction, which is achieved by creating new features from raw data or existing features. These

insights become important when dealing with large datasets or lacking domain knowledge. By selecting or designing features
that align with domain knowledge, the resulting model becomes more transparent and easier to explain to non-experts. This
can be particularly important when the model’s predictions impact critical decisions or require justification to gain trust from
stakeholders. Lackof transparency in ‘black box’models can pose a challenge in stakeholder decision-making, raise ethical con-

cerns and possible discriminatory outcomes, potentially preventing specific groups fromaccessing opportunities. For example, a
county that relies solely on data-driven systems to manage gully pot cleansing may disregard human contributions, potentially
leading to a reduction in funds allocated to a gully jetting company responsible for routine and reactive cleansing of the county’s
gullies.

In the context of human decision-making, model insights hold significance as they can inform decisions made by individ-
uals, sometimes surpassing the importance of predictions. There are also growing concerns about the autonomy of ML
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systems in their ability to take decisions and actions without inputs from human oversight, established deterministic theories,
and conceptual thinking (Subías-Beltrán et al. 2022). These concerns underline the need for explainable models allowing

humans to understand how they work and provide insights into the decisions made. This is important where decisions
that are based on ML models can have consequences such as discriminatory outcomes. Furthermore, insights from
models can guide future data collection efforts, helping local councils determine which types of data are most valuable for

solid deposition management and investment.
Table 4 summarises tools and how they are employed in improving the explainability of ‘black box’ models. To explain

further, SHAP values provide a comprehensive method for rationalising a model’s output to enable stakeholders to under-

stand the influence of individual variables by assigning a score to each variable. For example, let us consider a scenario
where an unexplainable ‘black box’ algorithm is employed to build a solid deposition model based on a randomly-generated
data for a solids level inspection (Table 5). In this scenario SHAP can be used to explain the contributions of land use i, an
independent variable as shown in the following equation:

;i( f, x) ¼
X
z0#x0

jz0j!(M � jz0j � 1)!
M!

fx(z0)� fx
z0

i

� �� �
(14)

where ;i is the Shapely value for land use, f is the black box model, x is an input data point which is a single row in the gully
inspection data, z0 # x0 represents iteration over all possible subsets and combination of variables to ensure that interactions

between individual variables are accounted for. If land use and solids type is one of the subsets under consideration, we can

Table 4 | Overview of methods for explaining ‘black box’ models, their corresponding algorithms and benefits

Method Algorithms Benefits

Simplification L1 or L2 regularisation (Ng 2004), sigmoid function
(Cramer 2003), modified tanh (Simos & Tsitouras
2021), smooth function approximation (Shurman 2016;
Ohn & Kim 2019), weight sharing (Pham et al. 2018)

Reduces complexity of the model and the number of
hidden layers, simplifies the activation function, and
prevents overfitting

Layer-wise
explanation

Gradient-weighted Class Activation Mapping, Grad-CAM
(Selvaraju et al. 2016), Layer-wise Relevance
Propagation, LRP (Bach et al. 2015), integrated
gradients (Hsu & Li 2023)

Analyse the output of each layer in a NN to gain insights
into the behaviour of the network. Thus, identifying
importance of various layers

Model-agnostic
interpretation

Local Interpretable Model-Agnostic Explanations, LIME
(Ribeiro et al. 2016), Shapley Addictive exPlanations,
SHAP (Lundberg & Lee 2017), Recursive Feature
Elimination, RFE (Guyon et al. 2002), Principal
Component Analysis, PCA (Abdi & Williams 2010),
mutual information (Shannon 1948), partial
dependence plot, PDP (Friedman 1991), permutation
feature importance, PFI (Breiman 2001)

Visual feature importance insights that explain the
behaviour of complex models regardless of the model’s
architecture. Identify variables that are most important
for producing a given output and provide insights into
correlation between variables, and the behaviour and
transparency of the model

Tree-based
explanation

Classification and RTs such as CART, ID3, C4.5, CHAID,
MARS, RF, GBT (Loh 2008; Hannan & Anmala 2021)

Inherently interpretable ML model that can be used in
conjunction with other XAI tools

Table 5 | A random example of a solids level inspection data showing climatic and anthropogenic variables

Road hierarchy Solids type Season Rainfall intensity (mm/hour) Dry period (days) Landuse Solids level

Service Silt Winter 15.63 0 Residential 75%

Lane Leaves Summer 0.2 6 Agricultural 50%

Service Silt Autumn 9.3 4 Residential 50%

Strategic Leaves Winter 0.2 6 Residential 50%

Minor Silt Spring 15.63 0 Recreational 100%
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get the model output for this subset with (fx(z0)) and without (fx(z0=i)) the variable of interest (i.e. land use). The difference in

fx(z0) and fx(z0=i) explains how land use contributed to the prediction in the subset.
For example, if the model output (solids level) with land use (fx(z0)) is 75%-filled and without land use (fx(z0=i), 50%-filled,

this then implies that land use contributes 25%, which is otherwise known as marginal value. The same process is repeated for

each possible combination of subsets which are additionally weighted (jz0j!(M � jz0j � 1)!=M!) according to how many vari-
ables of the total number of variables (M) are in the subset.

