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A B S T R A C T   

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) which plays 
important physiological roles in insulin release and promoting fullness. GLP-1R agonists initiate cellular re
sponses by cyclic AMP (cAMP) pathway signal transduction. Understanding of the potential of GLP-1R agonists in 
the treatment of type 2 diabetes may be advanced by considering the cAMP dynamics for agonists at GLP-1R in 
both pancreatic β-cells (important in insulin release) and neurons (important in appetite regulation). Receptor 
desensitisation in the cAMP pathway is known to be an important regulatory mechanism, with different ligands 
differentially promoting G protein activation and desensitisation. Here, we use mathematical modelling to 
quantify and understand experimentally obtained cAMP timecourses for two GLP-1R agonists, exendin-F1 (ExF1) 
and exendin-D3 (ExD3), which give markedly different signals in β-cells and neurons. We formulate an ordinary 
differential equation (ODE) model for the dynamics of cAMP signalling in response to G protein-coupled receptor 
(GPCR) ligands, encompassing ligand binding, receptor activation, G protein activation, desensitisation and 
second messenger generation. We validate our model initially by fitting to timecourse data for HEK293 cells, then 
proceed to parameterise the model for β-cells and neurons. Through numerical simulation and sensitivity studies, 
our analysis adds support to the hypothesis that ExF1 offers more potential glucose regulation benefit than ExD3 
over long timescales via signalling in pancreatic β-cells, but that there is little difference between the two ligands 
in the potential appetite suppression effects offered via long-time signalling in neurons on the same timescales.   

1. Introduction 

G protein-coupled receptors (GPCRs) are cell surface receptors which 
are targets for up to 50% of all current drugs [1]. In recent years, 
analytical pharmacology has benefited from mathematical modelling 
approaches to answering questions regarding kinetic cellular responses 
to GPCR ligands [2–7]. Ordinary differential equation (ODE) models and 
simulation tools provide valuable insights into signalling pathway dy
namics (beyond the limitations of equilibrium models, including the 
popular operational model of agonism [8]), while parameter estimation 
techniques applied to timecourse data sets allow quantification of ki
netic ligand-receptor interaction parameters. 

The glucagon-like peptide-1 receptor (GLP-1R) is a class B GPCR in 
the secretin receptor family. Important physiological actions of GLP-1R 
activation include stimulating the β-cells of the pancreas to release in
sulin, promoting satiety (fullness), and delaying nutrient absorption via 
slowing of gastric emptying [9]. Whilst the natural ligand for GLP-1R, 

GLP-1(7–36)NH2, has a very short half-life of 2–3 min in the blood 
circulation, several stabilised analogues of GLP-1 have been developed 
by the pharmaceutical industry with extended pharmacokinetics [10]. 
In line with the physiological effects of native GLP-1, sustained GLP-1R 
activation by pharmaceutical GLP-1R agonists (GLP-1RAs) leads to 
weight loss via reduced energy intake and improves blood glucose levels 
by augmenting both insulin release and sensitivity. As such, approved 
GLP-1RAs such as exenatide, liraglutide, dulaglutide, semaglutide are 
commonly used to treat type 2 diabetes (T2D) and, in some cases, 
obesity. The main side effect of GLP-1RAs is nausea, which results from 
activation of specific neuronal populations in the brain stem [11]. 

As a primarily Gαs-coupled GPCR, GLP-1R signals principally via 
cyclic AMP [12]. It is also subject to desensitisation by recruitment of 
β-arrestins and undergoes rapid agonist-induced internalisation, result
ing in receptor downregulation by post-endocytic trafficking into lyso
somes [13]. There has been much interest in the prospect of modulating 
GLP-1R pharmacology via “biased agonism”; specifically, there is 
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evidence that GLP-1RAs with reduced tendency to recruit β-arrestins, 
but maintained cAMP signalling, will be able to continue actively sig
nalling for longer. Several “G protein-biased” GLP-1RAs have been 
described in the preclinical literature, and there appears to be evidence 
that these ligands demonstrate enhanced therapeutic efficacy compared 
to non-biased comparators [14–16]. The situation in humans is less 
clear, but more recently developed agents including tirzepatide 
(approved) and orforglipron (in phase 3 trials) show pronounced G 
protein-biased GLP-1R agonism and appear to be highly therapeutically 
effective [17,18]. 

Interestingly, many G protein-biased GLP-1RAs are also partial ag
onists for G protein signalling [17–19]. Thus, they show reduced efficacy 
in general, but with the β-arrestin response more dramatically affected, 
so that G protein effects are, in comparison, favoured. Surprisingly, little 
attention has been paid to the potential impact of partial agonism on 
how these agonists act in different tissues. Partial agonist signalling is 
well known to be heavily modulated by differences in receptor density, 
which may differ greatly in different cell types. In this case, pancreatic 
β-cells express high levels of GLP-1R, whereas appetite regulatory neu
rons tend to express much lower levels [20,21]. Numerous other dif
ferences in the cell-specific proteome are poised to modulate how GLP- 
1R signalling is regulated. 

With this in mind, we conducted experiments and simulations to 
assess differences in how two prototypical and oppositely biased GLP- 
1RAs, termed exendin-F1 (ExF1) and exendin-D3 (ExD3) [15], signal 
in primary tissues involved in mediating their physiological effects, 
namely, insulin-producing pancreatic β-cells and anorectic neurons from 
the nodose ganglion of the vagus nerve. ExF1 and ExD3 are peptide li
gands derived from the prototypical GLP-1R agonist exendin-4, but with 
single amino acid substitutions at or close to the N-terminus (H1F or 
E3D). Our previous data show that ExF1, compared to ExD3, shows 
markedly reduced ability to recruit β-arrestin to the GLP-1R, and is also a 
partial agonist for Gαs signalling. In the present work we provide 
experimental data showing how these pharmacological differences 
translate to cAMP signalling dynamics in physiologically relevant cell 
types that endogenously express GLP-1R. We find that in β cells, the peak 
cAMP response to both ligands is similar, but that there is a more pro
nounced drop off in signal for ExD3. In neurons, the peak response is 
lower with ExF1, but for long times the signals for ExF1 and ExD3 
converge. 

We aim to understand and quantify the signalling dynamics by 
mathematical modelling of signal transduction via the GLP-1R, using a 
model comprising ligand binding, receptor and G protein activation, 
receptor desensitisation and production of the second messenger cAMP. 
This new model allows us to assess the differences in ExD3- and ExF1- 
driven signalling, paying attention to the potential roles of receptor 
activation and desensitisation from ligand-receptor complexes in β-cells 
and neurons. 

The remainder of this paper is organised as follows. In Section 2 we 
formulate an ODE model for cAMP signalling comprising ligand binding, 
receptor and G protein activation, desensitisation and cAMP production. 
In Section 3, we use experimental data obtained using HEK293 cells to 
parameterise the model, giving an initial validation of the model and 
estimates for ligand on and off rates. In Section 4, we further validate 
and parameterise the model using experimental data for β-cells and 
neurons. In Section 5, we use the model to predict the signalling 
behaviour beyond the duration of the time-limited experiments, and 
provide insights into the system’s sensitivity to key parameters under 
parameter regimes specific to each of the two ligands in each of the two 
cells. We conclude in Section 6 with a discussion of our main results and 
their potential significance. 

2. Model formulation and numerical solution method 

Our mathematical model comprises an ordinary differential equation 
(ODE) system which will be used to simulate the dynamics of intracel

lular cAMP in response to ligands binding at GLP-1R. The key compo
nents of this model are ligand-receptor binding, receptor activation and 
the G protein cycle (based on [2–4,22]), receptor desensitisation (based 
on [23]), and production of cAMP catalysed by active GαGTP [3], fol
lowed by cAMP degradation. 

