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Abstract—Jointly optimising both the body and brain of
a robot is known to be a challenging task, especially when
attempting to evolve designs in simulation that will subsequently
be built in the real world. To address this, it is increasingly
common to combine evolution with a learning algorithm that can
either improve the inherited controllers of new offspring to fine
tune them to the new body design or learn them from scratch. In
this paper an approach is proposed in which a robot is specified
indirectly by two compositional pattern producing networks
(CPPN) encoded in a single genome, one which encodes the brain
and the other the body. The body part of the genome is evolved
using an evolutionary algorithm (EA), with an individual learning
algorithm (also an EA) applied to the inherited controller to
improve it. The goal of this paper is to determine how to
utilise the results of learning process most effectively to improve
task performance of the robot. Specifically, three variants are
investigated: (1) evolution of the body+controller only; (2) a
learning algorithm is applied to the inherited controller with the
learned fitness assigned to the genome; (3) learning is applied
and the genome is updated with the learned controller, as well
as being assigned the learned fitness. Experiments are performed
in three different scenarios chosen to favour different bodies and
locomotion patterns. It is shown that better performance can
be obtained using learning but only if the learned controller is
inherited by the offspring.

Index Terms—Morphological Evolution, Evolution and Learn-
ing, Embodied Intelligence
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I. INTRODUCTION

Starting with the pioneering work of Sims [1] in 1994, the
field of evolutionary robotics has sought to use evolutionary
algorithms to co-design the body and brain of robots. The
current state-of-the-art has realised robots that can be built
following evolution from a variety of novel substrates that
include soft materials [2] and living cells [3]. The majority of
research in this area focuses on modular systems, i.e., evolving
designs that are constructed from a fixed set of component
parts [4]–[6], which restricts the space of possible designs.
A larger design space can potentially contain a more optimal
body-plan to achieve better performance. Furthermore, most
of these approaches evolve robots that lack sensors: as a
result they operate via open-loop control mechanisms in which
control is not directly influenced by any feedback from the
environment.

In an effort to advance the field, an evolutionary framework
that permits both evolution in a rich morphological space
and delivers closed-loop controller has been proposed [7]–
[9]. Specifically, the framework jointly evolves the body and
brain of robots that have free-form skeletons (i.e. chassis),
a diverse array of sensors and a range of actuators (wheels
and legs). The skeletons can be 3D-printed and then the robot
is autonomously constructed with pre-fabricated components
such as a CPU (Raspberry Pi) in addition to the range of sen-
sors and actuators previously mentioned. However, evolution
in such a complex morphological space is very challenging.
The body-plan of offspring robots produced by combining
parents can be very different to either parent. As a result an
inherited controller is unlikely to be a good match for the
new body. For example, the number of sensors on the child
robot might be different to both parents, which is especially
problematic for neural network controllers which have a fixed
number of inputs/outputs. Even changes in the placement of
sensors on the body can result in vastly different control. As
a result, a learning mechanism is usually required to fine-tune
the controller [10].

The integration between evolution and learning conceptu-
alized by the ‘Triangle of Life’, depicted in Figure 1, is a
nested optimization system with two loops: the outer loop is an
evolutionary algorithm that optimizes the bodies and the brains
together, while the inner loop is a learning algorithm that
improves the controllers of ‘newborn’ robots before they get

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3316363

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of the West of England. Downloaded on December 15,2023 at 15:41:20 UTC from IEEE Xplore.  Restrictions apply. 



2

evaluated to determine their fitness. Note that the framework
facilitates any kind of learning algorithm — this itself can be
evolutionary (e.g. [5], [9], [11]) but there are other potential
candidates, e.g., reinforcement learning [12] or Bayesian opti-
misation [13]. However, using any framework that interweaves
evolution and learning raises questions regarding how the
two systems interact. Specifically, it introduces choices with
respect to how the fitness obtained as a result of learning
influences the selection process and whether the inherited
genome is updated following learning to reflect the new
controller.

