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ABSTRACT: The presence of microscopic fine plastic particles (FPPs) in
aquatic environments continues to be a societal issue of great concern.
Further, the adsorption of pollutants and other macromolecules onto the
surface of FPPs is a well-known phenomenon. To establish the adsorption
behavior of pollutants and the adsorption capacity of different plastic

Microplastic

materials, batch adsorption experiments are typically carried out, wherein - Molecular dynamics of /=
known concentrations of a pollutant are added to a known amount of plastic. | ‘ ; _ Sl e

These experiments can be time-consuming and wasteful by design, and in
this work, an alternative theoretical approach to considering the problem is
reviewed. As a theoretical tool, molecular dynamics (MD) can be used to
probe and understand adsorbent—adsorbate interactions at the molecular
scale while also providing a powerful visual picture of how the adsorption
process occurs. In recent years, numerous studies have emerged that used
MD as a theoretical tool to study adsorption on FPPs, and in this work, these
studies are presented and discussed across three main categories: (i) organic pollutants, (ii) inorganic pollutants, and (iii) biological
macromolecules. Emphasis is placed on how MD-calculated interaction energies can align with experimental data from batch
adsorption experiments, and particular consideration is given to how MD can complement existing approaches. This work
demonstrates that MD can provide significant insight into the adsorption behavior of different pollutants, but modern approaches
are lacking a generalized formula for theoretically predicting adsorption behavior. With more data, MD could be used as a robust,
initial assessment tool for the prioritization of chemical pollutants in the context of the microplastisphere, meaning that less time-
consuming and potentially wasteful experiments would need to be carried out. With additional refinement, modern simulations will
facilitate an improved understanding of chemical adsorption in aquatic environments.

1.0. INTRODUCTION The sorption of organic and inorganic pollutants onto the
surface of microplastics is known to occur due to their high
surface-area-to-volume ratio and hydrophobic properties.''
Additionally, MPs have been shown to accumulate pollutants
in concentrations much larger than the surrounding aqueous
environment.'” These facts, coupled with the overwhelmingly
large surface area potentially provided by the entirety of the so-
called microplastisphere, indicate that developing a detailed
understanding of sorption processes at plastic interfaces has
never been more vital.'> Common organic pollutants that have
been shown to adsorb onto microplastic surfaces include well-
known environmental pollutants such as polyaromatic hydro-

It is now undeniable that pollution of the environment by fine
plastic particles (FPPs) presents itself as one of the great global
challenges facing modern society.' > Microplastics (MPs) are
typically defined as small particles, generally <5 mm in size,
made of common synthetic polymers such as polyethylene (PE),
polypropylene (PP), polyethylene terephthalate (PET), and
polystyrene (PS).* MPs are now highly ubiquitous in nature and
have been found across virtually all marine ecosystems.’
Coupled with their now widespread distribution, microplastics
have been linked with a range of negative consequences such as
the adsorption (and consequent release) of pollutants and their
uptake by marine organisms.® Nanoplastics (NPs) are now also a
growing concern as MP particles can degrade even further into Received:  October 6, 2023
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aquatic and terrestrial environments, with a range of potentially
unforeseen effects due to their small size.”® Due to the many
unanswered questions that exist regarding the ecotoxicological
risks associated with FPPs, this is a fact of significant concern.”'?
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Figure 1. MD can be used to observe structural changes as a system evolves through time. Here, over numerous timesteps, a small PFAS (per- and
polyfluoroalkyl substance) molecule can be seen approaching a hypothetical polyethylene surface.

carbons (PAHs), polybrominated diphenyl ethers (PBDEs),
and a wide range of pharmaceutical and personal care products
(PPCPs)."”~"° These molecules therefore provide the best
examples by which to study the process of adsorption at FPP
interfaces. Broadly speaking, sorption processes are controlled
by the strength of the molecular interactions between the
adsorbate (pollutant) and the adsorbent (FPP) at the atomic
scale. Thus, utilizing methods that enable an atomistic (or
atomic-scale) understanding of adsorbate—adsorbent interac-
tions will play a pivotal role in our future understanding of how
and why different plastic types could act as vectors for organic
pollutants, and studies within this domain started to emerge in
2019."° First, however, brief consideration must be given to how
adsorption on FPPs is typically described and quantified.

1.1. Fine Plastic Particle Adsorption Capacities. To
calculate the adsorption capacity of polymers that are commonly
found as both MPs and NPs and, in turn, the potential ability of a
given pollutant to adsorb onto its surface, sorption experiments
are typically carried out with batch methods, wherein known
concentrations of a pollutant are added to known weights of
plastic particles.'””'® Adsorption capacities for a particular FPP
are typically calculated according to eq 1:

\%4
4, = ;(Co - Ct) (1)

where g, is the adsorption capacity, V'is the volume of a solution
containing a potential pollutant, m is the mass of the sorbent, C,
is initial concentration of the pollutant, and C, is the pollutant
concentration at time t.'” Additionally, kinetic models are
typically used to acquire an understanding of how quickly
adsorption occurs and the possible mechanisms behind the
process (e.g., 2pseudo-ﬁrst-order (PFO) and pseudo-second-
order (PSO)).” Once the time taken to reach equilibrium has
been established (which involves ascertaining when negligible
changes in g, occur), isotherm experiments can be conducted to
acquire further mechanistic insight into a given adsorption
process.”" Although batch methods are the traditional approach
to studying adsorption (and calculating adsorption capacities),
these experiments are often time-consuming and can be wasteful
in their inherent design; in line with the 12 principles of green
chemistry, the purchasing of pollutants should ultimately be
minimized.”” This poses the following question: does there
currently exist a less wasteful, more sustainable approach that
could be utilized to understand adsorption and predict plastic—
pollutant interactions?

1.2. Molecular Dynamics as an Alternative Approach.
At present, computational chemistry and molecular simulations
have not been widely utilized to assess adsorption processes at
FPP interfaces, despite offering a more sustainable approach,
coupled with an unparalleled atomic-scale understanding of the
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structural changes and energetics of adsorbate—adsorbent
interactions.””** These methods can be relatively low-cost and
could potentially reduce the need for wasteful, unsustainable
experimental approaches. In recent years, molecular dynamics
(MD), a well-known theoretical approach for describing the
physical movements of atoms and molecules, has been used to
examine the adsorption of organic pollutants, inorganic
pollutants, and other macromolecules both (i) on the surface
of environmentally relevant polymers and (ii) at the polymer—
water interface. MD involves predicting how the movement of
each atom in a molecular system will change over time, wherein a
physical model describing interatomic and intermolecular
interactions is utilized. Once atomic positions have been initially
specified, users can calculate the forces being exerted upon each
atom (arising from the presence of other atoms in the
simulation), allowing one to observe structural changes over a
given timescale that can be chosen by the user (see Figure 1). In
addition and vitally, MD simulations can provide the user with
insight into the specific types of adsorbent—adsorbate
interactions that are present, providing a highly detailed,
fundamental understanding of the adsorption process. For
example, there is often a delicate balance between short-range
interactions (such as van der Waals interactions) and long-range
interactions (such as electrostatic forces) that can be observed
and calculated with MD simulations. Further, hydrophilic and
hydrophobic interactions can play key roles in the adsorption
process, both of which can also be observed by visualizing the
output of MD simulations.”® For the sake of those unacquainted
with MD, a number of key parameters are typically chosen for an
MD simulation: these include temperature (controlled by a so-
called thermostat), the force field (which provides the
mathematical framework for energy calculations), the simu-
lation timescale, and the thermodynamic ensemble.”® As of now,
only a handful of publications have utilized MD in the context of
microplastic adsorption processes, and these studies will be
highlighted and discussed here in this work. First, however, a
gentle introduction to molecular dynamics is presented for those
unacquainted with the approach.