A reaction scheme schematic for our model is shown in Fig. 1. The 
receptor is assumed to be able to exist either in an inactive or active state 
(R or R* respectively). We use L and G to denote ligand and G protein 
respectively. For example, RG represents G protein-bound inactive re
ceptor, LR*G represents ligand-bound, G protein-bound active receptor, 
and so on. There are eight receptor states within the cubic ternary 
complex schema for activation of receptor from inactive state R to active 
state R*, with coupling to G protein G and binding by ligand L (which is 
assumed to be supplied in such a way that its concentration is constant) 
[4]. In Fig. 1, the equilibrium rate constants K• and cooperativity factors 
μ, ν, ζ are labelled on each reversible reaction. For the individual kinetic 
rate constants and factors, we use lower case k, and subscripts + and −
to denote the forward and backward reactions respectively. Descriptions 
of the equilibrium rate constants and cooperativity factors for the cubic 
schematic are given in Table 1. 

Desensitisation of receptor is incorporated into the model as in [23], 
with desensitised receptor species denoted RDS and LRDS. Ligand-bound 
active receptor LR* becomes desensitised in a one-way reaction. The 
desensitised, inactive ligand-receptor complex may then reversibly 
dissociate. This process is summarised in the following reaction scheme: 

LR* →
kDS LRDS ⇌

δ− kL−

δ+kL+
RDS + L, (2.1)  

where δ+ and δ− measure the change in propensity for ligand binding 
and dissociation, respectively, for desensitised receptor over non- 
desensitised receptor. 

The G protein cycle follows from dissociation of R*G and LR*G 
complexes, with βγ, αGDP and αGTP being the dissociated G protein sub
unit species. The model incorporates the following reactions (see [4]): 

R*G →
kGTP+ R*+αGTP+βγ, LR*G ̅̅̅̅̅̅̅→

ν− kGTP+ LR*+αGTP +βγ, (2.2a)  

αGTP ⇌
khyd+

khyd−
αGDP, αGDP + βγ ⇌

kRA+

kRA−
G. (2.2b)  

Here, αGTP is the active signalling molecule. 
Production of the intracellular second messenger cAMP is catalysed 

by αGTP via a linear model (see [3]), with removal of cAMP modelled as a 
first order degradation process (see (2.3o)). 

Applying the law of mass action to each of the reactions yields a 
model system comprising 15 ordinary differential equations (ODEs), for 
the concentrations of each species. The ODE system is given in (2.3). 

d[R]
dt

=kL− [LR]− kL+[L][R]+kact− [R*]− kact+[R]+kG− [RG]− kG+[R][G], (2.3a)  

d[RDS]

dt
= δ− kL− [LRDS] − δ+kL+[L][RDS], (2.3b)  

d[R∗]

dt
= kact+[R] − kact− [R∗] + ζ− kL− [LR∗] − ζ+kL+[L][R∗]

+μ− kG− [R∗G] − μ+kG+[R∗][G] + kGTP+[R∗G],

(2.3c)  

d[LR]
dt

= kL+[L][R] − kL− [LR] + ζ− kact− [LR*] − ζ+kact+[LR] + ν− kG− [LRG]

− ν+kG+[LR][G],

(2.3d)  

d[LRDS]

dt
= kDS[LR*] − δ− kL− [LRDS] + δ+kL+[L][RDS], (2.3e)  
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d[LR*]

dt
= ζ+kact+[LR] − ζ− kact− [LR*] + ζ+kL+[L][R*] − ζ− kL− [LR*]

+μ− ν− kG− [LR*G] − μ+ν+kG+[LR*][G]

+θaν− kGTP+[LR*G] − kDS[LR*],

(2.3f)  

d[RG]

dt
= kG+[R][G] − kG− [RG] + ν− kL− [LRG] − ν+kL+[L][RG]

+μ− kact− [R*G] − μ+kact+[RG],

(2.3g)  

d[R*G]

dt
= μ+kG+[R*][G] − μ− kG− [R*G] + ζ− ν− kL− [LR*G] − ζ+ν+kL+[L][R*G]

+μ+kact+[RG] − μ− kact− [R*G] − kGTP+[R*G],

(2.3h)  

d[LRG]

dt
= ν+kG+[LR][G] − ν− kG− [LRG] + ν+kL+[L][RG] − ν− kL− [LRG]

+μ− ζ− kact− [LR*G] − μ+ζ+kact+[LRG],

(2.3i)  

d[LR*G]

dt
= μ+ν+kG+[LR*][G] − μ− ν− kG− [LR*G] + ζ+ν+kL+[L][R*G]

− ζ− ν− kL− [LR*G]

+μ+ζ+kact+[LRG] − μ− ζ− kact− [LR*G] − θaν− kGTP+[LR*G],

(2.3j)  

d[G]

dt
= kG− [RG] − kG+[R][G] + ν− kG− [LRG] − ν+kG+[LR][G]

+μ− kG− [R*G] − μ+kG+[R*][G]+μ− ν− kG− [LR*G] − μ+ν+kG+[LR*][G]

+kGRA+[αGDP][βγ] − kGRA− [G],

(2.3k)  

d[αGDP]

dt
= khyd+[αGTP] − khyd− [αGDP] + kGRA− [G] − kGRA+[αGDP][βγ], (2.3l)  

d[βγ]
dt

= kGTP+[R*G] + θaν− kGTP+[LR*G] + kGRA− [G] − kGRA+[αGDP][βγ],

(2.3m)  

d[αGTP]

dt
= kGTP+[R*G] + θaν− kGTP+[LR*G] + khyd− [αGDP] − khyd+[αGTP],

(2.3n)  

d[cAMPi]

dt
= kcAMP+[αGTP] − kcAMP− [cAMPi]. (2.3o)  

2.1. Initial conditions, pre-equilibration and simulation 

Initial conditions for the agonist-stimulated system are generated 
numerically by simulating a ligand-free ([L] = 0) system initially with 
[R] = Rtot and [G] = Gtot (so that all other concentrations are initially 
zero) until a steady-state is reached. The new initial conditions are then 
applied to the system with appropriate nonzero [L]. All numerical solu
tions are generated using MATLAB’s built-in stiff ODE solver ode15s. 

Fig. 1. The cubic ternary complex-based schematic, for ligand binding to, and activation of, receptor, with coupling to G protein. Equilibrium rate constants K• and 
cooperativity factors μ, ν, ζ are labelled on each reversible reaction. 

Table 1 
Equilibrium rate constants and cooperativity factors for ligand/receptor/G protein interactions.  

Label Description of equilibrium constant 

KL Association of ligand L and receptor R. 
KG Binding of G protein G to receptor R. 
Kact Activation of receptor R to give active state R*. 
μ Preference of G for R* over R. Equally, the factor increase in propensity for R→R* activation when R is G-bound. 
ν Preference of L for RG over R. Equally, the preference of G for LR over R. 
ζ Preference of L for R* over R. Equally, the factor increase in propensity for R→R* activation when R is L-bound.  
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3. Data fitting and parameterisation - HEK293 cells 

As an initial model validation and parameterisation, we fit the model 
to timecourse data for cAMP responses to each of the two ligands of 
interest (ExF1 and ExD3) in HEK293 cells transfected with GLP-1R 
encoded in a BacMam vector. HEK293 cells are widely used 
throughout biological research. Here, the HEK293 data allow us to 
validate the model and estimate ligand on and off rates ahead prior to 
our analysis of the neuron and β-cell data sets. Full details of the cAMP 
dynamics response measurement are given in Appendix A. 