This paper seeks to answer these questions. The experiments
are grounded in the context of evolving body and control
in the rich morphological space defined in previous work
[7], [8]. Morphology and controller are each encoded by
a compositional pattern producing network (CPPN) [14] on
a single genome. This indirect method of generating both
bodies and controllers is already common in the literature.
In terms of controllers, it has the important characteristic of
being able to construct a neural controller that matches the
newly-generated body in terms of the number of inputs and
outputs needed. Two separate CPPNs are used to generate (1)
the morphology and (2) the weights in the neural controller.
Each CPPN is evolved using neuro-evolution of augmenting
topologies (NEAT) [15]. A learner is used which is also an
evolutionary algorithm: for each robot (individual) in the outer
population, it creates a population of CPPNs representing
controllers and containing the inherited CPPN. NEAT is
again used to evolve this learning population to improve the
performance of the controller. Theoretically, any controller
that can provide effective control to the evolving body can be
used. Hence, there are other potential feasible controllers and
optimising methods other than CPPN + NEAT. However, these
experiments are restricted to this setup given it is commonly
used in the literature and the goal of the paper is to explore
the effectiveness of adding a learning system, not to compare
different learning methods.

In all experiments, the best fitness obtained after learning
is assigned to each robot in the outer population. Three
versions of evolution are investigated. In the first, the CPPN
defining the controller on the inherited genome is not updated
following learning, however the learned fitness is used to
guide selection. Hence, one might observe a Baldwin effect
post-evolution [16]. The second scheme is Lamarckian-like:
the CPPN that produces the best fitness following learning
overwrites the inherited CPPN on the genome, and the genome
is assigned the learned fitness. The third scheme is simply
an EA without learning: body and controller are co-evolved
without extra learning applied to the controller. These three
schemes are compared with respect to performance of the
robots evolved, the diversity of morphologies obtained, and
speed of convergence.

The main contributions of this paper are as follows: (1) A
specific implementation of the Triangle of Life model, which
is capable of dealing with complex morphologies, and in
which the learning loop is implemented by an evolutionary
algorithm. It is referred to in the paper as a dual loop
evolution structure (DLES). (2) A comparison of evolution

Fig. 1. The nested optimization system for robot evolution with an evolu-
tionary and a learning loop, captured by the Triangle of Life model [17]. The
evolutionary loop is formed by the green triangle, and the learning loop is
shown by the blue circle.

and learning with controller inheritance, evolution and learning
without controller inheritance, evolution only approaches. (3)
A rigorous experimental study that seeks to understand the
influence of the task and environment on the results obtained
by DLES.

The rest of the paper is organized as follows: Section II
overviews work on evolution of robot morphology and con-
troller. Section III describes the Dual Loop Evolution Structure
(DLES) proposed in this paper. Section IV describes the de-
tailed experimental setup, including tasks, scenarios, evolution
setting, etc. Section V analyses and discusses experimental
results. Finally, Section VI brings together all the results and
concludes the paper.

II. RELATED WORK

In this section, previous studies that examine the joint
evolution of robot morphology and control are reviewed, with
particular attention paid to those that include intertwining
evolution and learning.

As noted in the introduction, previous work is typically
concentrated in a limited morphological search space. The first
work in this area was pioneered by Sims [1]. A hierarchical
graph-based encoding was used to represent ‘creatures’ that
were evolved from a set of rigid parts of different dimensions
and contained a variety of joint-types that provide different de-
grees of freedom. The evolutionary process used a hierarchical
graph structure to specify the robot, where each individual
part had embedded neurons for control. Veenstra et. al.
[18] also evolved blue-prints that specify both the body and
controller of a modular robot, i.e., one that is built from a
library of ‘modules’ that can connect together at multiple sites
on each module, comparing tree-based and grammar based
representations. Brodbeck et. al. [4] evolved robots composed
of a set of cubic active and passive modules. Each gene
contains information about the module type to be used (active
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or passive), construction parameters and finally two parameters
that specify the motor control of the module (the phase and
amplitude of a sinusoidal controller). A CPPN [14] represen-
tation is used to evolve robot designs that are then built using
living cells [19] while a Gaussian mixture representation is
used to evolve robots built using soft materials [20]. In both of
the latter cases, each material type had an associated parameter
defining the rate of contraction/expansion hence there was no
need to encode control separately.