2.0. MOLECULAR DYNAMICS: MOLECULES IN
MOTION

The history of MD is vast and wide-ranging. In the late 1950s,
the first MD simulations were carried out on a simple gas
consisting of nondescript hard-sphere particles, and in the
1970s, the first MD simulation was performed on a protein,
paving the way for a successful future for MD simulations across
a range of disciplines.”””® One of the largest drivers for the
continued and popular use of MD simulations comes from the
significant increase in the availability of computational resources
in recent years; computers are growing increasingly more
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powerful, and locally run MD simulations with modest hardware
are now readily possible due to modern graphics processing
units (GPUs).>* However, for the largest-scale MD simulations,
high-performance computing networks are still required.
Despite this, the future is looking rather exciting for the field,
with ab initio MD looking to play a pivotal role moving
forward.”” MD software packages are also becoming easier than
ever to use, allowing the method to be used by experts and non-
experts alike; however, it must be noted that although MD
simulations are easy to run in principle, significant expertise is
still required to design accurate, well-founded simulations that
can be meaningfully related to empirically observed phenomena.
MD simulations provide a necessary bridge between macro-
scopic observations from a laboratory and the three-dimensional
atomic-scale interactions that we cannot conventionally visual-
ize. In essence, MD creates a powerful “molecular movie” of a
chosen timescale (e.g., nanoseconds), where we can visually
examine the ways in which assemblies of molecules interact with
each other. MD simulations have previously been used to study a
wide range of systems, ranging from large biomolecules to
polymer composites that might be found in the marine
environment.”””" A range of biological processes have been
studied and better understood with the use of MD; for example,
methods such as DNA/RNA folding,32 protein folding,*}’3 and
enzyme catalysis.”* However, MD also has significant uses in
areas such as materials science and toxicology. For example, MD
can be used to better understand commercial polymers (and
their interactions with pollutants), almost all of which account
for the main FPP polymer types found in aquatic environments.
MD has effectively been applied to a range of problems in
polymeric materials such as the structure of polymer
interfaces,”® polymeric membranes,’® polymer rheology,”” and
diffusion phenomena.’® In addition to acquiring a better
understanding of conformational and structural changes, MD
can also be used to calculate thermodynamic proéperties such as
free energies and equilibrium binding affinities.’

As discussed in the previous section, the basic premise of MD
is actually quite simple. However, to understand its inner
workings, some basic principles must be explored. To become an
experienced practitioner in MD, there are many theoretical
details that must be mastered, along with many practical choices
that must be made when designing a simulation. Although not
everything can be covered here in this Review, a few of the most
important considerations will be discussed. For a more in-depth
foray into MD, please see the excellent text from Binder and co-
workers.”®

2.1. Force Fields in Molecular Dynamics. At its core, MD
simulations are solving Newton’s classical equations of motion
for a molecular system:

E

P = md;

(2)

where each atom i is part of a system of N interacting particles. In
this equation, m; represents the mass of each atom in the
simulation, g, is the acceleration of each atom, and F, is the force
being exerted upon the ith atom due to the presence of other
atoms in the simulation.””> Typically, the forces are then
calculated through the use of a potential energy function:

E= —erV(rl...rN) (3)
where V represents the Laplacian operator, and the overall term
describes the gradient of the potential energy function with
respect to the displacement of each atom. The potential energy
function, V, tells the MD algorithm how each atom in the
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simulation interacts with everything else. This function is of the
utmost importance in MD simulations; to obtain an accurate
picture of the microscopic, atomic-scale behavior that arises due
to classical Newtonian mechanics, a mathematical description of
the interparticle interactions is required (see Figure 2). These

Err = Egs*+ Eap *+ Eqor + Evaw + Ecoul

Figure 2. Force fields provide a mathematical description of inter- and
intramolecular interactions.

interactions can typically be broken down into two types: (i)
nonbonded interactions, wherein the atoms involved are not
linked via covalent bonds, and (ii) bonded interactions, wherein
the atoms would typically be covalently bonded to one
another.”® For example, one of the simplest potentials is a
simple pairwise interaction between atoms:

Vnonbonded(rl'"rN) = Z Z q)(lrl - rjl)

i j>i

(4)

where @ represents a particular functional form to describe the
potential between two atoms, and Ir; — ;| represents the distance
between atoms i and j. One of the best understood and most
commonly used nonbonding potentials is the Lennard-Jones
(LJ) potential:

o= 5] - (2]

where ¢ is the well depth, and ¢ is the van de Waals radius or,
alternatively, the distance at which the particle—particle
potential energy is zero."' Then, for a system containing
numerous atoms, the total potential can be calculated according
to eq 4. If charges are present (e.g., a negatively charged carboxyl
group is known to be present in some polymers), a Coulomb
potential can also be included, which should be reminiscent of
the all-familiar Coulomb’s law:

4mer

Coul (6)
where Q, and Q, represent the charges, r is the distance between
the two charges, and €, is the permittivity of vacuum. A variety of
functional forms exist for bonded interactions, for example, a
two-atom bond could be modeled as a spring through means of a
harmonic potential:

1
‘zbonded = E Z k;](rt] - req)
bonds

(7)

where k; is the force constant, r; is the bond length away from
equilibrium, and r, is the equilibrium bond length, described
mathematically as the minimum value of the harmonic potential.
Now, vitally, the chosen force field in an MD simulation
describes all of the functional forms of the bonded and
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nonbonded potentials and, therefore, how each atom interacts
with another.*” Energy sits at the heart of molecular dynamics,
and it is the job of the force field to, as accurately as possible,
calculate the energy. It must be noted that force fields are
inherently approximate, and they are typically created through
the fitting of quantum mechanical data or by directly using
experimental data in their parametrization.* The force field has
a significant effect on the overall calculated energy and can
therefore significantly affect the quality of the results obtained.
Numerous force fields exist in the literature, some of which have
been designed very specifically for a particular use (e.g.,, PLAFF3
for polylactic acid, a sustainable compostable polymer),** while
others have been designed for broader usage. Commonly used
force fields include CHARMM,"® AMBER,*® OPLS,"” UFF,*
and COMPASS,*” many of which have a whole host of variants
and improvements relative to the original force field (e.g,
OPLS3e).*" Choosing a force field is not a trivial matter, and it is
one of the many choices that must be made prior to a simulation.
For simulating adsorbent—adsorbate interactions, there is no
clear answer on the best force field to use.”’ Many commonly
used force fields are often designed to reproduce experimental
polymer properties (e.g., density) at specific sets of conditions,
so unless there exists a force field built specifically for your
polymer of interest, it is good practice to ensure that your key
results are reproducible with different commonly employed
force fields. Another important choice is the timescale and
timestep in an MD simulation, and these are discussed in the
next section.

2.2. The Importance of Timescale in Molecular
Dynamics. As highlighted previously, MD algorithms involve
solving Newton’s equations of motion, and one of the most
commonly used approaches is the Verlet algorithm, of which
many types and variants exist (e.g., the Leapfrog variant).”” The
Verlet algorithm is a numerical approach to integrating the
equations of motion and is responsible for acquiring a picture of
where each atom will move over a given timestep. Put in another
way, the Verlet algorithm enables the user to observe changes in
the Cartesian coordinates of each atom across each simulation
timestep. The mathematical definition of the Verlet algorithm is
beyond the scope of this Review; however, the importance of the
chosen timestep in Verlet integration must be discussed. Within
the Verlet method, time must be discretized into intervals with
each interval consisting of length At (this is carried out to ensure
numerical stability of the algorithm). Thus, the creator of an MD
simulation must specify a timestep (At) to use in their
simulation. Typically, smaller timesteps (e.g., At = 1 fs) will
provide a more accurate picture of the system’s behavior, but this
must be balanced with the computational resources available to
the user.””> A common and typical timestep used in MD
simulation is At = 1 fs, and the timescale of the simulation is then
determined by the sum of the number of timesteps used in the
whole simulation. For example, if a simulation uses a timestep of
1 fs and involves a million iterations of the Verlet algorithm, a
timescale of 1 ns will be represented across the whole simulation.
It then becomes clear that larger timesteps will permit larger
timescales to be accessed in the simulation, but unfortunately,
accuracy and stability can be affected greatly by larger values of
At>* In the case of adsorption processes, it has been previously
noted that due to the timescale in which adsorption can occur
(microseconds to hours), it is not always adeguate to carry out
simulations at nanosecond timescales.’*® Choosing an
appropriate timescale is a complex problem to which a whole
text could and has been dedicated to, and its complexity must
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not be ignored by the non-expert; it is vital to ensure that a
suitable timestep is chosen. Along with other parameters that
must be chosen, such as the choice of the thermodynamic
ensemble, the force field, and certain thermodynamic variables
(e.g., temperature and pressure), MD simulations become a
nontrivial exercise to perform. A few key factors are discussed in
the next sections.