However, calculating all the combinations of subsets is computationally intensive. It is therefore beneficial to use an expo-
nential term 2n, with n representing the number of variables. For example, the gully inspection data in Table 5 has six

independent variables and 64 possible subset combinations, which makes it computationally intense to get the average con-
tribution of one variable. According to Lundberg & Lee (2017), Kernel SHAP, which is an approximation technique that
samples variable subsets and fits a linear regression based on the samples, can be used to eliminate the need for intense com-

putation. Other approximation techniques are tree SHAP and deep SHAP which are used for tree-based and deep NN
models, respectively. The SHAP summary plot (Figure 7) presents a concise and easily understandable overview of the
model’s feature importance (Lundberg & Lee 2017; SHAP 2018).

Geng et al. (2022) used SHAP values to demonstrate the importance and correlation of various explanatory variables in pre-
dicting litterfall production, a crucial solid build-up process. Similarly, Russo et al. (2023) used a combination of ‘black box’
algorithms which include RF, support vector regression, and ANN, to predict sediment and nutrient first flush. The study

used 76 potential predictive variables as input to the machine learning algorithm. The SHAP algorithm was then used to deter-
mine the feature importance of the variables and to improve the interpretability and explainability of the ‘black box’ models.

Likewise, classification trees are simple and interpretable models that visually represent the decision-making process of a ‘black
box’model and explain how themodel arrived at a specific prediction.Rietveld et al. (2020b)usedRTs in explaining the significance

and correlation between SB, wash-off, and retention predictors in predicting solid accumulation rate in gully pots.
Following insights from this study, a workflow (Figure 8) is presented for the implementation of explainable hybrid models

in the context of solid deposition modelling for gully pots. Stages 2–5 may involve a series of iterations to achieve a satisfac-

tory model.

6. CONCLUSION AND FUTURE WORK

Traditional models have been used to estimate the deposition of solids in gully pots, but these methods have limitations. It has
been demonstrated that explainable hybrid models can lessen the effects of these limitations.

This study offers a promising approach to overcome the limitations of traditional models in simulating complex systems

such as SB, wash-off, and retention processes in gully pots. By integrating traditional and data-driven models, hybrids are pro-
duced to handle complex and non-linear variables, improve the scope and applicability of existing models, increase their

Figure 7 | The SHAP summary plot enhances the explainability of ‘black box’ models (modified from SHAP 2018).
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flexibility, and reduce bias from non-representative data, missing data, and outliers. However the resource-intensive compu-
tation requirements and lack of explainability of hybrid models can lead to misapplication and flawed decision-making. There
is a need for resource-efficient and explainable hybrid models that allow stakeholders to understand how a model works and
why it takes certain decisions. SHAP values, DT, and other explainable Artificial Intelligence (XAI) tools can enhance the

interpretability and explainability of ‘black box’ models, enabling stakeholders to make informed decisions based on reliable
insights. By adopting these XAI tools, we can mitigate the risks associated with hybrid models and ensure that they are trans-
parent, ethical, and beneficial. As explainable hybrids evolve, they will become an increasingly valuable tool for addressing

complex modelling challenges in solids deposition on road surfaces and in urban stormwater management.
Future works will utilise explainable hybrid architecture to improve the predictive accuracy of solids deposition using gully

inspection data from multiple local authorities.

Figure 8 | A suggested workflow for deploying an explainable hybrid model that can effectively predict solids deposition in a gully pot.

Water Science & Technology Vol 89 No 8, 1908

Downloaded from http://iwaponline.com/wst/article-pdf/89/8/1891/1408600/wst089081891.pdf
by guest
on 23 May 2024



AUTHORS’ CONTRIBUTIONS

C.F.E. contributed to conceptualisation, methodology, and writing. A.C. contributed to writing, review, and supervision. H.B.
contributed to review and supervision. E.E. and C.S. reviewed the article.

FUNDING

There was no external funding for this research.

DATA AVAILABILITY STATEMENT

Data cannot be made publicly available; readers should contact the corresponding author for details.

CONFLICT OF INTEREST

The authors declare there is no conflict.

REFERENCES

Abdi, H. & Williams, L. J. 2010 Principal component analysis. WIRES Computational Statistics 2 (4), 433–459.
Agarap, A. F. 2018 Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375.
Alley, W. & Smith, P. 1981 Estimation of accumulation parameters for urban runoff quality modeling. Water Resources Research 17 (6),

1657–1664.
Almutairi, M., Stahl, F. & Bramer, M. 2021 Reg-rules: An explainable rule-based ensemble learner for classification. IEEE Access 9,