Biosensor readouts which indicate second messenger levels may be 
calibrated to reflect conversion between biosensor response and con
centrations. Such conversion is not always required to interpret signal
ling data [24], and biosensor readout traces are often used as proxies in 
the analysis of signalling kinetics (e.g., for cAMP) [25]. For simplicity 
here, we take 

measured signal S(t) = a[cAMP], (3.1)  

where a is a scaling factor specific to the experimental sensor. We note 
that biosensor calibration data, where available, may be used to fit to 
alternative nonlinear models [26]. Here we parameterise the ODE sys
tem by fitting to experimental data for cAMP response timecourses for 
the two different ligands, each in HEK293 cells with four different GLP- 
1R receptor expression levels (see Appendix A). 

We estimate parameters by minimising the sum of squared errors 
between simulated timecourses and experimental data using the fmin
search optimisation routine in MATLAB. For each of the two ligands 
(ExF1 and ExD3), we estimate all system parameters including the four 
receptor levels, keeping all other parameters fixed across each of the 
receptor levels. Of particular interest are the on and off rate constants 
kL+ and kL− for each ligand, and the receptor desensitisation rate con
stant kDS. 

In Fig. 2, we show the resulting fits to the eight timecourses (a 
timecourse for each of the four receptor concentrations, for each of the 
two ligands) given for [L] = 1000nM, noting the very good agreement. 
For each of the two ligands, the model captures the rise and fall nature of 
the cAMP response, on the correct timescales. ExD3 gives higher re
sponses than ExF1, with greater curvature in the decay phase, which is 
captured by the model. 

The estimated on and off rates, relative receptor concentrations and 
desensitisation rate constants are summarised in Table 2 and Fig. 3. The 
relative receptor levels are calculated as 

ρi =
Rtot,i

Rtot,max
× 100, = 1, .., 4, (3.2)  

where Rtot,i is the measured or estimated expression level for timecourse 
i, and Rtot,max is the maximum receptor concentration. We note the good 
agreement between our fitted values and experimental estimates (ob
tained using binding assays and receptor expression experiments as 
described in Appendix A) for both the relative receptor concentrations in 
the plasma membrane and the on/off rates, providing a validation of the 
model. We also note that the estimated desensitisation rate constant kDS 
is greater for ExD3 than for ExF1 in HEK293 cells. 

We will use the fitted values of kL+ and kL− when proceeding to fit to 
timecourse data for β-cells and neurons. 

4. Data fitting and parameterisation - primary β-cells and 
neurons from mice 

Here, we consider the cAMP dynamics of ExF1 and ExD3 in primary 
cells that 1) natively express GLP-1R and 2) are known to play an 
important role in GLP-1R-mediated physiological effects: nodose gan
glion vagal neurons and pancreatic β-cells. 

Cells were isolated from “CAMPER” mice expressing the cAMP 
sensor TEpacVV to allow recording of cAMP responses by FRET micro
scopy. In Fig. 4, we show experimentally obtained cAMP timecourses in 

Fig. 2. Data fitting to timecourses for cAMP in response to 1000 nM ligand in HEK293 cells. Data points are in circles, and the fit is shown by a solid curve. The left- 
hand plot shows signal for ExF1, for four different receptor concentrations. The right-hand plot shows corresponding signal for ExD3. 

Table 2 
Fitted parameters for HEK293 cells.  

Parameter Units Estimate from 
other 
experiment 

Estimate using 
ExD3 data and 
current camp 
model 

Estimate using 
ExF1 data and 
current camp 
model 

ρ1 – 0.258 0.385 0.169 
ρ2 – 0.938 1.256 1.113 
ρ3 – 12.4 7.486 16.32 
ρ4 – 100 100 100 
kL+

(ExD3) 
M− 1 

s− 1 
1.512e+07 1.922e+07 – 

kL−

(ExD3) 
M− 1 

s− 1 
0.01785 0.0134 – 

kL+

(ExF1) 
s− 1 1.718e+07 – 2.233e+07 

kL−

(ExF1) 
s− 1 0.2476 – 0.2485 

kDS s− 1 – 3.475e-4 7.755e-06  
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response to 100 nM concentrations of each of the two ligands (ExF1 and 
ExD3), each for two further different cell types (cell A - nodose ganglion 
neuron, cell B - β-cell). Experimental details are given in Appendix A. For 

both ligands, the response is greater in β-cells. Each timecourse shows a 
clear rise-and-fall temporal profile with a peak response occurring on a 
timescale of one minute. 

Fig. 3. HEK293 cell estimates given by fitting cAMP data to model (2.3), compared with estimates calculated by other means (see Appendix A). The estimates are 
summarised in Table 2. 

Fig. 4. cAMP timecourse data obtained using methods given in Appendix A, for two ligands (ExF1 and ExD3), each for two cell types (cell A - neuron, cell B - β-cell), 
with [L] = 100nM. Inset timecourses show first 5 min of response in detail. 
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We now re-parameterise the system by fitting to the experimental 
data for cAMP timecourses for the two different ligands, each in β-cells 
and neurons. Again, we estimate parameters for minimising the sum of 
squared errors between simulated timecourse and experimental data 
using the fminsearch optimisation routine in MATLAB. For further 
validation of both the model and our findings so far, we fix the on and off 
rate constants (kL+ and kL− ) at the values estimated and tabulated in 
Table 2. We consider the scenario where on and off rate constants (kL+
and kL− ) and the ligand efficacy parameters ζ± are ligand-specific, the 
rate constants and microaffinity constants pertaining to desensitisation 
of the LR* complex (kDS, δ±) are both ligand- and cell-specific, the 
microaffinity constants controlling the preference of L for RG over R (ν±) 
are both ligand- and cell-specific, and all other signalling parameters are 
cell-specific. Again, the experimental readout is given by 

measured signal = a[cAMP], (4.1)  

where a is a scaling factor specific to the experimental sensor; as such, 
the estimated value of a is shared across all experiments, to which we fit 
the model simultaneously. Guided by published data indicating that 
GLP-1R expression is particularly high in β-cells in comparison to neu
rons [20], we additionally impose the constraint 

Rtot,B (β− cell) > Rtot,A (neuron). (4.2) 

In Fig. 5, we show the resulting fit to the four timecourses (a time
course for each of the two ligands, in each of the two cells) given for [L] =
100nM, noting the excellent agreement. The estimated desensitisation 
rate constants are shown in Table 3 (the full estimated parameter set is 
tabulated in Appendix B). The model is clearly able to capture both the 
short-time and long-time behaviours. In neurons, ExD3 gives a higher 
response on the short (~ 5 mins) timescale, but there is little difference 
between the response for the two ligands on the longer timescale (~ 60 
mins), over which the fitted responses appear to have reached an 
approximate steady-state. In β-cells, there is little difference between the 
response for the two ligands over the short (~ 5 mins) timescale, while 
ExF1 gives a higher response on the longer timescale (~ 60 mins), over 
which the response does not come to steady-state. For both cells, the 

desensitisation rate constant kDS estimates are significantly higher for 
ExD3 than for ExF1. We also note that, for both ligands, the kDS estimates 
are higher for neurons than for β-cells, although the difference is rela
tively small for ExD3. 

We next proceed with several sensitivity analyses to explore the ef
fects of key system parameters on cAMP responses. 

5. Model predictions and sensitivity analysis 

Using the estimated parameter values as our base values, we now 
consider the sensitivity of the simulated response to changes in model 
parameters (all figures in this section show model simulations). Base 
parameter values are given in Table 4. 