With the exception of the work by Sims [1], the approaches
described evolve robots without sensors and therefore have
open-loop controllers. Furthermore, they tend to evolve mod-
ular robots, composed of a fixed set of component parts.
Evolving in more complex morphological spaces, especially
where sensors are included, tends to require augmenting
evolution with a learning algorithm. Ruud et al [21] evolve
controllers for a fixed morphology robot, but combine an EA
with a local search learning algorithm to evolve control system
parameters for a four-legged robot. The local search algorithm
is run on every evolved controller. They compare two schemes,
one in which the learned controller is inherited (dubbed Lar-
markian) and one in which the learned fitness guides selection
but without inheritance, finding the Larmarckian scheme to
be most effective. Miras et al [11] evolve modular robots
and their controllers simultaneously. They use the evolution
strategy CMA-ES [22] to improve controllers, finding that the
controller learning process not only boosts fitness of evolved
robots, but also leads to evolution of larger robots (compared
to robots that do not learn). Gupta et al [12] combine deep
reinforcement learning (RL) with an evolutionary algorithm:
the RL algorithm is applied to each evolved body-plan to learn
a controller from scratch. They study the relationship between
environmental complexity, morphological intelligence and the
learnability of control, demonstrating existence of a Baldwin
effect. However, this is applied within a relatively small design
space.

In our previous work, initial studies were undertaken into
‘evolution + learning’ approaches in the rich morphological
space described in the introduction. In Le Goff et. al. [23],
a hierarchical optimisation framework is proposed in which
an outer loop evolves a body-plan and an inner loop applies a
learning algorithm to evolve a controller from scratch. In [13],
two learning algorithms were compared: a modified evolution
strategy named NIPES and Bayesian Optimisation. In [23],
a weaker learner (based on Latin Hyper-Cube sampling) was
also compared. In [9] an attempt to improve the learner that
bootstrapped the learning algorithm from a previously found
solution was suggested, rather than start from scratch, leading
to improved results. However, this work has not previously
made any attempt to design or evaluate methods in which
the controller was encoded on the genome and therefore
can be inherited by future offspring. Jelisavcic et. al. [24]
studied evolutionary robot system with both Lamarckian and
Darwinian type methods. Fully modular robots are used for
the mophological design space.

In summary, the literature demonstrates that although there
have been some attempts to combine evolution and learning
in the joint optimisation of robot body and control there still

exists many weaknesses. For example: (1) most previous work
takes place in modular morphological spaces with open-loop
control due to a lack of sensors; (2) when attempting to deal
with complex morphology, it is typical to refrain from evolving
the controller and instead apply a learner from scratch. This
choice is often made due to the difficulty of evolving neural
controllers in which the inputs and outputs match the evolving
body-plan. (3) There have not been any studies in a complex
morphological space permitting closed-loop control where
both body-plan and control can be inherited and that attempt
to understand how the results of the learning process should
influence evolution. This paper directly addresses this gap.

III. METHODS

A. Body-Plan Encoding and Decoding

A body-plan representation defined in [8] is used through-
out this paper. The body-plans are encoded indirectly by a
CPPN which defines a robot in a 3D voxel-based matrix. Each
voxel can contain either skeleton material (which can be 3D-
printed in reality) or pre-designed components [8] (organs).
Each CPPN has four inputs and six outputs. The three inputs
represent the 3D coordinates X, Y, Z of a cell in the 3D
matrix, with the fourth input representing the distance from
the cell to the centre of the matrix. The first output defines
the presence or absence of skeleton in that cell. The following
four outputs represent each component type (a robot can have
a maximum of 16 components of the same type), i.e., wheel,
sensor, joint and caster. The last output defines the orientation
of the component. The skeleton is freely evolved and the
evolution decides when and where to use the pre-designed
components. This results in a very large search space. In order
to ensure that robots can ultimately be manufactured via 3D
printing and automated assembly, a repair process ensures the
design is feasible (e.g. does not contain overhangs that cannot
be printed). The algorithm used in this paper to evolve the
CPPN is the widely used method NEAT (neuro-evolution of
augmenting topology) [15], which evolves both the topology
and the weight of the CPPN.

The decoding takes place in four steps: 1) The skeleton
is first generated. 2) The skeleton is modified to meet the
manufacturability restrictions. 3) The CPPN is queried again
with coordinates on the surface of the skeleton to determine
where components are attached: the output with the highest
value defines the component type to be placed on the surface
of the skeleton. 4) Colliding components are removed. This
method is described in detail in [8]. The components (organs)
are shown in Figure 2.