2.3. Choosing an Appropriate Thermodynamic En-
semble. As part of running an MD simulation, a thermody-
namic ensemble must be selected to sample over the duration of
the simulation. In their simplest and most intuitive form, MD
simulations sample the NVE ensemble, otherwise known as the
microcanonical ensemble.’” This involves keeping the number
of particles (N, typically atoms in this context), the volume (V),
and the total energy (E) constant in the simulation box.
However, depending on the system under study and the
problem at hand, other ensembles exist that can be sampled. For
example, particle motion can be coupled to a figurative heat bath
by using a thermostat, whereby the kinetic energy is maintained
along with the temperature (the NVT or canonical ensemble).’®
Alternatively, if the size of the simulation box is allowed to
change, constant pressure can be maintained (resulting in the
NPT ensemble), which represents the ensemble that can best be
compared to real-world experimental conditions (where the
pressure and temperature are kept constant in the laboratory).
Choosing an ensemble is often an important choice to make, and
the limitations of each must be considered, e.g., finite size effects
can be present when the simulation box is allowed to change
size.”” To illustrate the use of different thermodynamic
ensembles from a practical perspective, a few different situations
can be highlighted and linked to real-world applications. For
example, if one was simulating a gas in an isolated container,
where energy and mass transfer cannot take place between the
system and its surrounding environment, then the NVE
ensemble might be an optimal choice due to its operation
with a constant number of particles (N) and constant energy
(E). Alternatively, for biological simulations where very
temperature-sensitive processes are being examined (e.g.,
protein dynamics), the NVT ensemble is often used, such that
a constant temperature is maintained in the simulation box.’”®!
By using the NVT ensemble, the effect of different temperatures
on processes such as protein folding can be directly studied and
visualized. Finally, if a process such as a phase transition is being
simulated (e.g, the transition between two crystal structures),
wherein the density of the material itself could change, the NPT
ensemble should be utilized such that volume changes are
allowed to take place.”” For modeling the interaction between
FPPs and other molecules, the NPT/NVT ensembles would be
strong choices due to their close link with standard experimental
conditions. For example, batch adsorption experiments are
typically carried out in the laboratory at a constant temperature
(T) and pressure (P), meaning that the NPT ensemble is an
obvious choice for this type of simulation. Along with the
ensemble itself, choosing an appropriate temperature and
pressure is also vital in the design of simulations that align
with experimental data. For example, if adsorption experiments
are carried out at 23 °C, it is vital that your MD simulations are
representative of the same conditions.

2.4. Choosing an Appropriate System Size. Choosing
the system size is a nontrivial choice due to a range of factors,
including (i) computational cost and (ii) the existence of finite
size effects.”® For example, in the case of adsorption onto the
surface of an FPP, how does one ascertain the degree of
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polymerization (DoP) to use in the simulation? If smaller
systems are chosen to avoid issues with computational cost,
finite size effects can arise, leading to potential issues with
calculation accuracies. However, the careful and considered
usage of periodic boundary conditions (PBCs) can be employed
to circumnavigate these issues. PBCs are commonly employed
in MD simulations and involve trlckmg the simulation to
behave as if it was infinite in size.”” The need for PBCs is best
considered with bulk water; if half a gram of water was simulated,
which at the macroscopic scale is a very small amount, ~1.5 X
10* molecules would be present in the simulation. This number
is computationally intractable, leaving the question, how can one
simulate bulk water? With PBCs, the simulation box is
considered as a periodic unit cell, in which particles are free to
move in the original simulation box. However, when an atom
passes the boundary of the simulation box, it reappears on the
other side of the simulation box. Essentially, the simulation box
is surrounded with an infinite number of identical periodic
images (see Figure 3). For finite size effects to be avoided, the
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Figure 3. Graphical depiction of how periodic boundary conditions
(PBCs) can be applied to an MD simulation. The arrows show
pollutant molecules leaving from one side of the simulation box and
entering from the opposite side.

cutoff distance (r.,) at which two atoms stop interacting must
always be less than half the width of the simulation box, and this
is typically known as the minimum image convention. ** If the
cutoff radius is set larger than half the width of the simulation
box, each atom could interact with multiple versions of “itself”,
leading to significant inaccuracies in the energy calculations. In
the context of FPPs, it has previously been shown that finite size
effects can directly influence the dynamics of plastic materials,
potentially having significant consequences on the under-
standing of atomic-scale phenomena.”® If the system size is
likely to present a problem, coarse- gralnmg offers an alternative
approach for modeling large systems.’® These methods aim to
reduce the computational complexity of a simulation by (i)
reducing the number of degrees of freedom and (ii) removing
fine interaction details, such as explicit atom—atom interactions.
Additionally, they permit longer timescales to be accessed due to

this reduction in complexity.’® For example, if a plastic polymer
were to be simulated using coarse-grained MD, large, multi-
atom areas of the polymer could be modeled as a single
interactive entity, thereby reducing the number of dimensions
that would need to be considered in the equations that describe
the adsorbent—adsorbate interactions. With the drastic increase
in FPPs and chemical pollutants in aquatic environments, it is
vital that we develop an accurate picture of the atomic-scale
adsorption processes occurring at the interface of FPPs and their
surrounding environment (e.g. water). In the past few years, MD
simulations have been used to great effect in this context, and the
next section provides an overview of how MD simulations are
elucidating molecular-scale adsorption processes at FPP
interfaces.

3.0. THE APPLICATION OF MOLECULAR DYNAMICS
TO FPP ADSORPTION

As of yet and broadly speaking, the application of MD to FPP
adsorption falls into three categories: the interaction between
FPPs and (i) organic pollutants, (ii) inorganic pollutants, and
(iii) biological macromolecules, such as proteins and cell
membranes.

3.1. Adsorption of Organic Pollutants to FPPs. It is
widely accepted that organic pollutants can adsorb to the surface
of FPPs in the marine environment, and understanding the
1nteract10ns that occur at the plastic—pollutant interface is
vital.”” At present, studies that examine the adsorption of
organic pollutants on FPPs using MD simulations can be
separated into two types: (i) those that use simulations in
concert with experimental adsorption experiments and (ii) those
that examine adsorption from an entirely theoretical perspective
using MD and other computational methods. This section
explores both types of studies, starting with those that use a
combined approach. Antibiotics play a key role in society, and it
has previously been shown that these compounds can adsorb
onto the surface of FPP particles, resultmg in the potential long-
range transport of these chemicals.”® In 2019, Wang et al.
published a combined experimental—theoretical approach in
which the adsorption of antimicrobial sulfamethazine was
studied using six different polymer types (PE, PET, PP PS,
PVC (polyvinyl chloride), and PA (polyamide)).”” They
performed batch adsorption experiments where 20 mg of
microplastic was added to a range of predefined concentrations
of sulfamethazine. Additionally, adsorption isotherms were
generated, and the effects of the pH and salinity were also
considered. In concert with these experiments, MD simulations
were carried out to predict the interaction energies when
sulfamethazine adsorbed onto the six polymer types described
above. Their simulations included polymer chains (with
differing degrees of polymerization), a single molecule of
sulfamethazine, and a so-called vacuum layer separating the
polymer and sulfamethazine. In MD simulations, the vacuum

NVT}

Figure 4. Adsorption of sulfamethazine onto the surface of a model PS particle over 500 ps of simulation. Reprinted with permission from ref 69.

