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Abstract

Internet of Things (IoT) is getting growing interest to offer great opportunities in combination with Mobile Crowd Sensing for real-time
applications. Existing approaches motivate mobile workers (MWs) for approaching the distant locations to receive attractive incentives for
traveling. The main question addressed is that a number of tasks remain incomplete out of total al-located tasks. Moreover, the profitability
and feasible budget constraints of the platform is also not considered. This paper presents Bargaining based Design Mechanism (BDM)
to involve the nearest located MWs to improve the completion of tasks. The main method involves a bargaining based game model that
increases the task completion ratio while considering the feasible budget constraint, platform profitability and social welfare. The proposed
approach comprises of two algorithms: one for the selection of optimal MWs with low cost and less delay. Second is to organize bargaining
for rewarding the platform on social welfare. Our work is validated by developing a testbed on Windows Azure cloud. Results prove that
proposed BDM out-performs the counterparts in terms of decay coefficient, task completion ratio, participant’s winning ratio, fraction of task
incompletion and social welfare.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Internet of Things (IoT) comprises of a large number of
devices that collaborate with each other to share information
among different smart devices across the networks [1]. Mobile
Crowd Sensing (MCS) is an enhanced mobile computing
scenario to fetch and offer services to the subscribers [2]. A
key application of MCS is in transportation services like online
cab service where a large number of drivers and passengers
interact to avail services. Moreover, MCS is also applicable
in user’s behavior analysis and path planning for drones [3].
In MCS, the MWs are involved to perform tasks who may

∗ Corresponding author.
E-mail addresses: waqasmsiiui@yahoo.com (W. Ahmad),

aullah@numl.edu.pk (A. Ullah), sheheryar91@yahoo.com (Sheharyar),
noorzaman.jhanjhi@taylors.edu.my (N.Z. Jhanjhi), rmghoniem@pnu.edu.sa5
(R.M. Ghoniem), sarfraz.brohi@uwe.ac.uk (S.N. Brohi).

Peer review under responsibility of The Korean Institute of Communica-
tions and Information Sciences (KICS).
ttps://doi.org/10.1016/j.icte.2023.07.006
405-9595/© 2023 The Author(s). Published by Elsevier B.V. on behalf of The
pen access article under the CC BY-NC-ND license (http://creativecommons.org
cooperate to perform one single task as per level of quality and
security demands [4]. It helps to achieve classification of task,
division of task, allocation of task, and the evaluation of task
quality [5,6] with attractive incentive mechanisms which also
involves the game theory for assigning tasks after identifying
the role of MWs [7,8] for active participation of MWs. The
reputation aware recruitment [9] is mandatory to identify the
reliable MWs along with privacy of contributors [10] for user
satisfaction. Moreover, it involves feasible budget centric mea-
sures [11], platform and MW centric models [12] by offering
social admiration and monetary reward [13].

Game theory is involved for bargaining the reward of MWs
for the assigned task. The real scenario for rewarding the MWs
can be in case of the drivers who are paid the fare and the
incentives from the riding company as well where a huge
number of passengers are served for a massive number of
tasks. The game players adopt strategies which can maximize
the platform utility for tasks. The main goal is to establish an
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/licenses/by-nc-nd/4.0/).
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ptimum level so that profit can be maximized or loss can be
educed. Nash Bargaining Solution (NBS) ensures profit max-
mization. For a better estimation of MW’s cost and loyalty for
he task, the MWs’ mobility routine should be predicted [14].
ash equilibrium is used for non-cooperative games which

nsure that no regret situation occur for the game players in
he absence of law enforcement authority [15]. To the best of
ur knowledge, we are the first one to consider the bargaining
ame for MW and platform especially for time-sensitive task
cenarios in MCS.

This paper presents a game theory based bargaining
olution for the design mechanism to enhance the resource
tilization. This work aims to minimize the distance for time
ensitive tasks by using game theory where a bargaining
ame is proposed between platform and MW. The main
ontributions of the work are enumerated as follows:

(1) We present the selection for MWs who are close to the
task location and then perform game based bargaining
on bids as per traveling cost and time involved for the
task.

