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Abstract  8 

After over 20 years of research on microplastic (MP) pollution, there are important areas of study which 9 

are still at the inception. In particular, between 2020-2023 new findings on MP have emerged, which 10 

open new sub-categories of MP research. These research areas include sea surface MP ejection, direct 11 

and indirect MP influence on climate and hydrological cycle, small and nano-sized MP analysis and the 12 

relationship between MP size and abundance. Not reported or barely mentioned in previous reviews, 13 

these globally-relevant findings are here highlighted and discussed with aim to promote their further 14 

research that will potentially result in new evidence of detrimental effects of MP pollution on the 15 

biosphere.  16 
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 17 

 18 

Nomenclature 19 

MP (microplastics): all synthetic polymeric materials of any shape (fibers, fragments, films etc.) smaller 20 

than 5mm including the nanoplastics and small MP. 21 

Small MP: specifically, MP smaller than 100 µm and larger than 1 µm. 22 

NP (nanoplastics): specifically, MP smaller than 1 µm.  23 

 24 
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Introduction 25 

Microplastics are a global environmental pollutant with a potential to cause significant damage to 26 

ecosystems, human health (Das, 2023; Bostan et al., 2023; Malafaia and Barcelo, 2023) and food 27 

productivity (Dainelli et al., 2023; Maity et al., 2022). There is also evidence that MP influence the 28 

Earth’s climate and hydrological cycle (Wang et al., 2023; Revell et al., 2021; Evangeliou et al., 2020). The 29 

effect on climate can also be indirect, through impairment of life functions of photosynthesizing 30 

organisms, such as cyanobacteria (Zeng et al., 2023) and plants (Jia et al., 2023; Li et al., 2022). Owing to 31 

vehement increase in plastic production combined with inadequate management of waste (Lebreton 32 

and Andrady, 2019), MP are an increasingly potent danger to life on our planet and therefore require 33 

wide, quality scientific research and immediate enforcement of relevant environmental legislation. 34 

Plastic waste management and abatement legislation is key to avert MP crisis (Munhoz et al., 2023), but 35 

unfortunately it is in many countries non-existent (OECD, 2022) or was poorly designed and difficult to 36 

implement, such as the Marine Strategy Framework Directive (EC, 2020).  37 

 38 

The difficulty in determining levels of MP in environmental or biological samples can be a level higher 39 

than for other pollutants such as heavy metals where typically a simple acid digestion is used to destroy 40 

matrix and solubilize the analyte. This is because the MP samples require special handling to preserve 41 

MP particles intact if quantitative (in number of MP) or descriptive information is needed (e.g. shape, 42 

degree of weathering, adsorbed chemicals, composition of the corona) (Huang et al., 2023). Once in the 43 

environment or within an organism, microplastics inevitably interact with molecules and undergo 44 

physicochemical changes both of which greatly modify MP behavior and toxicity (Cao et al., 2022), 45 

hence the importance of providing descriptive information of analyzed MP. The quantitative analysis of 46 

small MP, and in particular, NP in complex environmental samples is currently highly constrained and 47 
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methods are limited to simulated samples in the simplest matrices such as distilled water (Pei et al., 48 

2023; Dong et al., 2023). In these circumstances the limits of detection for MP leave out NP, for example 49 

in environmental snow, which is one of simplest matrices, the analysis was limited to 10 µm (Parolini et 50 

al., 2021), 30 µm (Ohno and Iizuka, 2023), 60 µm (Cabrera et al., 2022), 44 µm (Aves et al., 2022) or 11 51 

µm (Bergmann et al., 2019).  Even dedicated laboratories struggle to accurately quantify and determine 52 

MP of 300 µm-5 mm in size (Cadiou et al., 2020). Many studies may have over-estimated the scale of MP 53 

pollution, especially when a reliable verification method such as Raman Spectroscopy or Fourier 54 

Transform Infra-Red Spectrometry was not in use (Wesch et al., 2017; Kuklinski et al., 2019). Poor 55 

quality control is another important culprit resulting in overestimation, particularly for small MP and NP 56 

(Bai et al., 2023).  57 

Despite over two decades of research and thousands of articles dedicated to MP, there are research 58 

areas that are still at inception. This is owed to the aforementioned analytical constraints, particularly 59 

associated with the size of NP and the complexity of MP interactions within the environment, as well as 60 

the fact that some findings are so recent that the scientific community has not yet been able to catch up 61 

with them. An example of such is the recent publication by Wang et al. (2023) and certainly similar 62 

research will stem from concepts materialized therein. On the other hand, there are numerous 63 

emulated literature reviews on ‘sources, distribution, environmental effects’ etc. that were evidently 64 

superficially composed with neglect of several important findings of 2020-2023 and which reiterated 65 

research that used to have shock value, i.e. about MP in human placenta and snow in the Alps. 66 