Copyright 2019 Elsevier.
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layer is free space in the simulation box that permits the study of
interfacial processes and attempts to prevent and minimize
undesirable (and nonphysical) interactions from periodic
boundary conditions.”” This study did not include any form of
explicit solvent, such as water, which is a significant weakness in
terms of simulating aquatic environments. They used the
COMPASS force field in the NVT ensemble with a simulation
time of 0.5 ns and a timestep of 1 fs. Their results showed that in
the first stage of the simulation (0—20 ps), the adsorption of
sulfamethazine was observed, followed by the diffusion of
sulfamethazine into the polymer chains (20—500 ps, see Figure
4). Additionally, the interaction energy was calculated according
to eq 8:

Ep = Eq — (Esur + E (8)
where E, is the interaction energy (kcal/mol), E,y, is the
energy of the model microplastic—sulfamethazine system, Egyr
is the energy of sulfamethazine, and E,, is the energy of the
polymer chain. E;;, describes the strength of the interaction
between the polymer and the pollutant, with more negative E;
values being associated with stronger adsorption on the FPP
surface. It was shown that PA (—41.3 kcal/mol) and PET
(—40.9 kcal/mol) polymer chains interacted most strongly with
sulfamethazine, while PP (—12.1 kcal/mol) showed the weakest
interaction among the polymer types included in the study.
Interestingly and most importantly, the MD-calculated inter-
action energies were in alignment with the results obtained from
the experimental isotherms. This is reassuring; thinking simply,
it is intuitive to assume that more negative interaction energies
will correlate with greater amounts of pollutant adsorbed
experimentally, and to the best of the author’s knowledge, this
study was the first to demonstrate a relationship between MD-
derived interaction energies and FPP adsorption capacities. This
study indicates that the trend observed in experimental
adsorption studies can be effectively replicated by using
computational MD approaches. Two years later in 2021, Chen
et al. used a combination of MD and batch adsorption methods
to study the adsorption of three antibiotics, namely tetracycline
hydrochloride (TC), chlortetracycline hydrochloride (CTC),
and oxytetracycline hydrochloride (OTC), onto the surface of
polyethylene microplastics.”' Similar batch adsorption experi-
ments to Wang et al. were conducted, but for their MD
simulations, Chen et al. utilized the COMPASS force field in
Materials Studio and modeled their FPP as a polyethylene chain
consisting of 300 monomers of ethylene. Their simulations were
performed over a short 0.3 ns timescale (1 fs timestep) and used
a temperature of 298 K in the NVT ensemble. Their batch
adsorption experiments showed that OTC had a higher (64.4
ug/g) adsorption capacity than CTC (63.4 pg/g), and in turn,
CTC had a higher capacity than TC (53.5 ug/g). The effect of
pH was also examined, and it was shown that adsorption was
enhanced at a pH value of 6 before decreasing at higher pH
values. Their MD results showed that CTC (—50.0 kcal/mol)
was more strongly binding than OTC (—47.8 kcal/mol) by
around 2.2 kcal/mol, while TC (—36.68 kcal/mol) had the
weakest binding energy. Although the exact trend in adsorption
capacity was not captured by the MD results, the adsorption
capacities of OTC and CTC differed by only 1 pg/g; this could
be indicative of many other factors, such as error present in the
experiment and/or simulation. For example, choosing an
appropriate force field is a nontrivial matter, and although
COMPASS is known to perform well for soft matter simulations,
in 2016, COMPASS was updated to COMPASS II, which

mp)
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included better parameters for common polymers and drug-like
molecules found in popular databases.”” It is in this type of
situation where force field validation would be of particular use,
but no evidence of validation appears to be present in the
study.”” Despite this, it is encouraging to see that even without
robust testing of different simulation parameters, interaction
energies calculated with MD can still reasonably align with
experimentally calculated adsorption capacities. Similar to
antibiotics, pesticides have also been shown to adsorb to
FPPs,’*”® and in the same year, Li et al. also published a study
examining the adsorption of three different pesticides
(imidacloprid, buprofezin, and difenoconazole) onto the surface
of polyethylene microplastics.”® Their methodology was quite
similar to that used by Chen et al., but a key difference involved
the use of Grand Canonical Monte Carlo (GCMC) in addition
to MD simulations. GCMC is distinctly different from MD;
instead of evolving a system through time, random modifications
are made (e.g, the addition or removal of pollutant molecules
from the simulation box), which allows the user to understand if
a pollutant can be absorbed inside of a polymeric system (as
opposed to external adsorption). Their simulations used the
COMPASS 1I force field, a simulation time of 200 ps (1 fs
timestep), a polymer with DoP = 160, and a temperature of 298
K in the NVT ensemble. Their results showed that none of the
pesticides were able to absorb into the free space of the model
FPP (the free space calculated was to be 4752 A%). This result
aligns with existing knowledge that microplastics can adsorb
pollutants onto their surface, but there is limited evidence to
suggest that FPPs can absorb pollutants into their interior.’”
Their MD simulations showed that buprofezin had the strongest
interaction with polyethylene (—25.0 kcal/mol), followed by
difenoconazole (—22.4 kcal/mol) and imidacloprid (—20.2
kcal/mol). In batch adsorption experiments, polyethylene had a
significantly higher adsorption capacity for difenoconazole than
for both buprofezin and imidacloprid, which had adsorption
capacities similar to one another. The observed trend in the MD-
calculated interaction energies did not strongly align with the
trend observed experimentally; however, with only three data
points, no large-scale inferences can be made, and naturally due
to the limited data set, there are difficulties in understanding the
full potential of MD simulations in this setting.

In 2023, a few notable publications used MD to study FPP
adsorption processes. For example, Leng et al. examined the
adsorption of 17f-estradiol onto the surface of polyethylene,
polypropylene, and polystyrene microplastics.”” 17/-estradiol is
a natural steroidal estrogen and a known endocrine-disrupting
chemical found in aquatic environments; therefore, with the
increasing prevalence of FPPs in the environment, it is important
to acquire a molecular-scale understanding of how it adsorbs.”®
Similar to the previously discussed approaches from Wang,ég’79
Chen,”" and Li,”® batch adsorption methods were utilized, and
isotherms were produced to examine the adsorption process. In
their MD simulations, Leng et al. used the more recently
developed COMPASS II force field in Materials Studio, which is
likely to provide better performance than the force fields used in
some of the earlier studies.”” Their model microplastics each had
a different number of repeating units (RU) in the polymer chains
(PE = 300 RU, PP = 250 RU, and PS = 100 RU). Their
simulation timescale was chosen to be 200 ps, and they used a
temperature of 298 K, which was controlled by using the Nose—
Hoover thermostat.*’ The results showed that PE had the
highest adsorption capacity (0.642 mg/g), followed by PP
(0.545 mg/g), and PS (0.415 mg/g). Importantly, the MD-
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calculated interaction energies were again in concordance with
the experimentally calculated adsorption capacities: PE (—26.06
kecal/mol) had a stronger interaction than both PP (—25.19
kcal/mol) and PS (—23.79 kcal/mol). This study provides
another example of MD simulations being able to predict the
relative adsorption capacities for a range of different plastic
polymers. Also in 2023, Dias et al. examined the adsorption of
the pesticide atrazine (ATZ) and two hormones (testosterone
and progesterone, TTR and PGT, respectively) onto the surface
of polyamide microplastics.*" In a very similar approach to Chen
et al,, in what is clearly a trend in the literature, batch adsorption
experiments, sorption isotherms, and MD were combined to
study the adsorption process. However, in addition to MD,
density functional theory (DFT) calculations were also
performed. Their batch adsorption experiments involved mixing
20 mg of PA microplastics and 2 mL of contaminant together in
a glass vial at room temperature. The contaminant concen-
trations were fixed, and over a period of 108 h, the liquid
contaminant concentrations were assessed using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) at
various time points. Their isotherm experiments were carried
out using concentrations ranging from 0.01 to 2.0 mg/L, and all
experiments were performed in triplicate. Their MD simulations
each involved a single pollutant molecule and a small polyamide
(4 RU, C,¢HN,O,) being placed into a cubic box of length
30.5 A. The OPLS-AA force field was used throughout the
simulations, PBCs were utilized in each dimension, and the
simulation length was 30 ns (resulting in 30000 unique
configurations). To calculate a representative adsorption energy
across the whole simulation, a single MD configuration was
taken for every 938 configurations, resulting in 32 unique
configurations being taken forward for DFT calculations. For
each of the 32 configurations, the single-point energy was
calculated with DFT at the M06-2X/cc-pVDZ level of theory (in
both the gas phase and with the SMD solvent model for water),
and the adsorption energy was calculated according to