(2) We proposed a novel NBS based optimization algorithm
to manage task handling criteria as per nature of task.

Rest of the paper is organized as follows: Section 2 explores
he literature review and Section 3 explores system model and
he proposed BDM system. Results are illustrated in Section 4.
ection 5 concludes our work.

. Literature review

In this Section, we focused on the MW selection mecha-
isms that utilize gaining mechanisms for incentivizing on the
asis of certain tasks. We considered delay tolerant and time
ensitive tasks along with mobility based un-even distribution
n MCS along with game based solutions.

.1. Time-sensitive tasks based approaches

It identifies the task completion capacity and movement to
dentify minimum distance between the task location and the

Ws [16]. In [17], the competition of MWs is considered for
ertain tasks, The MWs decide on the basis of a congestion
ame theory. It helps to improve the confidence level on the
ystem by providing a fair competition without involving a
assive inclusion of MWs for a single task. It also identifies
route to perform the task for each MW. The stable task allo-

ation in [18] uses the budget constraints to select the suitable
Ws and willingness to move towards the task region. Fur-

hermore, a stable matching algorithm was designed to select
W and respective incentives. In time-sensitive incentive-

ware (TSIA) scheme, two-player cooperation is considered
ike data collectors and a mobile user to send the sensed data
ack to requester through platform. The data collector per-
orms task and rely on mobile user for its transmission where
ata must be delivered with cooperation of game players [19].
he selfish and cooperative scheme involves TSIA for selfish
odel using greedy approach and TSIA for cooperative setting
112
where the task is accepted without considering MW’s utility.
In this case, MW is an intermediate relay user instead of
requester. In our work, we considered MW’s utility to enhance
the performance.

The Bayes Nash involves a regulator as an authority respon-
sible for necessary settings to achieve unique NBS. In [20],
NBS demonstrates the acceptable and rejectable range of
values for the platform and the MW. For any task, if utility Wu

is less than the unit cost ci , then MW will not perform the task
due to no payoff. If cost of the platform CP is higher than the
maximum surplus M P or total surplus TP from task, then the
bargaining game ends up on disagreement. To avoid complex-
ity of dealing with multiple equilibria, we consider bargaining
power up to two stages. We also consider bargaining directly
between MW and the platform in contrast to [16] where the
feasible budget of the platform was neglected.

2.2. Spatial crowdsensing based approaches

The distance from task location is critical for MWs to
move on the best trajectory in limited area. It can be useful
for identifying the coverage for stable task allocation [21].
This approach is a bit similar to our work as we also recruit
workers who may perform more than one tasks. It enhances
platform utility where MWs earn more with multiple tasks.
In Movement Based Incentive (MBI) scheme, an un-even
distribution of MW in urban and rural areas is experienced to
increase profitability. In this scheme, the completion of task is
paid whole attention while other important aspects are ignored
like feasible budget, platform profit and delay-sensitive nature
of tasks [22]. A time based task allocation [23] highlights that
MW has dependency on available time to do certain tasks. The
scheme presents the efficient allocation mechanism in a time-
specific slots to enhance working capacity and chances for task
completion. In [24] the trajectories of the MWs are considered
to decide about task allocation. It prefers of the MWs in
region of the task. It enhances the chances of task completion
in variety of tasks occurrences in different regions. In [25],
the traveling effort of MW is considered to perform tasks.
The maximum number of MWs to perform a single task is
predefined to guarantee the decrease in error measurement and
enhance profit for platform. Our proposed scheme is limited to
delay-tolerant tasks (see Table 2).