The decoding used in this paper has the additional feature of
generating multi-segmented robots, i.e., ‘legs’ are composed
of multi-segmented joints. The position of each skeleton voxel
is queried in CPPN (Figure 3.1). If the component generated is
a joint (Figure 3.2) then a cuboid skeleton is generated at the
other end of the joint (Figure 3.3). The position of each face
of cuboid is queried to the same CPPN and components are
generated (Figure 3.4). The work of Hale et al. [25] describes
how the physical multi-segmented robot is assembled in the
robot fabricator.
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Fig. 2. Robot components (organs) for body-plan generation: The head
contains a small computer that runs the main controller. Wheels, joints and
castors provide locomotion ability. The sensor provides perception ability by
identifying the existence of walls and in these experiments a beacon. Joints
can be chained to form ‘legs’ [8].

Fig. 3. Generation of multi-segmented robots. (1) The main skeleton is
generated first. (2) A joint is placed on the surface of one of the voxels.
(3) A cuboid skeleton with 4 cm side is generated at the other end of the
joint. (4) The CPPN is queried to generate components at each side of the
cuboid.

The ultimate motivation of this work is to evolve and
building physical robots, therefore each component in the
body-plan has to meet pre-defined manufacturability criteria,
first introduced in the work of Buchanan et al. [8]. For
example, there should be no collisions between components;
components should have the correct orientation; the position of
a component can be accessed by a robot arm with a gripper
when being manufactured. If a component fails any of the
manufacturability tests then the component is removed from
the final body-plan phenotype.

The physical head component has eight electrical con-
nections for components, therefore limiting the number of
components that can be connected to head skeleton at any
time to eight. The joints offer the option to electrically daisy
chain one more active component. In total, a body-plan can
have up to 16 active components. The size of the skeleton
connected to the head component can be as big as 23 cm x
23 cm x 23 cm.

B. Controller Encoding and Decoding

The controller is encoded by a separate CPPN [26] which
defines the weights of an artificial neural network (ANN)
controller as shown in Figure 4. The number of inputs and

outputs of the network is determined by the new body of
the robot, i.e., the number of sensors (inputs) and actuators
(outputs).

As shown in Figure 4, the ANN controller consists of
three parts, namely input layer, hidden layer and output layer.
The input layer feeds sensor information into the ANN. The
architecture of the hidden layers is fixed following initial
empirical experimentation to determine appropriate values.
There are two hidden layers, and 10 nodes in each layer
with signed sigmoid activation functions. The output layers
provides control to actuators. For each architecture, a substrate
is defined consisting of the 2D coordinates of each node.
CPPN HyperNEAT [27] is then used to evolve the weights
between each pair of nodes.

Fig. 4. Controller network: The number of connection between pairs of
neurons is not restricted in order to maximize the diversity of the controller.
Note that this figure is only an illustration of a possible network as each
network has an architecture that maps to the number of sensors and actuators
in the morphology.

C. Dual Loop Evolution Structure (DLES)

The proposed ‘evolution+learning’ framework which uses
a dual loop evolution structure (DLES) uses an evolutionary
algorithm that adds a nested learning loop for adapting an
inherited controller to a new morphology. As mentioned in
Sections III-A and III-B, an indirect encoding method is used
for both morphology and controller, providing the ability to
encode various structures of morphology and controller. As
noted above, new controllers reproduced from mutation may
be a poor match for a new body. The DLES method aims to ad-
dress this problem by applying a learning algorithm to the new
controller to improve its performance via individual learning.
The learned controller (represented by a CPPN) can overwrite
the inherited controller in the offspring population (evolution

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3316363

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of the West of England. Downloaded on December 15,2023 at 15:41:20 UTC from IEEE Xplore.  Restrictions apply. 



5

Fig. 5. Dual loop evolution structure (DLES): The outer evolution loop follows a joint evolution on morphology and controller routine, while the inner
learning loop evolves controllers only. Details are given in Sections III-C1 and III-C2.

and learning with controller inheritance). Alternatively, the
learned fitness can be used to guide selection without updating
the controller specified on the genome (evolution and learning
without controller inheritance). An overview of DLES is
illustrated in Figure 5. It includes two loops: an outer evolution
loop and an inner learning loop. Pseudo code of DLES can
be found in Algorithm 1.The implementation code is available
on https://doi.org/10.6084/m9.figshare.24105450.v1.