Esorb = Eint — AE (9)

where E 4 is the adsorption energy, AE,, is the solvation
energy, and E;, is the interaction energy calculated according to
eq 8. This is a particularly interesting approach compared to the
previously discussed studies; the solvation energy was calculated

by
AE

solv

solv = Euater — Egas

(10)
where E, .. is the average DFT single-point energy across the 32
configurations in the SMD solvent model, and E, is the average
DFT single-point energy across the 32 configurations in the gas
phase. By the inclusion of a term such as AE,,, the energy cost
associated with the pollutant moving from the bulk water to the
plastic surface is accounted for. It is worth noting, however, that
implicit solvation does not always provide accurate results in
comparison with explicit solvation, but SMD has shown to be a
good implicit solvent model for solvation energies.”” Further, it
is unclear if Dias et al. utilized absolute electronic energies or the
thermally corrected free energies calculated with DFT;*
thermal corrections should typically always be included and
could be further improved by using a quasi-harmonic
approximation to the free energy.®* Experimentally, their results
showed that each pollutant was capable of adsorbing onto the
surface of polyamide microplastics, and the Langmuir isotherm
provided the best fit to their data, indicating that electrostatic
and van de Waals dominated monolayer coverage was likely
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occurring.85 Exact adsorption capacities in terms of concen-
tration were not provided, but adsorption efficiencies were
calculated in terms of percentages, and it was shown that PGT
had the highest efficiency (~90%), followed by TTR (55—80%)
and ATZ (~20%). Results of their simulations showed that PGT
had the lowest E,,; value (12—15 kcal/mol) and therefore had
the highest tendency to adsorb to the surface of the polymer.
This was followed by TTR (13—16 kcal/mol) and ATZ (19—22
kcal/mol), which is in direct agreement with the adsorption
efficiencies calculated experimentally. Additionally, the simu-
lations revealed that noncovalent interactions such as hydrogen
bonds and van der Waals interactions were dominant in the
adsorption process, supporting the results obtained from the
isotherm experiments. This aspect of MD simulations can be
particularly useful; it can elucidate (i) the type of interactions
present (e.g, H-bonds) and (ii) the atoms involved in the
process, permitting a highly detailed molecular-scale under-
standing of interfacial processes.

Liu et al. published a unique, holistic approach to study the
adsorption of aromatic hydrocarbons in both freshwater and
artificial seawater onto the surface of FPPs.*® They combined
batch adsorption experiments, MD, and DFT calculations to
study the adsorption of benzene and naphthalene onto the
surface of PE and PS. In their MD simulations, similar to
previously published studies, a different degree of polymer-
ization was chosen for both PE (50 RU) and PS (100 RU).
However, their simulations also included an explicit solvent,
whereby approximately 32 000 water molecules were placed into
the simulation box. Explicit solvation has not been considered in
most of the existing literature, and studies would only benefit
from this inclusion. Additionally, for the seawater system, NaCl
was also included in the simulation box to account for the effect
of salinity. They used GROMACS and the OPLS-AA force field
to perform the simulations and chose a temperature of 300 K
with the Parrinello—Rahman thermostat.®” Both the NPT and
NVT ensembles were used for equilibration and production
runs. In addition to MD simulations, Liu et al. also utilized a
quantum chemical approach (DFT) to study the adsorption
process. Due to the computational expense of DFT, polymer
chains including 50+ RU are typically untenable at this level of
theory; therefore, a much smaller system was considered. This
included a polyethylene of 3 RU, a single aromatic hydrocarbon,
and three water molecules. The interaction energy was
calculated similarly to eq 8, but it instead included a term to
account for basis superposition error.*® Results of their batch
adsorption experiments showed that the microplastic adsorption
capacities were always enhanced in artificial seawater,
supporting previous accounts of increased salinity leading to
decreased solubility of organic pollutants, resulting in enhanced
adsorption to microplastic surfaces.”” To support this, their MD
results also showed that adsorption was improved in model
seawater; the MD-calculated interaction energies were always
more negative in model seawater compared to those in model
freshwater. For example, in the polyethylene—benzene system,
the interaction energy in pure water was —9.07 kcal/mol
compared to —28.71 kcal/mol in model seawater. Interestingly,
the results of their MD simulations showed that benzene and
naphthalene were capable of absorbing into the model
microplastic pores. Upon entering the pores, the hydrocarbons
were shown to modify the polymer structure, resulting in a
stabilization of their confinement to the pore regions. Solvent
accessible surface area (SASA) calculations were also carried out
to calculate the surface areas of the polymer chains that were
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accessible to a solvent.”” The results showed that the SASA of
their model FPPs was increased in model seawater, indicating
that a larger surface area was available for sorption compared
with the pure freshwater systems. The combination of batch
adsorption experiments with MD simulations provides evidence
that FPP adsorption processes are enhanced in saltwater
environments such as oceans and estuaries.'>”" Additionally,
by adopting these two approaches in conjunction with one
another, both a macroscopic- and molecular-scale under-
standing of the process are acquired, along with greater
confidence in both conclusions.

In contrast to the experimental—theoretical approaches
discussed above, there are some studies that adopt a wholly
computational approach to studying adsorption processes.
Along with other commonly utilized PPCPs and pesticides,
PFAS (per- and polyfluoroalkyl substance) compounds are
widely manufactured and commonly used substances in modern
society, and they are of great concern as emerging contaminants
due to a range of known and unknown health effects.”” In 2022,
Enyoh et al. studied the adsorption of seven PFAS compounds
onto the surface of a model microplastic of polyethylene.”
Enyoh et al. chose PFAS substances based on their commonality
in society: these were perfluorononanoic acid (PFNA),
perfluorohexanesulfonic acid (PFHxS), perfluorohexanoic acid
(PFHxA), perfluorodecanoic acid (PFDA), perfluorooctane-
sulfonic acid (PFOS), perfluorobutanesulfonic acid (PFBS), and
perfluorooctanoic acid (PFOA). They used a combination of
MD and GCMC simulations and did not supplement their
simulation results with an experimental approach. Their MD
simulations utilized the COMPASS force field and a temper-
ature of 298 K, and the temperature was controlled by the
Berendsen thermostat in the NVT ensemble. Their results
showed that all PFAS compounds were capable of adsorbing
onto the surface of the model microplastic and that the
magnitudes of the interaction energies (ranging from —103.4 to
—712.9 kcal/mol) were much greater compared to those from
previous studies.””’® This key result indicates that PFAS
compounds are likely to adsorb onto the surface of FPPs, with
the MD simulations providing supporting evidence in alignment
with previously published experimental results.”* The adsorp-
tion process at the FPP interface has also been considered for
less commonly encountered material types. For example,
covalent organic frameworks (COFs) are a group of porous
materials that can be utilized as adsorbents, and they show a
range of desirable properties such as wide-ranging chemical
functionality, easily tunable structures, and high chemical
stabilities.”> Compared to more conventional adsorbents,
many of which having pore sizes greater than nanoplastic
polymers, COFs could potentially be used as nanoplastic
adsorbents due to their smaller pore sizes. Thus, the use of COFs
for environmental remediation must be explored. Shang et al.
published some detailed work examining the adsorption of
nanoplastics (PET, PE, and PA) in a range of different COFs.”®
Their simulations were carried out with TpPa-H (and other
closely related functionalized derivatives, e.g., TpPa-CH;) and
three different nanoplastic polymers, each containing a similar
number of atoms (PE: 28 RU, CscH;,4; PET: 8 RU, CggHO3,;
and PA, 9 RU, C4,H,(;NyO,). The COMPASS force field was
used throughout, and all equilibration runs were carried out for 1
ns. Production runs were carried out for an additional 3 ns using
the Verlet integration method in the NVT ensemble. The
average interaction energies were calculated, and it was shown
that polyethylene showed the weakest adsorption to TpPa-H
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(=70.45 kcal/mol), followed by PA (—78.69 kcal/mol) and
PET (—97.97 kcal/mol), which showed the strongest
adsorption. Additionally, it was shown that PET showed the
greatest penetration of the channels in TpPa-H, likely leading to
stronger intermolecular interactions and improved adsorption.
The effect of functionalization was then investigated with the
strongest adsorbing polymer (PET), and it was shown that bulky
groups (e.g., TpPa-CH;) led to decreased adsorption, while
polar functionalization (TpPa-OH, TpPa-NO,, and TpPa-F)
led to increased adsorption. Their MD simulations also showed
that van der Waals forces were the dominant forces in all
simulations, that increased electrostatic interactions were
present in certain cases (due to the presence of polar groups
in PET and PA), and that increased penetration by the polymer
was the main contributing factor to increased adsorption and
lower interaction energies. Owing to the need for understanding
the interaction mechanisms of numerous different organic
pollutants at microplastic surfaces, Cortés-Arriagada et al.
published another computational approach, wherein they
examined the adsorption of seven commonly used PPCPs
onto the surface of polystyrene.”” Similar to Liu et al., they used a
combination of force field methods (such as MD) and quantum
chemical methods to study the mechanism of adsorption.*®
However, in this approach, they utilized energy decomposition
analysis (EDA), wherein the interaction energies are decom-
posed into numerous physical contributors:”®

