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Genome Sequence of Lecanicillium fungicola 150-1, the Causal

Agent of Dry Bubble Disease
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ABSTRACT The fungus Lecanicillium fungicola causes dry bubble disease in the
white button mushroom Agaricus bisporus. Control strategies are limited, as both
the host and pathogen are fungi, and there is limited understanding of the interac-
tions in this pathosystem. Here, we present the genome sequence of Lecanicillium
fungicola strain 150-1.

ecanicillium fungicola (Preuss) Zare & Gams [synonym: Verticillium fungicola (Preuss)

Hassebrauk] (1), an ascomycete fungus of the order Hypocreales, is the causal agent
of dry bubble disease of the white button mushroom Agaricus bisporus, as well as of
other commercially cultivated basidiomycetes (2). Dry bubble disease presents symp-
toms that include necrotic lesions on mushroom caps, stipe blowout, and undifferen-
tiated tissue masses (2). Some factors involved in this interaction have been proposed
based on suppression subtractive hybridization (SSH) and expressed sequence tag (EST)
data (3). This disease is of economic importance, causing significant yield/quality losses
in the mushroom industry (4). Control methods rely on rigorous hygiene procedures
and targeted fungicide treatments; however, increased resistance against these fungi-
cides has been reported (5, 6). Recent taxonomic revisions place L. fungicola close to
several arthropod- and nematode-pathogenic fungi rather than to plant-pathogenic
Verticillium spp. (1, 7).

L. fungicola strain 150-1, a UK isolate of medium virulence obtained from Warwick-
HRI, UK (2), was maintained on potato dextrose agar. Genomic DNA was extracted from
freeze-dried mycelium using the gentle toluene lysis method of Bonsch et al. (8), and
DNA was fragmented to ~520 bp and sequenced using paired-end 100-base reads with
an lllumina HiSeq 2500 instrument, generating 92,464,338 reads. Data were processed
using Real-Time Analysis (RTA) 1.17.21.3 with default settings and were demultiplexed
with CASAVA 1.8.2. CLC Genomics Workbench 6 (Qiagen Bioinformatics) was used for
quality trimming (reads with Phred scores of >20 and reads shorter than 50 nucleotides
[nt] were discarded), and an assembly comprising 781 contigs was obtained, spanning
44,574,141 bp and with an N, value of 154,124 bp. The GC content was 49.8%.

Contig 84 was identified as the almost-complete mitogenome, and reanalysis of
mapped reads to allow circularization of the contig revealed an extra 11 bases
required to complete the circular genome, which spans 24,277 bp. The mitogenome
shows synteny to that of the nematophagous fungus Lecanicillium saksenae (9),
including identical gene order and just one intron in rn7, again reflecting the close
phylogenetic relationship between these fungi. Manual annotation was performed
by comparison to closely related mitogenomes (9, 10) with tRNAs identified using
tRNAscan-SE (11).

Some of the symptoms of dry bubble, such as cap spotting, might be due to
secondary metabolites. Analysis using fungiSMASH 5.0.0 (12) revealed the following 38
biosynthetic gene clusters for secondary metabolites: 8 polyketide synthases (PKSs), 21
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nonribosomal peptide synthase (NRPS) or NRPS-like clusters, 3 PKS-NRPS hybrids, 5
terpene synthases, and 1 indole cluster. Analysis of these gene clusters is ongoing.

The interaction between L. fungicola and its primary host, A. bisporus, remains far
from fully characterized. While the disruption of 3-1,6 glucanase resulted in reduced
virulence (13), knockout of the pmk1-like mitogen-activated protein (MAP) kinase did
not affect virulence (14), indicating that the models established for fungal plant

pathogens might not readily apply to fungus-fungus interactions.

The genome sequence of L. fungicola provides a useful basis to uncover the
molecular mechanisms underlying pathogenicity in the L. fungicola-A. bisporus inter-
action.
Data availability. This project has been deposited in DDBJ/ENA/GenBank under the
accession number FWCC00000000 and BioProject number PRJEB19844. The genome
assembly version is the first version and includes accession numbers FWCC01000001 to
FWCC01000781. Raw sequencing data have been deposited under accession number
ERR3181828. The annotated mitogenome has been deposited under accession number
LR536627.
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