52015–52035.
Ankobea-Ansah, K. & Hall, C. M. 2022 A hybrid physics-based and stochastic neural network model structure for diesel engine combustion

events. Vehicles 4 (1), 259–296.
Bach, P. M., McCarthy, D. T. & Deletic, A. 2010 Redefining the stormwater first flush phenomenon. Water Research 44 (8), 2487–2498.
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K. R. & Samek, W. 2015 On pixel-wise explanations for non-linear classifier

decisions by layer-wise relevance propagation. PloS one 10 (7), 0130140.
Behrouz, M., Yazdi, M. & Sample, D. 2022 Using random forest, a machine learning approach to predict nitrogen, phosphorus, and sediment

event mean concentrations in urban runoff. Environmental Management 317, 115412.
Bera, S. 2020 Feature Selection using Genetic Algorithm. Available from: https://medium.com/analytics-vidhya/feature-selection-using-

genetic-algorithm-20078be41d16 (Accessed 10 April 2023).
Bertrand-Krajewski, J., Briat, P. & Scrivener, O. 1993 Sewer sediment production and transport modelling: A literature review. Hydraulic

Research 31 (4), 435–460.
Bozinovski, S. & Fulgosi, A. 1976 The influence of pattern similarity and transfer learning upon training of a base perceptron b2. In

Proceedings of Symposium Informatica 3, 121–126.
Breiman, L. 2001 Random forests. Machine Learning 45 (1), 5–32.
British Standards Institution 2021BS 5911-6:2021 Concrete Pipes and Ancillary Concrete Products. Road Gullies and Gully Cover Slabs.

British Standards Institution, London. Specification.
Brownlee, J. 2019 What is the Difference Between A Parameter and A Hyperparameter? Available from: https://machinelearningmastery.

com/difference-between-a-parameter-and-a-hyperparameter/ (Accessed 13 April 2023).
Brownlee, J. 2021 How to Choose an Activation Function for Deep Learning. Available from: https://machinelearningmastery.com/feature-

selection-with-real-and-categorical-data/ (Accessed 12 April 2023).
Bui, D., Tsangaratos, P., Ngo, P., Pham, T. & Pham, B. 2019 Flash flood susceptibility modeling using an optimized fuzzy rule based feature

selection technique and tree based ensemble methods. Science of the Total Environment 668, 1038–1054.
Bujon, G. 1988 Prévision des débits et des flux polluants transités par les réseaux d’égouts par temps de pluie. Le modèle FLUPOL (Prediction

of flow rates and pollutant transport through sewer networks during rainy weather. The FLUPOL model). La Houille Blanche 1, 11–23.
Burden, F. & Winkler, D. 2008 Bayesian regularization of neural networks. In: Artificial Neural Networks: Methods and Applications.

Humana Press, Sandown, pp. 23–42.
Butler, D. & Karunaratne, S. 1995 The suspended solids trap efficiency of the roadside gully pot. Water Research 29 (2), 719–729.
Butler, D., Digman, C., Makropoulos, C. & Davies, J. 2018 Urban Drainage, 4th edn. Taylor & Francis, CRC Press, Boca Raton.
Caraka, R., Chen, R., Toharudin, T., Pardamean, B., Yasin, H. & Wu, S. 2019 Prediction of status particulate matter 2.5 using state Markov

chain stochastic process and HYBRID VAR-NN-PSO. IEEE Access 7, 161654–161665.
Casella, G. & George, E. I. 1992 Explaining the Gibbs sampler. The American Statistician 46 (3), 167–174.
Chan, T. M. 2023 Multilevel multinomial logit regression model with random effects: Application to flash EuroBarometer euro survey data.

Statistical Computation and Simulation 93 (1), 58–76.
Chang, C., Lin, P. & Tsai, C. 2011 Estimation of sediment volume of debris flow caused by extreme rainfall in Taiwan. Engineering Geology

123 (1–2), 83–90.

Water Science & Technology Vol 89 No 8, 1909

Downloaded from http://iwaponline.com/wst/article-pdf/89/8/1891/1408600/wst089081891.pdf
by guest
on 23 May 2024

http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1029/WR017i006p01657
http://dx.doi.org/10.1109/ACCESS.2021.3062763
http://dx.doi.org/10.3390/vehicles4010017
http://dx.doi.org/10.3390/vehicles4010017
http://dx.doi.org/10.1016/j.watres.2010.01.022
https://medium.com/analytics-vidhya/feature-selection-using-genetic-algorithm-20078be41d16
https://medium.com/analytics-vidhya/feature-selection-using-genetic-algorithm-20078be41d16
http://dx.doi.org/10.1080/00221689309498869
http://dx.doi.org/10.1023/A:1010933404324
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/
http://dx.doi.org/10.1016/j.scitotenv.2019.02.422
http://dx.doi.org/10.1016/j.scitotenv.2019.02.422
http://dx.doi.org/10.1051/lhb/1988001
http://dx.doi.org/10.1051/lhb/1988001
http://dx.doi.org/10.1016/0043-1354(94)00149-2
http://dx.doi.org/10.1109/ACCESS.2019.2950439
http://dx.doi.org/10.1109/ACCESS.2019.2950439
http://dx.doi.org/10.1080/00031305.1992.10475878
http://dx.doi.org/10.1080/00949655.2022.2092867
http://dx.doi.org/10.1016/j.enggeo.2011.07.004


Cherrington, M., Airehrour, D., Lu, J., Xu, Q., Wade, S. & Madanian, S. 2019 Feature selection methods for linked data: Limitations,
capabilities and potentials. In: Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and
Technologies, 2–5 December, Auckland, New Zealand.