E, = AE + AEq; + AEp,; + AE

elec pol prep

(11)

where E_y is the adsorption energy, AE, is an electrostatic
term, AE gy, represents the dispersion forces that arise due to van
de Waals interactions, AE,, is a term that accounts for
polarization, and AEcr is a term that accounts for charge
transfer.”” AE,,; and AE,,,, are terms that increase the overall
energy and correspond to energy destabilization due to Pauli
repulsion (AEp,,) and an energy penalty that arises due to
geometric differences from the isolated polymer (AEPreP).
Naturally, understanding the nature of the intermolecular
interactions between a model microplastic and a potential
pollutant will aid in developing a detailed picture of the
adsorption process that occurs prior to the transport and release
of pollutants. Thus, they constructed a model microplastic
consisting of 338 atoms (C,¢5H,7), used the CHARMM force
field, and ran simulations at a target temperature of 290 K (a
close approximation of the average temperature of seawater). An
explicit solvent was also utilized (the TIP3P model for water)
throughout some of their simulations, but separately, implicit
solvation (the SMD model) was also included to permit the use
of ALMO-EDA, a mathematical framework that permits EDA
followin(g the application of an implicit continuum solvent
model.'*'°! Interaction energies were calculated using DFT,
and similar to previous studies, the adsorption process was
favorable with all interaction energies having negative values.
The details of the whole in silico approach adopted by Cortés-
Arriagada et al. are significant and beyond the scope of this
Review, and therefore, only the MD results will be discussed.
From their MD data, they examined the thermodynamic
stability of the microplastic—pollutant systems, and three values
were of particular interest in this study: the radius of gyration
(RG), the root-mean-square deviation (RMSD), and the center
of mass (COM). In the context of polymers, the RG allows the
user to understand the effective size of the system; for example, a
small RG value is indicative of a compact polymer that spends

+ AEy, + AE

https://doi.org/10.1021/acsomega.3c07488
ACS Omega 2024, 9, 5142—-5156


http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega http://pubs.acs.org/journal/acsodf
Study Polymer Type Force Field Ti Ti Thermody ic E! bl p I
Holléczki and Gehrke (2019) PE, PP, PET and PA OPLS-AA 20ns n.p. NVT/NPT 293K Yes (Explicit)
Wang et al. (2019) PE, PP, PS, PET, PVC, PA COMPASS 05ns 1fs NPT/NVT 298K No
Wang et al. (2020) PP, PS, PA UFF 05ns n.p. NVT n.p. No
Holléczki and Gehrke (2020) PE UA 200 ns n.p. NVT/NPT 293 K Yes (Explicit)
Chen et al. (2021) PE COMPASS 0.3ns 1fs NVT 298K No
Lietal. (2021) PE COMPASSII 02ns 1fs NVT 298K No
Li et al. (2021) PS GROMOS96 np. np. NVT/NPT 297 K Yes (Explicit)
Enyoh et al. (2022) PE COMPASS 0.01 ns 1fs NVT 298K No
Shang et al. (2022) PE, PET, PA COMPASS 3ns 1fs NVT 298 K No
Feng et al. (2022) PE, PP, PS, PET, PVC GROMOS54a8 10-30ns 1fs NVT/NPT 300K Yes (Explicit)
Wang et al. (2022) PE GROMOS53a6 100 ns n.p. NVT/NPT 323K Yes (Explicit)
Leng et al. (2023) PE, PP, PS COMPASSII 02ns 1fs NPT/NVT 298K No
Zhao et al. (2023) PE, PP, PVC COMPASSII + DREIDING 05ns 1fs NVT 310K No
Dias et al. (2023) PA OPLS-AA 30 ns 1fs NVE/NVT 300K Yes (Implicit)
Liu et al. (2023) PE, PS OPLS-AA 50 ns 2fs NPT/NVT 300K Yes (Explicit)
Cortés-Arriagada et al. (2023) PS CHARM 100 ns 2fs NPT 290K Yes (Explicit)
Cheng et al. (2023) PS GROMOS54a8 500 ns 2fs NVT/NPT 323K Yes (Explicit)

Figure 5. A summary of the polymer types, force fields, timescales, timesteps, thermodynamic ensembles, temperatures, and solvents for the main
studies reviewed in this work. “n.p.” indicates that this information was not provided by the authors.

Figure 6. Adsorption of humic acid onto model polystyrene nanoplastics with different surface charges: (A) anionic, (B) neutral, and (C) cationic.
Reprinted in part with permission from ref 102. Copyright 2022 Elsevier.

most of the simulation in a folded form. For all seven PS models,
a compact structure was obtained with RG values sitting
between 7.5 and 8.2 A. These values provide valuable insight
into how the structure of the polymer changes upon exposure to
the pollutant, and it is clear from their results that only minor
structural changes were observed following adsorption. The
COM describes the geometrical distance between the PS center
of mass and each PPCP, allowing the user to acquire a
molecular-scale picture of the changes in the distance between
the polymer and pollutant; that is, the adsorption and desorption
of the pollutant from the polymer surface. Finally, the RMSD is a
similarity measure between the simulation starting point and a
particular timestep in the future. Their results showed a wide
range of COM and RMSD values across all PPCP—PS systems,
but importantly, this study demonstrates the strength of using
these values together to study the adsorption process. For
example, Cortes-Arriagada et al. noted that for the naproxen—PS
system, a stable COM was observed throughout most of the
simulation, with an average distance between naproxen and the
model microplastic of 1.4 A. After 80 ns, the COM value
increased to around 30 A before dropping close to its initial
value. When the COM value increased, a simultaneous increase
was seen in the RMSD, but following a reduction in the COM
value, the RMSD continued to increase. Although the
significance of this result might not be immediately apparent,
this is direct evidence that supports the movement of the
pollutant from one adsorption site to another. In addition to this,
the EDA results demonstrated that hydrogen bonding, 7-type
interactions, and specific electrostatic interactions (e.g.,, C—H)
were the main stabilizing sources. To the best of the author’s
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knowledge and at the time of this publication, Cortés-Arriagada
et al. have produced the most in-depth study that uses MD to
study microplastic adsorption, and future studies should take
particular note of this publication (see Figure 5).