2.3. Prediction based approaches

For delay-tolerant tasks prediction based approaches can
exploit routine of MWs (from history) whereas, for the time
sensitive tasks delay is not affordable. Mobility prediction
model has been used in [26] to get probabilistic utility of
workers and for the selection of suitable workers. Time-related
Markov model is used to fetch probabilities. Another predic-
tion based approach is proposed in [27]. It categorized the
users in two categories including Pay As You Go (PAYG)
and Pay As You go Monthly (PAYM). The users in PAYM
have larger contact probability. Semi Markov model is used
for probability distribution of users to come at a Point of
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Table 1
List of notations for BDM.

Notation Description

Pu , Wu , Sw Utility of platform and MWs, Social welfare
Pu,A, Pu,D Utility of platform over agreement or disagreement
Wu,A, Wu,D Utility of MW over agreement or disagreement
bi , bi j Bid of a MWi for task i and bid of MWi for task j
αT

P , αT
M αT

P , αT
M are bargaining powers of platform and MW

T, ti or τi εT , Dt Task T , Subtasks of T = {τ1, τ2, τ3 . . . τn} and τi is the deadline of task completion
Mds ≤ M , δ, ds Maximum mobility budget of MW. ds is distance of MW from sensing location, δ is discount factor
N , Nc Total number of MWs, Nc: Candidates with bids,
NRC , NSC Set of real candidates to selected and bargain
Sr , li εL Sr is sensing report, li ∈ L = [lati., longi.] is a sensing location from a set of locations
ci , Ci , ci is the unit cost paid to the MW whereas Ci is the total cost paid to one MW ∈ Nw
Table 2
Algorithms for selection of MW and bargaining solution.

Interest where MWs are recruited through cost prediction but
with chances of inaccuracy. In movement-based approaches,
113
optimization of platform’s profit is neglected and more atten-
tion is given to task completion [27]. In vehicle based task
assignment, a truck based task assignment is presented to
launch a UAV to perform the assigned tasks. The vehicle plays
a role for mobile task execution and the networking facility
to connect with UAVs. It also involves the joint tasks with
neighboring vehicles to plan the path towards the assigned
area [28]. These real application scenarios can be enhanced
with the server less computing to supports edge node with
scarce resources. It involves the use of cold start deployment
mode with less resource utilization [29].

3. System model and proposed methods

We present a Bargaining Based Design Mechanism (BDM)
to enhance the task completion ratios for time sensitive tasks.
We resolved the problem of the incompletion of tasks due
to uneven distribution where profitability and feasible budget
constraints are also ignored for the platform. Moreover, the
minimum traveling distance of MWs from the task location
was not considered for these tasks. This work used the bar-
gaining game based model between platform and MW for
enhancing the completion of tasks where Nash based solution
negotiates on surplus share. Our work optimizes platform
utility and social welfare. A list of notations is presented in
Table 1.

3.1. System model

Fig. 1 illustrates the proposed BDM architecture to show
interaction between tasks and platform. In the step1, task is
offered by the platform for the payment p1, p2 offered to
the MW with required capabilities for the task. In Step 2,
MW responds with the bidding values where v1 is lower and
v2 is higher. In step 3, platform may offer any one option;
(i) p1 shows a case when platform offers low value for the
announced task. It takes the risk for either agreement or
disagreement E(A/D). (ii) p2 is vice versa of p1. (iii) term ( p2

2 )
shows a case when platform has high priority of a task but
offers half value. In Step 4, MW shares low and high values
as v1 and v2 for bidding. In Step 5, platform may proceed to
step 6 to assign the task. Otherwise, repeat from the step 1 to
select another MW from the list.
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Fig. 1. Proposed system model of BDM.

3.2. Design mechanism

The DM represents the model to select the MWs and pay
the amount. It is shown as M ( f, g) where f is set of possible
MWs and g is a payment after bargaining when the game
ends. The set of MWs is U = {u1, u2, u3, . . . , un} and set of
tasks is T = {τ1, τ2, τ3 . . . τn} where nεN = {1, 2, 3, . . . , N }.
It is assumed that MWs perform tasks under game-theoretic
setting. The DM categorizes MWs on the basis of function
f (bi , Ds) where bi is the bid of a MW and Ds represents
the distance to task location li . The MWs having lowest bid
shortest distance will be considered. The MW shares a bid
bi = (c′

i , ds, ηi , ti ) where is c′

i announced cost, iεU , ds is the

distance of MWi from task location as
√∑n

i=1(xi − yi )2, ηi is
he cost of movement and ti is the expected delay in reaching
he task location. The expected delay is one of the benchmarks
o recruit a MW. We check the delay ti for the delay-sensitive
ask.