Chib, S. & Greenberg, E. 1995 Understanding the metropolis-hastings algorithm. The American Statistician 49 (4), 327–335.
Chow, M. F., Yusop, Z. & Abustan, I. 2015 Relationship between sediment build-up characteristics and antecedent dry days on different

urban road surfaces in Malaysia. Urban Water Journal 12 (3), 240–247.
Clark, J. 2005 Why environmental scientists are becoming Bayesians. Ecology Letters 8 (1), 2–14.
Collinson, J. D., Mountney, N. P. & Thompson, D. B. 2006 Sedimentary Structures, 3rd edn. Terra Publishing, Harpenden, Hertfordshire.
Cramer, J. S. 2003 The Origins of Logistic Regression. Available from: http://www.ssrn.com/abstract¼360300 (Accessed 9 July 2023).
Deletic, A., Maksimovic, E. & Ivetic, M. 1997 Modelling of storm wash-off of suspended solids from impervious surfaces. Hydraulic Research

35 (1), 99–118.
Department for Transport 2020 CD 526: Design Manual for Roads and Bridges, Version 3: Spacing of Road Gullies. DfT, London.
Dragomiretskiy, K. & Zosso, D. 2013 Variational mode decomposition. IEEE Transactions on Signal Processing 62 (3), 531–544.
Driver, N. & Troutman, B. 1989 Regression models for estimating urban storm-runoff quality and quantity in the United States. Hydrology

109 (3–4), 221–236.
Egodawatta, P., Thomas, E. & Goonetilleke, A. 2007 Mathematical interpretation of pollutant wash-off from urban road surfaces using

simulated rainfall. Water Research 41 (13), 3025–3031.
Egodawatta, P., Ziyath, A. & Goonetilleke, A. 2013 Characterising metal build-up on urban road surfaces. Environmental Pollution

176 (2013), 87–91.
Entwistle, M. 2021 A new Approach to Risk Profiling Gullies. Available from: https://edition.pagesuite-professional.co.uk/html5/reader/

production/default.aspx?pubname¼&edid¼2945599d-ae29-4a9e-9b46-1ff962115a7f&pnum¼44 (Accessed 10 July 2022).
Environmental Systems Research Institute n.d InfoSWMM. Available from: https://www.esri.com/partners/innovyze-

a2T70000000TNVyEAO/infoswmm-a2d70000000VM9HAAW (Accessed 23 March 2023).
Fenner, R. 2000 Approaches to sewer maintenance: A review. Journal of Urban Water 2, 343–346.
Feurer, M. & Hutter, F. 2019 Hyperparameter Optimization. In: Automated Machine Learning: Methods, Systems, Challenges

(Hutter, F., Kotthoff, L. & Vanschoren, J., eds.). Springer Nature, Cham, Switzerland, pp. 3–33.
Forty, E. 1998 Performance of Gully Pots for Road Drainage, Report SR 508. HR Wallingford, Oxford, United Kingdom.
Freund, Y. & Schapire, R. 1995 A decision-theoretic generalization of on-line learning and an application to boosting. In Computational

Learning Theory: Second European Conference, EuroCOLT’95 Barcelona, 13–15 March, Spain.
Friedman, J. 1991 Multivariate adaptive regression splines. The Annals of Statistics 19 (1), 1–67.
Friedman, J. 2001 Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29 (5), 1189–1232.
Gelman, A. & Hill, J. 2006 Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York.
Geng, A., Tu, Q., Chen, J., Wang, W. & Yang, H. 2022 Improving litterfall production prediction in China under variable environmental

conditions using machine learning algorithms. Environmental Management 306, 114515.
Gong, J. & Chen, T. 2022 Does configuration encoding matter in learning software performance? An empirical study on encoding schemes.

In: Proceedings of the 19th International Conference on Mining Software Repositories, 23–24 May, Pittsburgh, USA.
Gross, K. 2020 Tree-Based Models: How They Work (In Plain English!) Available from: https://blog.dataiku.com/tree-based-models-how-

they-work-in-plain-english (Accessed 11 April 2023).
Grottker, M. 1990 Pollutant removal by gully pots in different catchment areas. Science of the Total Environment 93, 515–522.
Grottker, M. & Hurlebush, R. 1987 Mitigation of storm water pollution by gully pots. In: Proceedings of the Fourth International Conference

on Urban Storm Drainage, 31 August – 4 September, Lausanne, Switzerland.
Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. 2002 Gene selection for cancer classification using support vector machines. Machine

Learning 46, 389–422.
Haidar, A. & Verma, B. 2018 A novel approach for optimizing climate features and network parameters in rainfall forecasting. Soft

Computing 22, 8119–8130.
Hannan, A. & Anmala, J. 2021 Classification and prediction of fecal coliform in stream waters using decision trees (DTs) for upper Green

River watershed, Kentucky, USA. Water 13 (19), 2790.
Hsu, C. Y. & Li, W. 2023 Explainable GeoAI: Can saliency maps help interpret artificial intelligence’s learning process? An Empirical Study

on Natural Feature Detection. Geographical Information Science 37 (5), 963–987.
Hu, J., Ghamisi, P. & Zhu, X. 2018 Feature extraction and selection of sentinel-1 dual-pol data for global-scale local climate zone

classification. ISPRS International Geo-Information 7 (9), 379.
Kennedy, J. & Eberhart, R. 1995 Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, 27

November–1 December, Perth, WA, Australia.
Kim, J., Yu, J., Kang, C., Ryang, G., Wei, Y. & Wang, X. 2022 A novel hybrid water quality forecast model based on real-time data

decomposition and error correction. Process Safety and Environmental Protection 162, 553–565.
Kunin, D., Bloom, J., Goeva, A. & Seed, C. 2019 Loss Landscapes of Regularized Linear Autoencoders. Available from: https://arxiv.org/pdf/

1901.08168.pdf (Accessed 8 April 2023).