5.1. Ligand concentration-response 

We first examine the effect of ligand concentration [L] on cAMP dy
namics. Simulated timecourse curves for a range of ligand concentra
tions are shown in Fig. 6. We note that peak-plateau dynamics are 
apparent for the majority of the timecourses, consistent with the early 
peak response seen in the experimental data, and typical of theoretical 
GPCR activation profiles [4,25]. However, for some of the lower ligand 
concentrations, the cAMP signal is monotonic (so no peak), while for 
intermediate concentrations for the neuron-ExF1 simulations, peak- 
trough-plateau profiles are seen. There are clearly multiple phases 
(timescales) associated with the response. 

Ligand concentration-response curves are shown in Fig. 7, summa
rising the first peak, maximum and long-time (60 min) cAMP responses 
over a range of ligand concentrations. A peak detection code searches for 
the first peak in the timecourse, and returns either that peak value if the 

Fig. 5. Data fitting to timecourses for cAMP in response to 100 nM ligand in both neurons and β-cells.  

Table 3 
Fitted parameters for β-cell and neurons.  

parameter neuron β-cell 

kDS (ExD3) 0.0018 6.341e-4 
kDS (ExF1) 1.299e-5 7.418e-07  
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first peak exists, or not-a-number if no peak exists. For neurons, there 
exists a range of ExF1 concentrations for which the first peak in the 
timecourse is not the maximum signal, again indicating multiphasic 
behaviour. For β-cells, the peak and maximum curves coincide. 

From Figs. 6–7, we make further observations. The peak and 
maximum signal curves are monotonic for neurons for both ligands 

(Fig. 7(A)), and for β-cells for ExF1 (Fig. 7(C)). There is a slight over
shoot (non-monotonicity) in the peak curve for ExD3 in β-cells (Fig. 7 
(C)). ExD3 gives a larger maximum response for both cell types, over the 
range of ligand concentrations. The endpoint curves are all non- 
monotonic (Fig. 7(B,D)), but this is only apparent by close inspection. 
The greatest relative overshoot is in the β-cell endpoint curve for ExD3 

Fig. 6. Simulated timecourses for neurons and β-cells, for a range of ligand concentration [L].  

Fig. 7. Simulated ligand concentration-response curve for neurons and β-cells, for the first peak (if it exists), the maximum and long-time cAMP levels. The long-time 
result is for t = 60 mins. (A) First peak or maximum in neurons, (B) Endpoint signal in neurons, (C) First peak or maximum in β-cells, (D) Endpoint signal in β-cells. 

L. Bridge et al.                                                                                                                                                                                                                                   



Cellular Signalling 119 (2024) 111153

8

(Fig. 7(D)). ExD3 gives a larger endpoint response for low concentra
tions, but lower response at high concentrations. The endpoint response 
in neurons is very close for both ligands for [L] > 10− 9M, while the 
endpoint response in β-cells is higher for ExF1 than for ExD3, for 
[L] > 10− 9M. Finally, we note that the model predicts a greater level of 
constitutive activity for neurons than for β-cells. 

5.2. Effect of total receptor 

Receptor expression levels may be altered experimentally (see Ap
pendix A), allowing the effect of total receptor on cAMP response to be 
explored. Here we generate simulated receptor concentration-response 
curves by varying Rtot over orders of magnitude for each cell type, for 
peak and endpoint signals in response to each of the two ligands. 

In Fig. 8, we show the effect of varying Rtot on cAMP timecourses and 
their peak, maximum signal and endpoint (60 mins) signals. Simulations 
for a range of values of Rtot,A are shown in the timecourses and the 
concentration-response curves. For neurons, the general trend is an 
increased signal with increased Rtot,A, with peak-plateau dynamics at 
high receptor concentrations and peak-trough-plateau dynamics at 
lower concentrations. The relative difference between the saturation 
level of the concentration-response curves for the two ligands is greater 
for the peak response than for the endpoint response. The peak response 
is more sensitive to changes in Rtot near the base estimated value than 
the endpoint value is. For neuron, ExD3 gives a higher response than the 
same concentration of ExF1. 

The β-cell results in Fig. 8 show that increasing Rtot leads to an 
increased signal, except for some non-monotonicity in peak signal for 
high concentrations Rtot. There is little relative difference between the 
concentration-response curves for the two ligands for peak signal except 
for high concentrations Rtot. ExF1 now gives a higher response at 
endpoint, but a lower response for the peak. The cAMP responses in 
β-cells approach saturation at much higher values of Rtot than for neu
rons, and our concentration-response analysis suggests that receptor 
overexpression in β-cells may result in much higher transient cAMP 

responses. 
We note that cAMP experiments that are run over a shorter time

scale, and those that use a lower ligand concentration, yield more pro
nounced receptor concentration-response differences between the two 
ligands. Also, the endpoint response over a short timescale (for example, 
5 min) will capture effects of the initial transient, giving non-monotonic 
receptor concentration-response curves. These effects are shown in 
Fig. 9, where a ligand concentration of 1 nM is used for a 5-min 
experiment. 

5.3. Effect of desensitisation 

Receptor desensitisation may play a significant role in the modula
tion of cAMP response [26]. The irreversible desensitisation model 
proposed in (2.1) will contribute to a decreased cAMP signal over time. 
In Fig. 10, we show the effect of varying the desensitisation rate constant 
kDS (which is specific to both the cell type and the ligand) on cAMP 
timecourses and their peak and endpoint (60 mins) signals. The desen
sitisation effect is clear, in that the signal decreases as kDS increases for 
both the peak and endpoint readouts. The peak is maintained over all 
simulations shown, and the relative decrease in peak signal is small 
compared to that for the endpoint signal. Furthermore, the desensiti
sation effect seems to be greater in β-cells; the relative change in both 
endpoint and peak signals across the range of kDS shown is greater for 
β-cells than for neurons. 

5.4. Longer experiments and rechallenge simulations 

From Figs. 2–5, it is clear that the qualitative features of cAMP 
timecourses for both agonists ExF1 and ExD3 across the three cell types 
are similar. However, there are clear quantitative differences in the 
cAMP responses between the two cell types of interest (neuron and 
β-cell). In neurons, the peak cAMP response is lower with ExF1, but the 
endpoint (60 mins) response is similar for both ligands. In β-cells, the 
endpoint response is lower with ExD3, but the early response 

Fig. 8. Simulated effect of Rtot on cAMP response in both neurons and β-cells, for both ligands, each for ligand concentration [L] = 100nM. Top panel (neuron 
simulations) - cAMP response timecourses for both ligands, for a range of Rtot , followed by Rtot concentration-response curves for peak, maximum and endpoint (60 
min) signals. Bottom panel (β-cell simulations) - as above. Dashed vertical lines in the concentration-response curves indicate the estimated value of Rtot from Fig. 5. 
Each coloured curve in the timecourse plots corresponds to a different value of Rtot . 
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(incorporating the peak) is similar for both ligands. The cAMP dynamics 
differ quantitatively between the two cells. Our sensitivity analyses in 
Section 5 suggest that perturbing the system from the estimated pa
rameters (in particular for kDS) will yield responses which approach 
steady-states on different timescales. We wish to explore the approach to 
steady-state for the data shown in Fig. 5. The differing approaches to 
steady-state are difficult to assess by eye from the plotted data. The 

experimental data are limited, due to laboratory practicalities, to the 
first 60 min of cAMP response. However, we may, of course, generate 
timecourses beyond 60 min by simulation. 