.3. Selection of suitable MWs

The proposed model considers two players in a bargaining
ituation to deal with the division of surplus earned after the
ask. It is also critical to choose a suitable MW for delivery
f task within time constraint. The discount factor 0 < δ <

decreases it as (Wu*δ) for MW and (Pu*δ) for platform. At
rst stage during surplus sharing, a bid diminish the payoff
b2 for MW and δ(1 − y) for DM, where y is the reply bid
f MW. Here b2 for MWi can be the surplus M P for the
ime-critical tasks. If the value of δ is very high, then MWi

an easily reject the bid/offer. On the contrary, DM holds a
arge amount of the total surplus over MWi . In that case, MWi

ould move forward for counteroffer that may decrease the
ask valuation in time-sensitive tasks. Initially, the distance is
alculated among the MWs and tasks. MWs near to the task
ocation may require less effort and movement cost.

Algorithm 1 is aimed at the selection of a MW. Inputs
o the algorithm are the set of tasks T and bids B of MWs
or the tasks announced by the platform. The output is the

ist of MWs that are real candidates represented as NRCi . In
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he steps 2 to 8, MWs are categorized based on the distance
rom task location as per the specified threshold Di . Next,

the distance of MW from the task location is calculated and
then listed in NRC1or NRC2 which are considered as the lists

f real candidates. These are candidate MWs that are located
ear the task position and whose bids are not exceeding the
otal earning from the task. In steps 9 to 14, bids of MWs
re evaluated for any candidate from Ci belonging to NRC1or

NRC2 . It verifies social welfare Sw(Ui ∈ U, NSC ) and break
he iteration. It involves the optimization of social welfare for
very Ci . This is calculated for any Ci until Sw cannot be
mproved further and selects suitable candidates.

.4. Optimized Nash bargaining solution

Incentives of task completion in MCS are not very high
specially for small tasks. It is quite challenging to motivate
Ws to perform tasks. In this scenario, random task alloca-

ion causes uncertainty of task completion due to its location
ariations. To ensure the NBS, complete information of task
ust be provided for bargaining in a game model as per set

elief. By considering P0 and Q0 be lower and upper cost
or the initial beliefs of the platform about MWs. The values
ay be taken from history which can set the ground for the

efinement of belief after bargaining sessions. It would be
elpful to categorize. The MW is considered weak whose bid
s near to the expected real cost of task completion and vice
ersa. Secondly, the interest level can be decided based on the
trength of bid. Thirdly, the bargaining power is decided as per
he time sensitivity. For delay tolerant task, the platform will
ave more bargaining power. Bargaining power of a MW is
epresented as (αT

M ) which can vary from worker to work even
or the same MW when performing a second task. The MW
ho is more interested in performing the task will have low
argaining power and vice versa. Bargaining power of MW
nd the platform is in the interval of

(
αT

P , αT
M

)
ε[0, 1]. Next, we

describe stepwise execution of algorithm 2. The output of the
algorithm includes utilities Pu and Wu for platform and MW,
respectively. Moreover, social welfare Sw is also generated
to report the performance. In Step 2, the interest levels in
MWs’ list is sorted in descending order to find the MW with
maximum interest at top. In case when the delay is considered,
list is sorted in ascending order. In step 3, it checks the nature
of the task. The iteration of steps 4 to 17 continues for all
MWs. The main objective is that platform selects the MWi as
per offer.