Water Science & Technology Vol 89 No 8, 1910

Downloaded from http://iwaponline.com/wst/article-pdf/89/8/1891/1408600/wst089081891.pdf
by guest
on 23 May 2024

http://dx.doi.org/10.1080/00031305.1995.10476177
http://dx.doi.org/10.1080/1573062X.2013.839718
http://dx.doi.org/10.1080/1573062X.2013.839718
http://dx.doi.org/10.1111/j.1461-0248.2004.00702.x
http://www.ssrn.com/abstract&equals;360300
http://www.ssrn.com/abstract&equals;360300
http://dx.doi.org/10.1080/00221689709498646
http://dx.doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/10.1016/0022-1694(89)90017-6
http://dx.doi.org/10.1016/j.watres.2007.03.037
http://dx.doi.org/10.1016/j.watres.2007.03.037
http://dx.doi.org/10.1016/j.envpol.2013.01.021
https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname&equals;&edid&equals;2945599d-ae29-4a9e-9b46-1ff962115a7f&pnum&equals;44
https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname&equals;&edid&equals;2945599d-ae29-4a9e-9b46-1ff962115a7f&pnum&equals;44
https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname&equals;&edid&equals;2945599d-ae29-4a9e-9b46-1ff962115a7f&pnum&equals;44
https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname&equals;&edid&equals;2945599d-ae29-4a9e-9b46-1ff962115a7f&pnum&equals;44
https://edition.pagesuite-professional.co.uk/html5/reader/production/default.aspx?pubname&equals;&edid&equals;2945599d-ae29-4a9e-9b46-1ff962115a7f&pnum&equals;44
https://www.esri.com/partners/innovyze-a2T70000000TNVyEAO/infoswmm-a2d70000000VM9HAAW
https://www.esri.com/partners/innovyze-a2T70000000TNVyEAO/infoswmm-a2d70000000VM9HAAW
http://dx.doi.org/10.1016/S1462-0758(00)00065-0
https://blog.dataiku.com/tree-based-models-how-they-work-in-plain-english
https://blog.dataiku.com/tree-based-models-how-they-work-in-plain-english
http://dx.doi.org/10.1016/0048-9697(90)90142-H
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1007/s00500-017-2756-7
http://dx.doi.org/10.3390/w13192790
http://dx.doi.org/10.3390/w13192790
http://dx.doi.org/10.3390/ijgi7090379
http://dx.doi.org/10.3390/ijgi7090379
http://dx.doi.org/10.1016/j.psep.2022.04.020
http://dx.doi.org/10.1016/j.psep.2022.04.020
https://arxiv.org/pdf/1901.08168.pdf
https://arxiv.org/pdf/1901.08168.pdf


Lee, D., Cheon, E., Lim, H., Choi, S., Kim, Y. & Lee, S. 2021 An artificial neural network model to predict debris-flow volumes caused by
extreme rainfall in the central region of South Korea. Engineering Geology 281, 105979.

Li, F., Ma, G., Chen, S. & Huang, W. 2021 An ensemble modeling approach to forecast daily reservoir inflow using bidirectional long-and
short-term memory (Bi-LSTM), variational mode decomposition (VMD), and energy entropy method. Water Resources Management 35,
2941–2963.

Litwin, Y. & Donigian Jr., A. 1978 Continuous simulation of nonpoint pollution. Water Pollution Control Federation 50 (10), 2348–2361.
Loh, W. Y. 2008 Classification and regression tree methods. Encyclopedia of Statistics in Quality and Reliability 1, 315–323.
Lundberg, S. & Lee, S. 2017 A unified approach to interpreting model predictions. In Proceedings of the 31st Annual Conference on Advances

in Neural Information Processing Systems, California, United States of America, 4–9 December, pp. 1–10.
Maharana, K., Mondal, S. & Nemade, B. 2022 A review: Data pre-processing and data augmentation techniques. Global Transitions

Proceedings 3 (1), 91–99.
Manish Agrawal, A., Tendle, A., Sikka, H. & Singh, S. 2021 WeightScale: Interpreting Weight Change in Neural Networks. Available from:

https://arxiv.org/abs/2107.07005 (Accessed 8 July 2023).
Marchi, L. & D’Agostino, V. 2004 Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surface Processes and Landforms

29 (2), 207–220.
Martin, O. A., Kumar, R. & Lao, J. 2021 Bayesian Modeling and Computation in Python. Chapman & Hall/CRC Press, Boca Ratón.
Mazzanti, S. 2021 ‘MRMR’ Explained Exactly How You Wished Someone Explained to You. Available from: https://towardsdatascience.

com/mrmr-explained-exactly-how-you-wished-someone-explained-to-you-9cf4ed27458b (Accessed 5 April 2023).
Morgan, J. & Sonquist, J. 1963 Problems in the analysis of survey data, and a proposal. The American Statistical Association 58 (302),

415–434.
Muthusamy, M., Tait, S., Schellart, A., Beg, M., Carvalho, R. & de Lima, J. 2018 Improving understanding of the underlying physical process

of sediment wash-off from urban road surfaces. Hydrology 557, 426–433. Available from: https://www.itl.nist.gov/div898/handbook/
pmc/section4/pmc444.htm (Accessed 7 April 2023).