In Fig. 11, we show simulations beyond the 60 min of data used for 
fitting. In each case, we simulate cAMP response to agonist up to an 
endpoint time of 120 min or 480 min. It is now apparent that our model 
suggests that for neurons, the response has reached an apparent steady- 

Fig. 9. Simulated effect of Rtot on cAMP response in both neurons and β-cells, for both ligands, each for ligand concentration [L] = 1nM. Top panel (neuron sim
ulations) - cAMP response timecourses for both ligands, for a range of Rtot , followed by Rtot concentration-response curves for peak, maximum and endpoint (5 min) 
signals. Bottom panel (β-cell simulations) - as above. Dashed vertical lines in the concentration-response curves indicate the estimated value of Rtot from Fig. 5. Each 
coloured curve in the timecourse plots corresponds to a different value of Rtot . 

Fig. 10. Simulated effect of desensitisation rate constant kDS on cAMP response in both neurons and β-cells, for both ligands, each for ligand concentration [L] =
100nM. Top panel (neuron simulations) - cAMP response timecourses for both ligands, for a range of kDS, followed by kDS parameter-response curves for peak and 
endpoint (60 min) signals. Bottom panel (β-cell simulations) - as above. Dashed vertical lines in the parameter-response curves indicate the estimated value of kDS 

from Fig. 5. Each coloured curve in the timecourse plots corresponds to a different value of kDS. 
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state already after 60 min. In contrast, for β-cells, the cAMP response 
continues to decay beyond 60 min, markedly for ExD3. The response to 
ExD3 is at around 1% of its initial value after 480 min. In Fig. 12, we 
show further simulated timecourses for a lower ligand concentration. 
We note that the model now predicts a crossover between the ExF1 and 
ExD3 timecourses for β-cells, with steady-state apparently reached for 
ExF1 by after 150 min, but the ExD3 response still decreasing. Again, the 
neuron response is lower, and now the neuron ExF1 response has lost its 
peak-plateau dynamics. 

5.4.1. Washout and re-challenge experiments 
A second “long-time” experimental analysis which may indicate 

differences in signalling dynamic profiles between the two ligands and 

the two cells concerns agonist re-challenge experiments. In such ex
periments, an initial “challenge” with ligand is followed by a ligand 
washout, and then a second challenge with the ligand [27,28]. A lower 
response from the second challenge may indicate a degree of receptor 
desensitisation. 

In Fig. 13, we show simulations of washout and re-challenge ex
periments to demonstrate the potential effect of receptor desensitisation. 
In each case, we simulate cAMP signal S(t) to agonist up to an endpoint 
time of 120 min, followed by the response as the ligand is washed off 
(modelled by setting [L] = 0) for 120 min, followed by the reintro
duction of ligand at the same concentration for a final 120 min. For 
neurons, the cAMP response drops off by a relatively small amount 
during the washout phase, and the response to the rechallenge is 

Fig. 11. Simulated response beyond 60 min, for [L] = 100nM. Top panel - responses up to 120 min. Bottom panel - responses up to 8 h. Experimental data for the first 
60 min are also shown. 

Fig. 12. Simulated response beyond 60 min, for [L] = 1 nM.  
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noticeable for both ligands. For β-cells, the drop-off in cAMP response 
during the washout phase is more rapid, and the cAMP response returns 
to almost zero. Also, the relative response to the rechallenge is larger 
than for neurons. In β-cells, the rechallenge response to ExF1 is larger 
than that for ExD3, indicating that ExD3-bound receptor may experience 
more significant desensitisation than ExF1-bound receptor in this case. 
In the right-hand panel of Fig. 13, we plot the percentage of receptor 
which has been desensitised, given by 

desensitised receptor% = 100
(
[RDS] + [LRDS]

Rtot

)

(5.1)  

It is clear that the desensitisation proceeds only while the ligand is 
present. Also, the proportion of receptor which is desensitised is much 
lower for ExF1 than for ExD3, as postulated from the cAMP timecourses. 

Further insights may be gained from considering timecourses for 
each of the species in the model (2.3). In Figs. 14–15, we show the 

Fig. 13. Simulated timecourses of cAMP response in rechallenged β-cells and neurons. Simulations are for cAMP response to agonist (first 120 mins), followed by 
agonist washout (between 120 and 240 mins), followed by response to agonist again (“rechallenged” cells, with agonist after 240 mins). Right-hand panel shows 
percentage of total receptor that has been desensitised. 

Fig. 14. Simulated timecourses of individual model species underlying the cAMP signal in neurons shown in Fig. 13.  
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timecourses for each of the 15 species. The post-washout phases of the 
rechallenge experiments show similar signalling dynamics to the pre- 
washout challenge for ExF1. There is a marked difference, though, in 
the profiles for ExD3; the responses to the second ligand challenge 
generally do not reach the same levels as for the first challenge. 

A final analysis shown in Fig. 16 considers the effect of the desen
sitisation rate constant kDS on cAMP signal features. An interesting 
contrast to Fig. 10 is that the second peak disappears for large values of 
kDS, even when the first peak still exists. 

5.5. Effect of ligand efficacy 

The cAMP response in our model varies according to a trade-off 
between receptor activation driving the G protein cycle and receptor 
desensitisation. In [23], this trade-off is analysed theoretically at the 
level of receptor activation with respect to changes in desensitisation 
and ligand efficacy parameters. We now consider the effect of the for
ward ligand efficacy parameter ζ+ in our model. 

In Fig. 17, we show the effect of varying the kinetic ligand efficacy 

Fig. 15. Simulated timecourses of individual model species underlying the cAMP signal in β-cells shown in Fig. 13.  

Fig. 16. Simulated effect of desensitisation rate constant kDS on cAMP response in both neurons and β-cells, for both ligands, each for ligand concentration [L] =
100nM, with washout and rechallenge. Top panel (neuron simulations) - cAMP response timecourses for both ligands, for a range of kDS, followed by kDS parameter- 
response curves for peak and endpoint (60 min) signals after both ligand challenges. Bottom panel (β-cell simulations) - as above. Dashed vertical lines in the 
parameter-response curves indicate the estimated value of kDS from Fig. 5. 
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Fig. 17. Simulated effect of ligand efficacy parameter ζ+ on cAMP response in both neurons and β-cells, for both ligands, each for ligand concentration [L] = 100nM. 
Top panel (neuron simulations) - cAMP response timecourses for both ligands, for a range of kDS, followed by kDS parameter-response curves for peak and endpoint 
(60 min) signals. Bottom panel (β-cell simulations) - as above. Dashed vertical lines in the parameter-response curves indicate the estimated value of ζ+ from Fig. 5. 

Fig. 18. Simulated effect of ligand efficacy parameter ζ+ or kDS on cAMP response and desensitisation in both neurons and β-cells, for both ligands, each for ligand 
concentration [L] = 100nM. The arrow in each plot shows indicates the direction along the curve in which the parameter value is increasing. 
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parameter ζ+ (which is specific to the ligand) on cAMP timecourses and 
their peak and endpoint (60 mins) signals. With ζ− fixed in each simu
lation, increasing ζ+ increases the both the ligand-bound activation rate 
and the equilibrium propensity for ligand-bound receptor activation, or 
the level of agonism. Over the range of values shown, we see that the 
peak response increases monotonically with ζ+, as expected. In β-cells, 
the peak response is maintained throughout, but for low values of ζ+, 
there is no peak response in neurons. The endpoint response is mono
tonic in both cell types for ExF1 only; the response to ExD3 is non- 
monotonic, and markedly so for β-cells. At higher values of ζ+, the 
endpoint signal decreases as the response to ExD3 is more transient than 
that for ExF1. 