Conversely, in this article, research that were not accounted for in previous literature reviews are 67 

highlighted and prompted for further scientific exploration.  68 

 69 

 70 
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Underreported and underresearched findings in the discipline of MP pollution: 71 

 72 

1. Size-abundance relationship 73 

Currently, in the absence of methods that can accurately quantify MP down to the smallest NP in 74 

environmental samples, especially in the complex matrices such as biological tissues or soil, the well-75 

reported analytical data and mathematics come in handy as a substitute until the desired technology is 76 

developed. Based on MP analyses from 127 articles, Leusch et al. (2023) calculated the estimated 77 

relationship between MP size and abundance in the environment, the MP property that was earlier 78 

suggested by Cozar et al. (2014). It is an increase by a factor of 1.3 to 7.9 per each order of magnitude in 79 

size decrease (Leusch et al., 2023). Beneath the limits of detection therefore there is a vast abundance 80 

of small MP and NP. For example, in Bergmann et al. (2019) 98% of all MP within 11µm-5mm size range 81 

were between 11µm and 100µm. With a typical marine sampling devices of <300µm permeability 82 

(Bohdan, 2022), the total number of MP that are not accounted for is very high. This leads to identifying 83 

an often-recurring mistake in articles that compare MP concentrations between studies with different 84 

limits of size detection without highlighting these limits. Such invalid comparison is misleading. 85 

Paradoxically, there are articles where the limit of detection was not reported at all (Leusch et al., 2023). 86 

It is therefore strictly important that whenever comparing the concentrations of MP between the 87 

studies, the MP size range should also be quoted.  88 

 89 

2. Aerial transport from sea to land as a limb of MP cycle 90 

Atmospheric concentrations of MP are more understudied than for other compartments and the 91 

implications of MP presence in the atmosphere are known only to a low certainty through preliminary 92 
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studies. In Allen et al (2020) and in Trainic et al. (2020), the first evidences of MP transport from sea to 93 

land were reported. This was further experimentally corroborated by Lehmann et al (2021) who 94 

demonstrated how rain droplets cause the ejection of small MP from sea surface. Shaw et al. (2023) 95 

demonstrated the same, also calculating total global oceanogenic MP emissions. However, this was 96 

based on outdated and highly speculative data from pre-2013 and resulted in high uncertainty 97 

oceanogenic MP mass (0.02 - 7.4 Mt per annum). There are more recent and reliable datasets and 98 

estimates of MP abundance at global marine surface such as Isobe et al. (2021) or Bohdan (2022). 99 

Ferrero et al (2022) found correlation between airborne MP concentrations with abundance of MP at 100 

sea as well as with the concentration of sea spray, indicating their marine origin. González-Pleiter et al 101 

(2021) found that small MP originating from sea level can be aerially transmitted thousands of 102 

kilometers. Smaller MP are more likely to stay airborne for long durations, enabling their long - range 103 

transport, with estimated 17-37 days for MP particulate matter (PM) 2.5µm size class and about a day 104 

for PM 10µm size class (Evangeliou et al., 2020). These studies explain that abundance of MP in the 105 

atmosphere and their presence in the remotest locations can be attributed to a certain extent to the 106 

marine surface. More research is required to accurately quantify global atmospheric MP that come from 107 

marine surface (Brahney et al., 2021). 108 

 109 

3. The effect of MP on radiative forcing and water cycle 110 

Being present in the atmosphere and as a deposit on the surface, as any other type of aerosol, MP will 111 

affect radiative forcing, but the research on this topic is far from complete. It is therefore still unknown 112 

whether MP impact on climate is already significant. Lorian and Dagan (2023) linked anthropogenic 113 

aerosols to cooling effect. However, in cryosphere areas the MP could decrease the albedo and 114 

contribute to snow melting (Evangeliou et al., 2020). The value of direct radiative forcing, average for all 115 
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types of MP, is unknown, although an attempt to calculate it is featured in Revell et al. (2021). As the 116 

authors themselves declare, it carries a high uncertainty due to lack of data on the effect of MP 117 

morphology, shape and color as well as due to almost non-existent data on vertical MP distribution in 118 