Ng, A. Y. 2004 Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. Available from: https://dl.acm.org/doi/abs/10.1145/
1015330.1015435?casa_token¼ PD-1fMI8I3cAAAAA:ER-_rnNwkx0tzZcF1vpJGAq9LTCa0pHdJVybET20F3-
1DnKx_szxcINrD9pG9cN2PydGYo2w3ory (Accessed 9 July 2023).

Nix, S. 2022 Leaf Abscission and Senescence. Available from: https://www.thoughtco.com/leaf-abscission-and-senescence-1342629
(Accessed 10 July 2022).

Obropta, C. & Kardos, J. 2007 Review of urban stormwater quality models: Deterministic, stochastic, and hybrid approaches. The American
Water Resources Association. JAWRA 43 (6), 1508–1523. (Accessed 2 March 2023).

Ognjanovski, G. 2019 Everything you Need to Know About Neural Networks and Backpropagation. Available from: https:
://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-
e5285bc2be3a (Accessed 6 July 2023).

Ohn, I. & Kim, Y. 2019 Smooth function approximation by deep neural networks with general activation functions. Entropy 21 (7), 627.
Ozbulak, U., De Neve, W. & Van Messem, A. 2018 How the Softmax Output is Misleading for Evaluating the Strength of Adversarial

Examples. Available from: https://arxiv.org/abs/1811.08577 (Accessed 8 July 2023).
Papananias, M., Fletcher, S., Longstaff, A. P., Mengot, A., Jonas, K. & Forbes, A. B. 2017 Modelling uncertainty associated with comparative

coordinate measurement through analysis of variance techniques. In Proceedings 17th International Conference European Society for
Precision Engineering and Nanotechnology, 29 May – 2 June, Hannover, Germany.

Peng, X., Li, C., Jia, S., Zhou, L., Wang, B. & Che, J. 2022 A short-term wind power prediction method based on deep learning and multistage
ensemble algorithm. Wind Energy 25 (9), 1610–1625.

Penn State University n.d Generalized Linear Mixed Models. Available from: https://online.stat.psu.edu/stat504/lesson/generalized-linear-
mixed-models (Accessed 6 April 2023).

Pham, H., Guan, M., Zoph, B., Le, Q. & Dean, J. 2018 Efficient Neural Architecture Search via Parameters Sharing. Available from: http://
proceedings.mlr.press/v80/pham18a/pham18a.pdf (Accessed 9 July 2023).

Pisa, I., Morell, A., Vicario, J. L. & Vilanova, R. 2023 Transfer Learning in wastewater treatment plants control: Measuring the transfer
suitability. Process Control 124, 36–53.

Post, J., Pothof, I., Langeveld, J. & Clemens, F. 2015 Modelling progressive sediment accumulation in gully pots: A Bayesian approach. In:
Proceedings of the 10th International Conference on Urban drainage modelling, Quebec, Canada, 20–23 September, pp. 59–61.

Post, J., Pothof, I., Dirksen, J., Baars, E., Langeveld, J. & Clemens, F. 2016 Monitoring and statistical modelling of sedimentation in gully pots.
Water Research 88, 245–256.

Refaeilzadeh, P., Tang, L. & Liu, H. 2009 Cross-validation. Encyclopedia of Database Systems 5, 532–538.
Ribeiro, M. T., Singh, S. & Guestrin, C. 2016 ‘Why should i trust you?’ Explaining the predictions of any classifier. In: Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 14–18 August, Virtual.
Rietveld, M., Clemens, F. & Langeveld, J. 2020a Solids dynamics in gully pots. Urban Water Journal 17 (7), 669–680.
Rietveld, M., Clemens, F. & Langeveld, J. 2020b Monitoring and statistical modelling of the solids accumulation rate in gully pots. Urban

Water 17 (6), 549–559.