We further explore the competing effects of desensitisation and 
receptor-mediated signalling in Figs. 18–19. In [23], both a GPCR sig
nalling model response and theoretical receptor desensitisation per
centage are computed as efficacy and desensitisation parameters are 
varied independently. Fig. 18 shows a corresponding analysis for our 
cAMP model. In agreement with [23], increasing kDS increases desen
sitisation and decreases the signal in each case, while increasing ζ+ in
creases both the signal and the desensitisation level at the endpoint. We 
conclude that ligands with higher efficacy values ζ+ will increase the 
signal as expected, but also lead to an increase in the competing effect of 
receptor desensitisation. We observe the non-monotonicity in the peak 
response as a function of ζ+ for β-cells again. 

Response surfaces are popular for visualising effects of competing 
processes and multi-parameter sensitivity studies [2,4,5]. In Fig. 19, we 
show response surfaces for parameters ζ+ and kDS. The monotonicity for 
the peak signal and potential non-monotonicity for the endpoint signal 
with respect to ζ+ are evident. The signals with the greatest sensitivity to 
the two parameters about the estimated values are those for β-cells. 

6. Discussion 

In this paper, we have formulated a mathematical model to enable 
qualitative and quantitative insights into the potential downstream 
signalling kinetics induced by two GLP1-R agonists in both β-cells and 

neurons. The model is based on a G protein-coupled receptor binding 
and activation schematic, with a receptor desensitisation module and 
second messenger (cAMP) generation. We have particularly focused on 
the binding, activation and desensitisation sub-model detail such that 
the signalling trade-off between pathway activation and desensitisation 
can be addressed. The model has been parameterised first using HEK293 
cells, to estimate ligand on and off rates, then for experimental data for 
β-cells and neurons. 

The data fitting shows that the model supports a parameterisation 
whereby the peak cAMP responses for ExF1 and ExD3 are similar in 
β-cells with more pronounced drop for ExD3, and a lower peak cAMP 
response for ExF1 in neurons, with the long-time cAMP signals similar. 
Simulations beyond the duration of the experiment in each case suggest 
that the cAMP response for both ligands in neurons has reached a 
pseudo-steady state on the timescale of the experiment. In contrast, the 
simulated long-time responses to the two ligands in β-cells are signifi
cantly different; the ExF1 response is at an apparent steady-state, but the 
ExD3 continues to decay and is negligible at around 8 h. This finding 
adds support to the hypothesis that ExF1 offers more potential glucose 
regulation benefit than ExD3 over long timescales via signalling in 
pancreatic β-cells, but that there is little difference between the two li
gands in the potential appetite suppression effects offered via long-time 
signalling in neurons on the same timescales. 

Ligand concentration and total receptor are predicted to have sig
nificant effect on the cAMP responses. In particular, at low ligand con
centrations, the peak-plateau nature of the signalling kinetics is not 
maintained, and a monotonic cAMP timecourse is observed. Receptor 
desensitisation is a key factor in both peak and plateau responses where 
they exist. For neurons, both ligands of interest give a simulated 
apparent non-zero steady-state cAMP response, even for large desensi
tisation rates. In contrast, for β-cells, large desensitisation rates result in 
pronounced drop-off in long-time response for both ligands of interest. 
Rechallenge simulations and tracking of the desensitised receptor pro
portion have been used to illustrate and understand the potential 
desensitisation effect. It is clear that ExF1-occupied receptor experiences 
a much lower level of desensitisation than ExD3-occupied receptor in 
both cell types, and for β-cells, this corresponds with the long-time 

Fig. 19. Simulated effect of ligand efficacy parameter ζ+ and kDS on cAMP response in both neurons and β-cells, for both ligands, each for ligand concentration [L] =
100nM. Top panel (neuron simulations) - cAMP response surfaces for both ligands, for peak and endpoint (60 min) signals. Bottom panel (β-cell simulations) - as 
above. The circle on each surface indicates the estimated values of ζ+ and kDS from Fig. 5. 

L. Bridge et al.                                                                                                                                                                                                                                   



Cellular Signalling 119 (2024) 111153

15

sustained cAMP signal observed for ExF1. The cAMP signal is seen to 
depend on both the ligand efficacy parameter ζ+ and the desensitisation 
constant kDS, which are both ligand-dependent. The monotonicity of the 
dependence on ζ+ is itself dependent on the time at which the cAMP 
reading is taken. Our analysis clearly demonstrates the potential for a 
kinetic context for different activation-desensitisation trade-off effects; 
parameter sensitivity results are different at different timepoints. 

The excellent data fitting suggests that our model may be useful for 
parameterising and understanding signalling in different cells, driven by 
different ligands. While our analysis focuses largely on ligand/receptor- 
level signal generation and modulation, more detailed analysis of the 
cAMP pathway would be possible if insights into cAMP signalling 
cascade components based on pathway readouts were required [26]. 
Our model could also be extended to consider the role of β-arrestin in 
desensitisation explicitly, using further schematics from [26]. Following 
the approaches of [3,26], we have analysed our model by using nu
merical simulations only. Our results indicate that the cAMP signalling 
cascade evolves on multiple timescales. As such, asymptotic analysis 
could be used to elucidate the signal transduction dynamics in detail 
[2,4], but this is beyond our scope here. 

Another model extension that we propose as future work is to include 
the effects of receptor internalisation. GLP-1R is known to internalise 
into endosomes, and with further data we may be able to quantify the 
potentially different extents of internalisation between the two ligands 
ExF1 and ExD3. Internalisation and other membrane trafficking pro
cesses are predicted to modulate cAMP signalling via several mecha
nisms. For example, bulk sequestration of the receptor away from the 
plasma membrane will reduce access of extracellular ligand to available 
cell surface receptor, whilst at the same time promoting distinct cAMP 
signalling networks from the endosomal compartment [29]. Mathe
matical models for internalisation in varying degrees of detail are 
available in the literature [8,30–33]. 

We remark that extension of the current model to include arrestin 
recruitment and receptor internalisation will increase the order of the 
ODE system and further challenge its analytical tractability. However, 
the use of an ODE model and its requirement for numerical solution is 
warranted; the popular operational model of agonism [34] is based on 
equilibrium assumptions and an empirical sub-model which preclude 
both kinetic and mechanistic insights and associated parameterisations 
for our GLP-1R-cAMP system. Recently proposed kinetic operational 
models comprise low-dimensional ODE systems for signal transduction 
based on equilibrium ligand binding assumptions [7,25] as kinetic al
ternatives to the original equilibrium model [34]. An active field of 
theoretical research, beyond our scope here, involves the application of 
model reduction techniques to detailed ODE models of cell signalling 
[35] which may help to bridge the gap between systems biology-type 
models and operational models. 

Our analysis suggests that ExD3 is more “biased” towards receptor 
desensitisation than ExF1 is, without explicitly defining a measure of 
biased agonism. Future work which considers a model of β-arrestin 

signalling versus G protein activation (see [14–16,26]) will explicitly 
quantify the dynamic “ligand bias” [3,36] associated with multiple 
signalling responses (using definitions from [3]), to further characterise 
ExF1 and ExD3 effects in different cell types within the context of biased 
therapeutics [36,37]. Furthermore, we will consider the structural 
identifiability properties of the governing system in future work [38]. 