the atmosphere.  119 

 120 

Microplastic behavior as cloud condensation nuclei and ice nucleating particles (CCN and INP) is one of 121 

the indirect ways MP aerosols influence radiative forcing and hydrological cycle. Based on particulate 122 

matter (PM) analysis, largely anthropogenic CCN concentrations (NCCN) in cities range from 800 NCCN cm-3 123 

in Vienna, up to 8800 NCCN cm-3 in Beijing for PM sizes of 10 to 900nm but mainly around 40nm (Rejano 124 

et al., 2021). It is unknown what percentage of that is NP. At present therefore, it is undetermined 125 

whether MP influence on NCCN is negligible or significant due to lack of data on small MP and NP 126 

concentrations in the atmosphere. As previously described, currently analytical chemistry has difficulty 127 

to reliably quantify small MP and NP even in simple environmental matrices. The size-abundance 128 

correlation may be somewhat helpful to estimate atmospheric NP abundance at around 40nm using 129 

datasets of larger MP, but it is still unknown what part of this quantity will be hygroscopic. To date it is 130 

known that environmentally aged MP are more likely to act as CCN and INP (Wang et al., 2023; 131 

Evangeliou et al., 2020). 132 

 133 

To date there is only one study which directly links MP to CCN. Wang et al. (2023) isolated 70 MP of 7-134 

95μm in size from cloud water at mountain peaks and found 7 - 14 MP L-1 which were likely of sea origin. 135 

The total number of MP, including nanoplastic can therefore be much higher, considering size-136 

abundance correlation estimated by Leusch et al. (2023), especially that smaller MP are more likely to 137 

become airborne (Evangeliou et al., 2020). 138 
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 139 

4. Environmental MP in plant tissues and tree toxicology. 140 

The MP uptake by plants was demonstrated in laboratory conditions typically using marked MP in 141 

artificial samples (Jia et al., 2023; Zantis et al., 2023), even for the trees (Austen et al., 2022). Marked 142 

MP, for example by fluorescence dyes, are often used in order to enable their easy localization within 143 

the plant tissue (Austen et al. 2022). Due to technical constraints, there has been no research on the MP 144 

content in the actual environmental plant tissue samples. Such research would explain the properties 145 

and characteristics of aged environmental MP within the plants, toxicology, stress response, 146 

accumulation areas and potentially plant use for MP pollution biomonitoring and phytoremediation 147 

(Murazzi et al., 2022). The toxicology research of MP in respect to trees is almost non-existent and 148 

directed at agricultural species (Enyoh et al., 2020). Under increasing stresses on trees imparted by rise 149 

in spread of predominantly alien diseases and pests (Panzavolta et al., 2021), there is a particular 150 

urgency to assess potential MP role in weakening forest ecosystems and therefore the MP impact on the 151 

ability of global forests to continue to act as carbon sink, backbone of terrestrial ecosystems and 152 

providers of human amenities (Stier-Jarmer et al., 2021). Considering the crucial role of trees to sustain 153 

the life on the planet, research on MP toxicity and synergism with tree pest and disease in typical forest 154 

tree species such as oaks, birches, palms and pines is needed, covering subjects such as MP effects on 155 

seed germination, photosynthetic activity, chlorophyll content and biomass growth.  156 

 157 

Final remarks  158 

The MP research revealed the spread, circulation and accumulation of this pollutant throughout the 159 

biosphere and implications that the researchers a decade ago had not even conceived of. At present this 160 

research field advances so fast that the reviewers often fail to report highly important discoveries. These 161 
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new and under-reported discoveries were here discussed with aim to inspire their further study. The 162 

growing evidence of detrimental MP effects will act as scientific pressure on law makers with the aim to 163 

design and enforce effective legislation to limit plastic pollution. One of the ways to achieve this may be 164 

classification of synthetic polymers as hazardous materials (Steensgaard et al., 2017). 165 

From global environment point of view, there is currently a pressing need for developments in 166 

understanding of MP influence on climate, water cycle and forest health, as these research areas are at 167 

the inception. These potential influences could be inferred through modelling which requires excellent 168 

data reporting practice from studies on MP concentration or toxicology. Such practice includes provision 169 

of details on experimental design and results e.g. limits of detection, raw data, geographical coordinates 170 

of sampling. Poor data provision and insufficient methods description is an often-recurring cause for an 171 

article to be excepted from a model or a simulation (Leusch et al., 2023; Bohdan, 2022). 172 

 173 

 174 
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