In steps 19 to 29, the scenario for time-sensitive tasks
is considered where the decision to bargain or not depends
upon time budget t̃i ≤ ti to seek the chances of optimizing
platform utility. In all cases, game will not end on agreement
when Pu < 0. The condition holds as NRC2 would already
be assigned by considering Pu . The time complexity for al-
gorithm 1 and algorithm 2 is O(n) as all the operations are
performed linearly without involving nested loops. It enhances
the capability of the solution in terms of scalability as well.

4. Results

We evaluated the performance of BDM as compared to
counterparts by developing a testbed using ASP.net and C#
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Fig. 2. Effect of decay coefficient on delivery ratio..

where 02 WCF services are deployed on Windows Azure
cloud. The BDM and other schemes are implemented as func-
tions in WCF services. A mobile application is also developed
using Xamarin and deployed in android and iPhone mobiles
used by MWs. The base approaches are MSensing [12], selfish
and cooperative scheme, MBI [16] and TSIA [19].

4.1. Decay coefficient

It is a factor that reduces the value of a task over time. Fig. 2
elucidates the decay coefficients and presents the delivery
ratio. The increase in decay coefficient has the least effect
on BDM for the task delivery ratio because TSIA and other
approaches did not consider the movement of MWs. It results
in low average credit won by the MWs because the value of
task decreases with a large ratio over time.

4.2. Task completion ratio

Fig. 3 illustrates task completion ratio when the number of
participants are varied from 50 to 350. It considered standard
deviation as σ = [10,20,30]. Results show that MBI-30 is
closer to BDM because both of the schemes consider the
movement of MW for task completion. The BDM achieves
better due to bargaining mechanism. The lowest-performing
approach is MSensing because of ignoring the movement of
MWs where the tasks in less dense areas remained incomplete.
Results show that BDM is about 8% and 27% better in task
completion ratio as compared to MBI and MSensing. Fig. 4
elucidates that participant winning ratio is decreased when
there are enough number of MWs and platform has more
choices/options to select the most appropriate MWs. The BDM
outperformed MBI and MSensing by 4% and 24% on average
respectively.

4.3. Fraction of task failure

The probability Pr f of a task left incomplete is Prf =

1−
(T−1)

/
(T)

=
ω where ω represents the incomplete tasks out
ω−1 ω T
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Fig. 3. Task completion ratio for tasks.

Fig. 4. Participant winning ratio.

of total T tasks announced. Fig. 5 illustrates that probability
f task completion failure is 0.00333, 0.0066, 0.01 and 0.0133
hen total task failure i = {1, 2, 3, 4} out of total 300 tasks.

Similar is the case for MBI and MSensing.

4.4. Social welfare

Due to the trade situation in algorithm 2, the expected plat-
form utility is enhanced along with social welfare by ensuring
timely task completion in remote areas. Fig. 6 elucidates that
MSensing-10 to 30 improve the social welfare. The MBI-
10 to 30 further improve the social welfare by increasing
served tasks by involving more MWs. The proposed BDM
outperforms by achieving 7% and 22% better social welfare
as compared to MBI and MSensing, respectively.

5. Discussions and conclusions

In this work, we proposed a bargaining game based BDM

with the intention to increase profitability and social welfare.
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Fig. 5. Probability of task incompletion.

Fig. 6. Social welfare achieved by BDM.

We present two algorithms (i) optimal MWs selection and
(ii) optimal bargaining algorithm for rewarding. Algorithm
1 presents the suitable MWs selection to achieve the opti-
mal Nash bar-gaining solution. It utilized the MWs on game
thematic model. Algorithm 2 is dedicated to the bargaining
game among platform and MW for the transfer of utility when
‘agreement’ is the decision of the game. We developed a
testbed on Windows Azure cloud to validate the results and
compare with the counterparts. Results illustrate that BDM
outperforms in terms of improving task completion ratio, task
winning ratio and social welfare. Results also focus on reduc-
ing the fraction of incomplete tasks and decaying co-efficient.
BDM improves 8% and 27% task completion ratio, 7% and
22% social welfare in comparison to MBI and MSensing,
respectively. In future, we shall consider bargaining with next
MWs in the list as well.
116
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