3.2. Adsorption of Inorganic Pollutants to FPPs.
Although organic pollutants are a major concern, the adsorption
of inorganic pollutants also poses a significant risk. Wang et al.
studied the adsorption of Sr**, a known aquatic pollutant found
in close proximity to nuclear power plants, onto PA, PS, and PP
polymer chains.”” Each batch experiment was carried out with
45 mg of microplastics, MD simulations were carried out in
Materials Studio, and the Universal Force Field (UFF) was used
for energy calculations. They conducted adsorption isotherm
experiments in combination with MD simulations, and their
results showed that the maximum adsorption capacities for Sr**
were 31.8, 51.4, and 52.4 ug/g for PA, PS, and PP respectively,
with the nonlinear Temkin model being the optimal isotherm.
Their MD-calculated interaction energies aligned with the
experimental adsorption capacities, although it must be noted
that the interaction energy difference seen between PA and PS
was 0.8 kcal/mol, while their sorption capacities differed by 19.6
ug/g. However, in the case of PS and PP, their interaction
energies differed by 6.64 kcal/mol, while their sorption
capacities showed a much smaller difference of only 1 ug/g.
This could relate to issues with the chosen force field; energy
calculations (and thus the chosen force field) have a significant
effect on the simulation accuracy, and UFF has been previously
shown to have unreliable results in conformational analysis.**
This study indicates that although a trend was observed between
the Sr** experimental isotherms and MD simulations, the
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magnitudes were not captured by their chosen computational
approach. Additionally, SrCl, was used in their MD simulations,
which is explicitly different from the solvated Sr** ion that would
be present experimentally. Feng et al. published an exciting
approach wherein the adsorption of humic acid, benzo[a]-
pyrene, and Cu®* was considered on the surface of PE, PP, PS,
PET, and PVC model nanoplastics."®” It has previously been
shown that dissolved organic matter (DOM), such as humic
acids (HAs), can form an eco-corona on the surface of FPPs,
modifying their surface and behavior in aquatic environments.
By forming an eco-corona, DOM can therefore regulate and
modulate the adsorption of pollutants at FPP interfaces. Not
only can DOM itself interact with pollutants but, once it is
adsorbed onto the surface of FPPs, it can further enhance
adsorption due to the wide-ranging chemical functionality
present in its structure (e.g., charged carboxyl groups, charged
amine groups and aromatic rings; see Figure 6). In this
approach, five polymers were constructed in Materials Studio
2017, each with the same degree of polymerization (each
consisting of 20 RU). Models for both polymeric particles and
plastic films (surfaces) were generated to permit a direct
comparison between different geometric structures. Although
HAs can be wide-ranging in terms of their chemical structure,
Feng et al. used the Stevenson model for HAs, consisting of 158
atoms, 2 charged carboxyl groups, and a single charged amine
group. Benzo[a]pyrene (BaP) was included as a prototypical
polyaromatic hydrocarbon, and Cu** was included as a
prototypical heavy metal. To prepare the simulation, 140 HA
molecules, 60 BaPs, 100 Cu®* ions, and 99 344 water molecules
were added to a simulation box that was 15 nm® in dimension.
Plastic surfaces were prepared by adding 64 polymer chains to a
simulation box (10 nm X 10 nm X 60 nm), followed by a
simulation in the NVT ensemble at a high enough temperature
to reach a high mobility melting state. Following annealing
(changing the temperature at a rate of 0.1 K/ps), each polymeric
system was explicitly solvated with water, and a 10 ns simulation
was carried out in the NPT ensemble (300 K). BaP was then
adsorbed onto the surface of each plastic, and the polymer with
the highest adsorption capacity (PS) was taken forward for
additional simulations with the HA—pollutant mixture. All
simulations were carried out in GROMACS 4.6.7 with the
GROMOS 54a8 force field, and the temperature was maintained
with the V-rescale thermostat." A 1 fs timestep was used in all
simulations, and PBCs were applied in all directions. Their
results showed that PS had the highest adsorption capacity for
BaP and that plastic surfaces showed stronger adsorption than
individual polymers (BaP was adsorbed on both plastic surfaces
and individual polymers). PS had the lowest interaction energy
by a wide margin (about —140 kJ/mol), and the molecular
mechanism of adsorption was elucidated. It was shown that BaP
became anchored into the PS film and then intercalated between
two aromatic rings, resulting in z—n stacking interactions.
Results from the HA—pollutant simulations showed that BaPs
became encapsulated inside the hydrophobic region of the HA
assembly and made greatest contact with internally located
aromatic carbons. In contrast, Cu** ions were shown to bind
mostly to negatively charged carboxyl groups that were unbound
from the intramolecular positively charged amine groups. Their
final simulations included a model nanoplastic, HAs, BaPs, and
Cu®" ions, and the results showed that eco-coronas were capable
of forming at the nanoplastic interface. Additionally, HAs were
capable of competitively binding BaPs, meaning that less direct
adsorption took place on the nanoplastic surface. This study and
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its results are noteworthy for a few reasons: not only are
adsorption processes being probed broadly at the molecular
scale but cooperative and competitive binding mechanisms are
being examined in a multicomponent system. Although this still
represents a simplified system relative to what might be found in
nature, it takes a significant step forward in thinking about the
known chemical complexity found in natural waters where FPPs
are found in abundance.

3.3. Biomolecular Interactions at the Interface of FPPs.
Although it is clear that MD plays an exciting role in
understanding the adsorption process, numerous studies have
used MD to examine the interaction between FPPs and other
systems of biological interest. To provide insight into some of
the pioneering studies and to provide an overview of some other
exciting applications of MD simulations in the field of plastic
pollution, some of these studies are highlighted below.

To the best of the author’s knowledge, the first example of
MD being used explicitly in the context of FPP adsorption came
from Holloczki and Gehrke in 2019.'® In this seminal work, they
used MD to examine the effect of single polymer chains (NPs of
PE, PP, PET, and nylon-6,6) on two of the most prevalent types
of secondary structures found in proteins. They constructed two
peptide models: a tryptophan zipper to account for a #-sheet and
a polyalanine a-helix containing 12 alanine molecules. Their
simulations were carried out in LAMPSS, and the OPLS-AA
force field was used to model the polymers, amino acids, and
peptides. In each simulation, solvation effects were included
through the inclusion of 10 000 water molecules (the SPC/E
water model), permitting the effects of an external aqueous
environment to be explicitly accounted for. The results showed
that both peptide structures adsorbed predominantly on the
hydrophobic regions of the NPs, and in the case of the nylon
polymer, the polyalanine a-helix spontaneously changed into a
P-looplike structure at the surface of the particle. This result has
significant implications and explicitly demonstrates that NPs can
modify the secondary structure of proteins. Additionally, this is
the first example of MD being used to study adsorption in a large
multicomponent system containing an FPP. This study played a
key role in the formulation of future studies in which adsorption
was considered in the context of different FPPs and pollutants. A
year later, the same authors published another seminal proof-of-
concept study on how nanoplastics could interact with cell
membranes.'”* Due to the key role of the cell membrane in
biology (e.g., cell signaling and barrier to entry), a detailed
understanding of how nanoplastics could interact with, disrupt,
or damage membrane bilayers must be developed. In this work,
Holloczki and Gehrke simulated a globular PE nanoplastic (S
nm in diameter) as a transmembrane object in a phosphati-
dylcholine (POPC) bilayer. Simulations were carried out in the
LAMPSS package with the united atom force field. Equilibration
runs were carried out for 5 ns, followed by 200 ns production
runs at 293 Kand 1 bar of pressure. Their results showed that the
cell membrane enabled the nanoplastic to be broken down into
smaller polymer chains and that the surface area of the
nanoplastic almost doubled over the course of the simulation
(see Figure 7). Additionally, it was shown that the presence of
the nanoplastic altered the overall structure of the membrane,
particularly with respect to the internal lipid side chains. In
concert, the two studies published by Holloczki and Gehrke
played a pivotal role in paving the way for other studies to
examine the effect of FPPs on biomolecular systems. A couple of
years later, Wang et al. used cell culture experiments and MD to
examine the effect of PE microplastics on cell membrane
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Figure 7. Disentangled PE chains were seen in a POPC membrane after
200 ns of simulation time. This led to an increase in the polymer surface
area throughout the course of the simulation. Reproduced from ref 104
- CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