The agonists used in this work, ExF1 and ExD3, were selected as tool 
compounds to probe the impact of their distinct signalling properties. 
However, the findings may be of therapeutic relevance because of the 
current interest in potential differences between clinically approved li
gands showing balanced (e.g. semaglutide) versus G protein-biased (e.g. 
tirzepatide) GLP-1R agonism. As the receptor pharmacology of ExD3 
resembles the former and ExF1 the latter, it may be reasonable to ask 
whether the findings in our work inform better understanding of the 
therapeutic profile of these major GLP-1R-based agents. From our data, 
we might predict that G protein-biased agonists would accentuate β-cell- 
mediated (e.g. blood glucose lowering) more than neuronally-mediated 
(e.g. appetite suppression, nausea) effects. This possibility requires 
experimental validation but, if confirmed, might guide development of 
GLP-1R and other GPCR agonists with more selective pharmacodynamic 
profiles. 
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Appendix A. Experimental methods 

A.1. Cell lines and cell culture 

Adherent HEK293 cells (AD293) were cultured in DMEM supplemented with 10% foetal bovine serum (FBS) and 1% penicillin/streptomycin. 

A.2. Animals 

Animal procedures at Imperial College London were approved by the British Home Office under the UK Animals (Scientific Procedures) Act 1986. 
Mice (Charles River, UK) were group housed and held in a condition-controlled room at 21–23 ◦C with 12 h:12 h light to dark cycles (lights on at 
07:00). All animals had ad libitum access to water and feed. Lean mice were fed standard chow (RM1(E); Special Diet Services, UK). CAMPER mice 
were obtained from Jackson laboratories (C57BL/6-Gt(ROSA)26Sortm1(CAG− ECFP*/Rapgef3/Venus)Kama/J, Jax strain #032205). These mice encode the cAMP 
FRET reporter TEpacVV flanked by a STOP-flox in the ROSA26 locus, allowing tissue specific expression when bred with appropriate Cre-expressing 
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strains. In this study, we used β-actin-Cre mice (B6N.FVB-Tmem163Tg(ACTB− cre)2Mrt/CjDswJ, Jax strain #019099) to achieve global TEpacVV expression 
in all tissues, Pdx1-Cre-ERT (STOCK Tg(Pdx1-cre/Esr1*)#Dam/J, Jax strain #024968) for β-cell-specific expression. These mice are referred to as 
CAMPERACTB and CAMPERPdx1-ERT, respectively. For CAMPERPdx1-ERT experiments, TEpacVV expression was induced in vitro (after tissue isolation) 
using 200 nM 4-hydroxytamoxifen (4-OHT) for 24 h before imaging. 

A.3. Isolation, dispersal and culture of pancreatic islets 

CAMPERPdx1-ERT mice were culled by cervical dislocation and positioned with the abdomen facing upwards. After skin was sterilized using 70% 
ethanol, an incision was made around the upper abdomen to expose the pancreas and common bile duct. Pancreata were inflated with RPMI-1640 
medium (R8758, Sigma-Aldrich) containing 1 mg/ml collagenase from Clostridium histolyticum (S1745602, Nordmark Biochemicals), dissected and 
incubated in a water-bath at 37 ◦C for 12 min. Islets were subsequently washed and purified using a Histopaque gradient (Histopaque-1119, 11,191, 
Sigma-Aldrich, and Histopaque-1083, 10,831, Sigma-Aldrich). Isolated islets were allowed to recover overnight in RPMI-1640 supplemented with 
10% v/v FBS (F7524, Sigma-Aldrich) and 1% v/v Penicillin-Streptomycin solution (15070–063, Invitrogen). To induce TEpacVV expression, islets were 
treated with 200 nM 4-hydroxytamoxifen (4-OHT). The morning after isolation, islets were dispersed into single cells by gentle trituration in 0.05% 
trypsin-EDTA for 3 min. Dispersed islet cells were seeded onto black 96-well microplates coated with mg/ml poly-D-lysine and 20 μg/ml laminin for 24 
h before the assay. 

A.4. Isolation and culture of nodose ganglion neurons 

Nodose ganglia from CAMPERACTB mice were dissected and placed in 500 μl extraction buffer, i.e. HEPES-buffered Kreb’s-Ringer Bicarbonate 
buffer (KCl 4.7 mM, KH2PO4 1.2 mM, NaCl 129 mM, NaHCO3 5 mM, MgSO4 1.2 mM, CaCl2 1.8 mM, HEPES 10 mM, glucose 5.6 mM, pH 7.4) 
containing 22 μl 2.5 mg/ml liberase for 45 min at 37 ◦C. The resulting suspension was pelleted and washed twice with PBS, resuspended in full medium 
(Neurobasal plus 2% B27, 1% L-glutamine, 1% FBS, 0.05% NGF), followed by trituration and passage through a 70 μM filter to remove debris. The 
resulting cell suspension was seeded onto glass bottomed petri dishes coated with 0.1 mg/ml poly-D-lysine and laminin 20 μg/ml and cultured in full 
medium for 24–48 h before experiments. 

A.5. Monitoring cAMP responses in transiently transduced AD293 cells 

AD293 cells were seeded in black 96-well plates (30,000 cells/well) coated with 0.01% poly-D-lysine and transduced for 24 h with the “green up” 
cADDis cAMP sensor (Montana Molecular, USA, 15 μl/well) according to the manufacturer’s instructions. hGLP-1R in a BacMam vector (Montana 
Molecular, 10 μl/well) was also transduced at specified times before the stimulation step (8, 6, 4 and 2 h) to achieve varying GLP-1R densities. Timings 
were selected so that agonist-stimulated cAMP responses remained within the dynamic range of the sensor. Media was removed from the cells and 
replaced with HBSS containing 0.1% BSA. Fluorescence signal (λex = 485 nm, λem = 525 nm) was recorded before and after addition of agonist at a 
maximal concentration (1 μM) by the automated pipette in a Flexstation 3 instrument. Readings were taken every 2 s. Positive control wells received 
IBMX (500 μM) plus FSK (50 μM) as a maximal stimulus to indicate the sensor saturation point. Signal change was first expressed as fractional change 
from baseline, followed by subtraction of the signal trace from negative control wells (no GLP-1R expressed) to account for sensor photobleaching. 

A.6. Determination of surface GLP-1R concentrations in transiently transduced AD293 cells 

AD293 cells in poly-D-lysine-coated black walled, clear bottom 96-well plates (30,000 cells/well) were transduced with hGLP1R in parallel at the 
same time as those used for cADDis experiments. To quantify relative GLP-1R density, cells were treated with Cy5-tagged exendin-4 [39], which labels 
GLP-1R at the cell surface before undergoing internalisation, for 30 min before washing and then imaging by fluorescence microscopy. A modified 
Nikon Ti2E with automated stage was used to acquire several epifluorescence and transmitted light phase contrast fields-of-view (FOVs) from each 
well. Cell-associated Cy5 intensity, indicating ligand-bound GLP-1R, was analysed by applying a flat-field correction and segmentation of cell- 
containing regions using Phantast [40]. 

A.7. Experimental assessment of agonist binding kinetics 

The assay was performed as previously described [15]. HEK293 cells stably expressing N-terminal SNAP-tagged hGLP1R were labelled with 40 nM 
Lumi4-Tb (Cisbio, France) for 30 min at 4 ◦C, including a metabolic inhibitor cocktail (10 mM NaN3, 20 mM 2-deoxyglucose) to inhibit GLP-1R 
internalisation. After washing, TR-FRET was monitored using a Flexstation 3 plate reader on simultaneous addition of unlabelled agonist plus 10 
nM exendin-4-FITC. Association and dissociation rate constants were calculated using the kinetics of competitive binding algorithm in GraphPad 
Prism. 