Water Science & Technology Vol 89 No 8, 1911

Downloaded from http://iwaponline.com/wst/article-pdf/89/8/1891/1408600/wst089081891.pdf
by guest
on 23 May 2024

http://dx.doi.org/10.1016/j.enggeo.2020.105979
http://dx.doi.org/10.1016/j.enggeo.2020.105979
http://dx.doi.org/10.1007/s11269-021-02879-3
http://dx.doi.org/10.1007/s11269-021-02879-3
http://dx.doi.org/10.1016/j.gltp.2022.04.020
https://arxiv.org/abs/2107.07005
http://dx.doi.org/10.1002/esp.1027
https://towardsdatascience.com/mrmr-explained-exactly-how-you-wished-someone-explained-to-you-9cf4ed27458b
https://towardsdatascience.com/mrmr-explained-exactly-how-you-wished-someone-explained-to-you-9cf4ed27458b
http://dx.doi.org/10.1080/01621459.1963.10500855
http://dx.doi.org/10.1016/j.jhydrol.2017.11.047
http://dx.doi.org/10.1016/j.jhydrol.2017.11.047
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc444.htm
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc444.htm
https://www.thoughtco.com/leaf-abscission-and-senescence-1342629
http://dx.doi.org/10.1111/j.1752-1688.2007.00124.x
https: ://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https: ://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https: ://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
http://dx.doi.org/10.3390/e21070627
https://arxiv.org/abs/1811.08577
http://dx.doi.org/10.1002/we.2761
http://dx.doi.org/10.1002/we.2761
https://online.stat.psu.edu/stat504/lesson/generalized-linear-mixed-models
https://online.stat.psu.edu/stat504/lesson/generalized-linear-mixed-models
http://proceedings.mlr.press/v80/pham18a/pham18a.pdf
http://proceedings.mlr.press/v80/pham18a/pham18a.pdf
http://dx.doi.org/10.1016/j.jprocont.2023.02.006
http://dx.doi.org/10.1016/j.jprocont.2023.02.006
http://dx.doi.org/10.1016/j.watres.2015.10.021
http://dx.doi.org/10.1007/978-0-387-39940-9_565
http://dx.doi.org/10.1080/1573062X.2020.1823430
http://dx.doi.org/10.1080/1573062X.2020.1800760


Russo, C., Castro, A., Gioia, A., Iacobellis, V. & Gorgoglione, A. 2023 Improving the sediment and nutrient first-flush prediction and ranking
its influencing factors: An integrated machine-learning framework. Hydrology 616, 128842.

Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. 2016 Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2, e55.
Sartor, J., Boyd, G. & Agardy, F. 1974 Water pollution aspects of street surface contaminants. Water Pollution Control Federation 46 (3),

458–467.
Schuster, M. & Paliwal, K. K. 1997 Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45 (11), 2673–2681.
Scikit-learn Developers 2023 Sklearn Preprocessing Label Encoder. Available from: https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.LabelEncoder.html (Accessed 6 April 2023).
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. & Batra, D. 2016 Grad-CAM: Visual Explanations From Deep Networks via

Gradient-Based Localization. Available from: https://arxiv.org/abs/1610.02391.
Servat, E. 1984 Contribution à L’étude des Matières en Suspension du Ruissellement Pluvial à L’échelle D’un Petit Bassin Versant Urbain

(Contribution to the Study of Suspended Matter in Stormwater Runoff at the Scale of A Small Urban Watershed). PhD Thesis, Université
des Sciences et Techniques du Languedoc.

Shannon, C. E. 1948 A mathematical theory of communication. The Bell System Technical Journal 27 (3), 379–423.
SHAP 2018 Welcome to the SHAP Documentation. Available from: https://shap-lrjball.readthedocs.io/en/latest/index.html (Accessed 8

April 2023).
Shi, J., Zhu, Y., Khan, F. & Chen, G. 2019 Application of Bayesian Regularization Artificial Neural Network in explosion risk analysis of fixed

offshore platform. Loss Prevention in the Process Industries 57, 131–141.
Shurman, J. 2016 Approximation by Smooth Functions. In: Calculus and Analysis in Euclidean Space (Shurman, J. ed.). Springer, New York,

pp. 347–373.
Simos, T. E. & Tsitouras, C. 2021 Efficiently inaccurate approximation of hyperbolic tangent used as transfer function in artificial neural

networks. Neural Computing and Applications 33 (16), 10227–10233.
South Gloucestershire 2015 Highways Asset Management Framework 2015–2020. Available from: https://www.southglos.gov.uk/

documents/Highways-Asset-Management-Framework2015-2020.pdf (Accessed 20 September 2022).
South Gloucestershire 2022 Drainage Data FOI Ref FIDP/017 (Accessed 25 May 2022).
Spiegelhalter, D., Best, N., Carlin, B. & Van Der Linde, A. 2002 Bayesian measures of model complexity and fit. The Royal Statistical Society:

Series B (Statistical Methodology) 64 (4), 583–639.
Suárez, J., Jiménez, V., del Río, H., Anta, J., Jácome, A., Torres, D., Ures, P. & Vieito, S. 2013 Design of a sand filter for highway runoff in the

north of Spain. Municipal Engineer 166 (2), 121–129.
Subel, A., Guan, Y., Chattopadhyay, A. & Hassanzadeh, P. 2023 Explaining the physics of transfer learning in data-driven turbulence

modeling. PNAS Nexus 2 (3), pgad 015.
Subías-Beltrán, P., Pujol, O. & Lecuona Ramírez, I. D. 2022 The forgotten human autonomy in Machine Learning. In CEUR Workshop