integrity.'”> They exposed HepG2 cells to differing concen-
trations of microplastics for 24 h before visualizing the cells using
a fluorescence microscope. MD simulations were performed
wherein four different systems were created: a no-load system
that contained only a dipalmitoylphosphatidylcholine (DPPC)
cell membrane, a system containing one PE10 polymer and
DPPC, a system containing 8 PE10 polymers and DPPC, and
finally, a system containing 2 PE10, 2 PE20, 2 PE40, and 2 PE60
polymers (designed to represent a multicomponent mixture of
different polymers with differing degrees of polymerization).
Polymer chains were randomly placed into an aqueous
environment (SPC model for water) close to the upper
membrane of DPPC, and all final simulation runs were carried
out for 100 ns with the GROMOS 53a6 force field. Their results
showed that within S0 ns, all PE polymers spontaneously
transferred from the external aqueous phase to the hydrophobic
internal region of the DPPC bilayer, indicating that small
nanoplastic polymers can easily enter cell membranes and
remain stable. This study provides a good example of MD being
used in the field of biomolecular simulation and provides a
powerful molecular-scale picture of how FPPs can interact with
the outside of cells in an aqueous environment. Chen et al.
published an interesting approach wherein full factorial design
was used to predict the combined toxicity of different plastic
components toward the zebrafish (Danio rerio, a commonly
employed model organism).'”® The degree of toxicity was
defined as the total binding energy of all plastic components in
the cytochrome P450 receptor. Their factorial design included
six factors (A, styrene monomer; B, plasticizer; C, antioxidant;
D, flame retardant; E, light stabilizer; and F, heat stabilizer),
which account for a range of plastic additives that can be used to
improve the material properties. Two levels were included in the
factorial design (0—low level, 1—high level), whereby each
level describes a different chemical compound within the same
group as the factor (e.g., A-0 is a single monomer of styrene,
while A-1 is a polystyrene consisting of 5 RU, or C-0 is
nonylphenol, and C-1 is acetone diphenylamine, both of which
are antioxidants). Each combination from the full factorial
design process was docked into the P450 receptor, and the
toxicity was quantified by the magnitude of the binding energy;
lower binding energies correspond to more stable systems and
therefore a greater toxic effect. Their MD simulations were
carried out in GROMACS, and the molecular mechanics
Poisson—Boltzmann (MM-PBSA) method was used to calculate
the binding energies; MM-PBSA is a method employed to
integrate high—throughput MD simulations with binding free
energy calculations."”” The multiligand—receptor complex was
solvated by using the SPC216 model in GROMACS, followed
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by the addition of sodium ions to create an electrically neutral
system. Simulations were carried out at 297 K with both the
NPT and NVT ensembles at different times. In total, 64 binding
energies were calculated, and numerous interesting observations
were seen. For example, it was shown that when all other
additives were kept constant and only the degree of polymer-
ization of polystyrene was changed (e.g., a single monomerand §
RU), the binding energy was significantly lower (—232.2 kJ/
mol) for the single monomer as opposed to the polymer (—65.6
kJ/mol) consisting of multiple RU. This result could infer that
greater decomposition of polystyrene in the marine environ-
ment could cause a greater toxic effect in combination with other
plastic additives. Their approach also showed that particular
components were common across the multiligand—receptor
complexes, e.g., those with the lowest and highest overall
binding energies, providing insight into the risk of toxicity for
individual additives present in a mixture. This approach was
notably novel compared to other publications in the area and
provides an interesting template by which to study the toxicity of
chemical mixtures. However, there are some factors to consider
in their approach; for example, does a lower binding energy
always infer that the toxicity of a particular compound will be
greater? Given the role of P450 enzymes (e.g., metabolism of
xenobiotics), it is possible that lower binding ener$ies could
equate to reduced toxicity due to faster metabolism.'*® Further,
it is possible that the interaction with P450 could result in more
toxic metabolites being produced, which is not accounted for in
their in silico approach.'” Despite this, a full factorial design
could provide a unique method by which MD and molecular
docking could be used to improve the universal understanding of
the chemical features and intermolecular interactions respon-
sible for toxicity upon exposure to FPPs.

Most recently, Zhao et al. published a combined exper-
imental—computational approach wherein the adsorption of
three nanoplastic polymers onto the surface of eight different
Lactobacillus strains was examined.''” These bacterial strains are
known probiotics and could act as potential adsorbents to
remove nanoplastics from food. Therefore, understanding the
potential for adsorption at the interface between an NP and a
bacterial cell wall could prove to be of great value. NP adsorption
was also examined on different bacterial cell components
following their separation; peptidoglycan (PG), teichoic acid,
exopolysaccharides, and surface-layer proteins were all sepa-
rated. Their results showed that all strains were capable of
adsorbing nanoplastics (% nanoplastic adsorbed ranged from
~25% to 72%) and that PG (% adsorbed: 51.8% for PE, 55.7%
for PP, and 59.3% for PVC) had a much higher adsorption
capacity than the other cellular components. Thus, in line with
this result, they carried out MD simulations using Materials
Studio 7 and constructed a model peptidoglycan cell wall from
the ZP-6 Lactobacillus strain. All simulations were carried out
under the NPT ensemble at 310 K with the COMPASS II and
DREIDING force fields. The simulation was carried out for
quite a short timescale of 0.5 ns with a timestep of 1 fs. The
interaction energy was calculated similarly to eq 8, whereby the
energy was calculated for the PG—NP system and the isolated
PG and nanoplastic systems. Their interaction energies ((PE)
—115.8 > (PP) —134.4 > (PVC) —159.5 kcal/mol) showed the
same trend observed in the experimental adsorption capacities,
with all NPs showing stable adsorption; however, PVC showed
the strongest overall interaction with the PG wall. This study
provides another example of interaction energies providing
alignment with the experimentally determined adsorption
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capacities, but it is yet again limited by the number of molecules
included in the study. Another recent study by Cheng et al.
considered adsorbed BaP on polystyrene NPs and how
adsorption may affect NP movement through a phospholipid
cell membrane."'" Their simulations were carried out in
GROMACS, and they also used the GROMOS 54a8 force
field, along with very similar simulation parameters to the
approach taken by Feng and co-workers.'”” Their results
showed that BaP enhanced and promoted the permeation of
NPs through the cell membrane, resulting in a depolymerized
polymer within the cell membrane. In addition, the membrane
fluidity notably decreased, which could potentially lead to
enhanced cellular toxicity. Together, these studies show that
MD can be used to study a wide variety of biological and
nonbiological systems in the context of FPPs, and it is clear that
these approaches for simulating multicomponent systems
present a very exciting future for the study of interfacial
processes in FPPs.

4.0. CONCLUSION

Overall, in this work, the current state of affairs on using MD to
study adsorption at the surface of plastic particles was presented.
A gentle introduction to molecular dynamics was provided for
the unacquainted, followed by considering how previous
research has examined the adsorption of (i) organic pollutants,
(ii) inorganic pollutants, and (iii) biomolecules at the surface of
FPPs. It is clear that the use of MD for studying the adsorption
process on FPPs is still in its infancy. However, it is also clear that
MD can be used to great effect in this area; not only can the
underlying molecular mechanisms of adsorption be elucidated
but novel insight can be gained into the large-scale structural
changes that occur due to the presence of pollutants and/or
biomolecules. From all of the studies presented here, there are
some general observations that can be made. First, it is clear that
no single force field is dominant in terms of choice. COMPASS
and its variants are the most well-represented, while the
GROMOS force fields are also a popular choice. The UFF
and united atom (UA) force field are each represented only by a
single study, and it is clear that no general consensus has been
reached on which force fields provide the best insight into the
adsorption process. Therefore, the literature would benefit from
benchmarking studies wherein different force fields are
examined for their performance toward a single model system.
Similarly, many of these studies make little or no reference as to
why a particular force field was chosen; without making an
informed choice, the resultant data could be notably weak if not
totally incorrect. It is also clear that up until this point, numerous
studies performed their simulations over a very short timescale.
From a modern perspective on the field, simulations that run for
tens of nanoseconds can still be considered notably short, and
some of the studies presented here operated for less than a single
nanosecond.” Given that microsecond timescales are now
achievable in protein simulations, this is a factor that must be
more carefully considered for future studies in this area.""* It is
good to see that a wide variety of polymer types have been
considered, but in future studies, it would be advantageous to see
larger-scale data sets that compare interaction energies with
adsorption capacities. Although many studies show encouraging
results where MD and experimental data are in direct alignment,
much larger data sets are required to derive larger-scale
inferences. Larger-scale data sets could potentially revolutionize
the initial assessment of pollutants and their interaction with
FPPs, enabling better prioritization of chemical pollutants.
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Could we arrive in a world where MD could be used as a direct
replacement (in many instances) for time-consuming exper-
imental methods that only contribute more, albeit at a small
scale, to global pollution.
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