A.8. Monitoring cAMP responses in dispersed islets and nodose ganglion neurons 

Dispersed islets from CAMPERPdx1-ERT mice, and nodose ganglion cultures from CAMPERACTB mice were prepared as above. For imaging, cells were 
gently washed and placed in Kreb’s-Ringer bicarbonate HEPES (KRBH) buffer (140 mM NaCl, 3.6 mM KCl, 1.5 mM CaCl2, 0.5 mM MgSO4, 0.5 mM 
NaH2PO4, 2 mM NaHCO3, 10 mM HEPES, saturated with 95% O2/5% CO2; pH 7.4) containing 0.1% BSA and 6 mM glucose. Imaging was performed 
using an image splitter (Cairn OptoSplit III) inserted in the optical path to simultaneously acquire images in CFP and YFP channels. Typically, 
hundreds of cells were imaged per condition. Cells were imaged before and for 60 min after addition of agonist at a maximal concentration (100 nM) or 
vehicle. A positive control stimulus containing 500 μM isobutylmethylxanthine (IBMX) and 50 μM forskolin (FSK) was then added for 5 min to saturate 
the sensor. Image analysis was performed using custom macros in ImageJ v1.54f. First, drift correction was applied using SIFT and flatfield illumi
nation correction in each channel using BaSiC [41]. A maximum intensity projection of the time series was used to segment cells, from which the YFP/ 
CFP FRET signal was determined at each timepoint. Non-cell objects and dead cells were excluded according to IBMX/FSK response. The mean 

L. Bridge et al.                                                                                                                                                                                                                                   



Cellular Signalling 119 (2024) 111153

17

response from all cells was determined, with normalisation to baseline and to IBMX/FSK applied. 
Appendix B. Parameter values  

Table 4 
Estimated parameter values for Sections 4–5.  

Parameter Value Cell A (neuron) Cell B (islet) Ligand 1 (ExF1) Ligand 2 (ExD3) Units 

kL− 0.2485 ✓ ✓ ✓  s− 1 

kL− 0.0134 ✓ ✓  ✓ s− 1 

kL+ 2.233× 107 ✓ ✓ ✓  M− 1 s− 1 

kL+ 1.922× 107 ✓ ✓  ✓ M− 1 s− 1 

kact+ 0.0015 ✓  ✓ ✓ s− 1 

kact+ 0.2438  ✓ ✓ ✓ s− 1 

kact− 347.67 ✓  ✓ ✓ s− 1 

kact− 1.790× 104  ✓ ✓ ✓ s− 1 

kG+ 4.726× 106 ✓  ✓ ✓ M s− 1 

kG+ 7.780× 104  ✓ ✓ ✓ M s− 1 

kG− 5.103× 10− 6 ✓  ✓ ✓ s− 1 

kG− 0.0289  ✓ ✓ ✓ s− 1 

δ+ 0.0390 ✓  ✓  – 
δ+ 0.0311 ✓   ✓ – 
δ+ 5.702× 10− 5  ✓ ✓  – 
δ+ 1.486× 10− 16  ✓  ✓ – 
δ− 1.885× 10− 4 ✓  ✓  – 
δ− 1.944× 10− 4 ✓   ✓ – 
δ− 2.1474× 10− 14  ✓ ✓  – 
δ− 2.552× 10− 9  ✓  ✓ – 
ζ+ 1.2346× 104 ✓ ✓ ✓  – 
ζ+ 2.2611× 104 ✓ ✓  ✓ – 
ζ − 1.8551 ✓ ✓ ✓  – 
ζ − 0.9776 ✓ ✓  ✓ – 
μ+ 0.5206 ✓  ✓ ✓ – 
μ+ 1.9944  ✓ ✓ ✓ – 
μ − 0.0345 ✓  ✓ ✓ – 
μ − 0.0384  ✓ ✓ ✓ – 
kGTP+ 0.0144 ✓  ✓ ✓ s− 1 

kGTP+ 0.0993  ✓ ✓ ✓ s− 1 

kDS 1.299× 10− 5 ✓  ✓  s− 1 

kDS 0.0018 ✓   ✓ s− 1 

kDS 7.418× 10− 7  ✓ ✓  s− 1 

kDS 6.341× 10− 4  ✓  ✓ s− 1 

ν+ 0.9390 ✓  ✓  – 
ν+ 2.5825 ✓   ✓ – 
ν+ 0.8674  ✓ ✓  – 
ν+ 0.7571  ✓  ✓ – 
ν− 0.9644 ✓  ✓  – 
ν− 0.9597 ✓   ✓ – 
ν− 0.1696  ✓ ✓  – 
ν− 0.1683  ✓  ✓ – 
θa 0.8668 ✓  ✓ ✓ – 
θa 4.2125  ✓ ✓ ✓ – 
kRA+ 8.213× 103 ✓  ✓ ✓ M− 1s− 1 

kRA+ 2.029× 106  ✓ ✓ ✓ M− 1s− 1 

kRA− 3.144× 10− 19 ✓  ✓ ✓ M− 1s− 1 

kRA− 6.516× 10− 19  ✓ ✓ ✓ M− 1s− 1 

khyd+ 0.1393 ✓  ✓ ✓ s− 1 

khyd+ 0.0634  ✓ ✓ ✓ s− 1 

khyd− 9.126× 10− 4 ✓  ✓ ✓ s− 1 

khyd− 2.492× 10− 15  ✓ ✓ ✓ s− 1 

kcAMP+ 0.1236 ✓  ✓ ✓ s− 1 

kcAMP+ 4.8893  ✓ ✓ ✓ s− 1 

kcAMP− 0.0964 ✓  ✓ ✓ s− 1 

kcAMP− 0.1268  ✓ ✓ ✓ s− 1 

Rtot 6.591× 10− 10 ✓  ✓ ✓ M 
Rtot 6.648× 10− 9  ✓ ✓ ✓ M 
Gtot 1.405× 10− 9 ✓  ✓ ✓ M 
Gtot 2.231× 10− 10  ✓ ✓ ✓ M 
a 5.518× 1011 ✓ ✓ ✓ ✓ –  
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Domenico Bosco, et al., Targeting glp-1 receptor trafficking to improve agonist 
efficacy, Nat. Commun. 9 (1) (2018) 1602. 

[16] Maria Lucey, Philip Pickford, Stavroula Bitsi, James Minnion, Jan Ungewiss, 
Katja Schoeneberg, Guy A. Rutter, Stephen R. Bloom, Alejandra Tomas, Ben Jones, 
Disconnect between signalling potency and in vivo efficacy of pharmacokinetically 
optimised biased glucagon-like peptide-1 receptor agonists, Molecular Metabolism 
37 (2020) 100991. 

[17] Francis S. Willard, Jonathan D. Douros, Maria B.N. Gabe, Aaron D. Showalter, 
David B. Wainscott, Todd M. Suter, Megan E. Capozzi, Wijnand J.C. van der 
Velden, Cynthia Stutsman, Guemalli R. Cardona, et al., Tirzepatide is an 
imbalanced and biased dual gip and glp-1 receptor agonist, JCI Insight 5 (17) 
(2020). 

[18] Takahiro Kawai, Bingfa Sun, Hitoshi Yoshino, Dan Feng, Yoshiyuki Suzuki, 
Masanori Fukazawa, Shunsuke Nagao, David B. Wainscott, Aaron D. Showalter, 
Brian A. Droz, et al., Structural basis for glp-1 receptor activation by ly3502970, an 
orally active nonpeptide agonist, Proceedings of the National Academy of Sciences 
117 (47) (2020) 29959–29967. 

[19] Phil Pickford, Maria Lucey, Roxana-Maria Rujan, Emma Rose McGlone, 
Stavroula Bitsi, Fiona B. Ashford, Ivan R. Corrêa, David J. Hodson, 
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