Proceedings, 13 June, Barcelona, Spain, pp. 3221.
United States Environmental Protection Agency 2023 Storm Water Management Model (SWMM). Available from: https://www.epa.gov/

water-research/storm-water-management-model-swmm (Accessed 6 April 2023).
University of California, Los Angeles 2023 Introduction to Generalized Linear Mixed Models. Available from: https://stats.oarc.ucla.edu/

other/mult-pkg/introduction-to-generalized-linear-mixed-models/ (Accessed 6 July 2023).
Uzair, M. & Jamil, N. 2020 Effects of hidden layers on the efficiency of neural networks. In: 23rd International Multi-Topic Conference

(INMIC), 5–7 November, Bahawalpur, Pakistani.
Warton, D., Blanchet, F. G., O’Hara, R. B., Ovaskainen, O., Taskinen, S., Walker, S. C. & Hui, F. K. 2015 So many variables: Joint modeling

in community ecology. Trends in Ecology & Evolution 30 (12), 766–779.
Xiao, Y., Luan, B., Zhang, T., Liang, D. & Zhang, C. 2022 Experimental study of sediment wash-off process over urban road and its

dependence on particle size distribution. Water Science & Technology 86 (10), 2732–2748.
Yogatama, D. & Mann, G. 2014 Efficient transfer learning method for automatic hyperparameter tuning. [online]. In Proceedings of the

International Conference on Artificial Intelligence and Statistics, 22–25 April, Reykjavik, Iceland.
Yuan, L., Sinshaw, T. & Forshay, K. J. 2020 Review of watershed-scale water quality and nonpoint source pollution models. Geosciences

10 (25), 1–36.
Zhao, H., Jiang, Q., Ma, Y., Xie, W., Li, X. & Yin, C. 2018 Influence of urban surface roughness on build-up and wash-off dynamics of road-

deposited sediment. Environmental Pollution 243, 1226–1234.
Zhao, Y., Meng, X., Qi, T., Li, Y., Chen, G., Yue, D. & Qing, F. 2022 AI-based rainfall prediction model for debris flows. Engineering Geology

296, 106456.

First received 26 September 2023; accepted in revised form 27 February 2024. Available online 12 March 2024

Water Science & Technology Vol 89 No 8, 1912

Downloaded from http://iwaponline.com/wst/article-pdf/89/8/1891/1408600/wst089081891.pdf
by guest
on 23 May 2024

http://dx.doi.org/10.1016/j.jhydrol.2022.128842
http://dx.doi.org/10.1016/j.jhydrol.2022.128842
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.1109/78.650093
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://arxiv.org/abs/1610.02391
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://shap-lrjball.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1016/j.jlp.2018.10.009
http://dx.doi.org/10.1016/j.jlp.2018.10.009
http://dx.doi.org/10.1007/978-3-319-49314-5_7
http://dx.doi.org/10.1007/s00521-021-05787-0
http://dx.doi.org/10.1007/s00521-021-05787-0
https://www.southglos.gov.uk/documents/Highways-Asset-Management-Framework2015-2020.pdf
https://www.southglos.gov.uk/documents/Highways-Asset-Management-Framework2015-2020.pdf
http://dx.doi.org/10.1111/1467-9868.00353
http://dx.doi.org/10.1680/muen.12.00028
http://dx.doi.org/10.1680/muen.12.00028
http://dx.doi.org/10.1093/pnasnexus/pgad015
http://dx.doi.org/10.1093/pnasnexus/pgad015
https://www.epa.gov/water-research/storm-water-management-model-swmm
https://www.epa.gov/water-research/storm-water-management-model-swmm
https://stats.oarc.ucla.edu/other/mult-pkg/introduction-to-generalized-linear-mixed-models/
https://stats.oarc.ucla.edu/other/mult-pkg/introduction-to-generalized-linear-mixed-models/
http://dx.doi.org/10.1016/j.tree.2015.09.007
http://dx.doi.org/10.1016/j.tree.2015.09.007
http://dx.doi.org/10.2166/wst.2022.372
http://dx.doi.org/10.2166/wst.2022.372
http://dx.doi.org/10.1016/j.envpol.2018.09.105
http://dx.doi.org/10.1016/j.envpol.2018.09.105
http://dx.doi.org/10.1016/j.enggeo.2021.106456

	Enhancing solids deposit prediction in gully pots with explainable hybrid models: A review
	INTRODUCTION
	DEPOSITION OF SOLIDS IN GULLY POTS - DESCRIPTION OF PROCESSES
	REVIEW OF THE EXISTING MODELLING TECHNIQUES FOR THE PREDICTION OF SOLIDS DEPOSITION
	Deterministic modelling techniques
	Conceptual modelling techniques
	Hydrid modelling techniques

	ADDRESSING THE LIMITATIONS IN THE PREDICTION OF SOLIDS DEPOSITION THROUGH THE USE OF HYBRID MODELS
	The limitation of complex and non-linear variables
	The limitation of scope and applicability
	The limitation of inflexibility
	The limitation of bias from the use of non-representative data, missing data, and outliers

	ADDRESSING THE CONCERNS OF USING HYBRID MODELS IN GULLY POT SOLIDS DEPOSITION PREDICTION
	CONCLUSION AND FUTURE WORK
	AUTHORS&rsquo; CONTRIBUTIONS
	FUNDING
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	REFERENCES