1) Outer Evolution Loop: The outer evolutionary process
in DLES evolves a population of individuals where each indi-
vidual consists of a genome describing both the morphology
and controller of a robot. Evolutionary operators (selection
and reproduction) are applied on the individuals. An objective
function evaluates the performance of an individual on a
chosen task.

2) Inner Learning Loop: The learning loop optimises the
controller to adapt to its morphology in order to accomplish a
specific task. A learner is used which is also an evolutionary
algorithm, following previous work [9]. A new set of CPPNs
representing controllers are initialised for learning, containing
the controllers from the population for evolution. HyperNEAT
is used to optimise the controllers, where each controller is
paired with the single morphology k from the population for
evolution. At the end of this process, the task based fitness is
assigned to each of the controllers. In the controller inherited
case, the controller is over written by the best controller in
the learning population. In the controller not inherited case,
the learning stage influences selection by favouring individuals
with morphologies that are more conducive to learning.

IV. EXPERIMENTS

A. Experimental Protocol

A number of experiments were conducted to answer the
following research questions:

1. To what extent does the inclusion of a learning loop that
uses an intelligent learner improve performance when
considering a range of tasks/environments while jointly
evolving morphology and control?

Algorithm 1: Pseudo code of DLES.

1 Initialize evolution population P .
2 // Evolution of outer loop starts.
3 for i← evolution generation do
4 // Learning of inner loop starts.
5 for j ← individuals in evolution population do
6 Initialize a controller population for learning,

including the controllers from P j , with the
total size of n.

7 Replicate P j for n times such that each P j’s
controller is overwritten by a controller from
the controller population to form the
population for learning Pl.

8 for k ← learning generation do
9 Perform evaluation, selection and

mutation on the controller learning
population Pl

10 end
11 // Learning finishes
12 if Evolution with learning without controller

inheritance then
13 Update fitness scores for individual P j by

the best score achieved by Pl in learning
14 end
15 if Evolution with learning with controller

inheritance then
16 Update fitness scores for P j by the best

score achieved by Pl in learning
17 Overwrite controller for P j by the

controller of the best individual Pl, if
better performance is achieved.

18 end
19 end
20 Perform evaluation, selection and mutation on

P .
21 end
22 // Evolution finishes.
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2. When using an intelligent learning algorithm to make
controllers adapt to morpholgies, to what extent are the
results influenced by the inheritance of controllers?

3. To what extent is the proposed DLES approach capable
of producing a diverse set of body-plans that adapt to a
specific environment and/or task?

In order to answer question 1., experiments are conducted
using the learning mechanism described in the previous sec-
tion, compared against a simple baseline which only evolves
the individual (no controller learning loop added). Question
2. is addressed by comparing the two evolution and learning
approaches (with and without controller inheritance) discussed
above. Finally, by conducting experiments in three different
environments aiming to understand whether the environment
itself influences the morphological characteristics of the robots
that evolve, and to what extent diverse robots are produced.

B. Tasks and Evaluation Scheme

1) Arenas and Tasks: DLES is applied in three arenas, the
escape room, amphitheatre and escape amphitheatre shown in
Figure 6. Each arena has different features in terms of the
number of obstacles present, and the amphitheatre and escape
amphitheatre also contain ‘steps’ that the robot must navigate.
In each arena the goal is for a robot spawned at a starting
position located in the middle of the arena (S) to reach a
target located in the top right (T). The size of the arena is
2 m by 2 m. A beacon sensor placed at the top right corner of
the arena marks the target position (T). The fitness function
indicates distance from target after an evaluation time of 30
seconds. The simulation stops if a robot reaches the target
position or the 30 seconds limit is reached. The final position
of the individual is used to evaluate its performance.

Fig. 6. Experimental arenas: The three arenas all have the same starting (S
point) and target (T point) positions. Starting position is located at (0,0) for
all three environments, and target positions are located at (0.75, 0.75).

The three arenas offer three different challenges to the
individuals:

• Escape room: The starting position in this arena is sur-
rounded by four walls with gaps at the corners. Only one
gap enables sight of the beacon sensor located at target
position via a sensor. Robots evolved in this arena need

to have the ability to escape from the surrounding walls
and find the target position.

• Amphitheatre: Different from the plain 2D locomotion
in escape room, the amphitheatre has the challenge of
3D locomotion. Although there is no obstacle blocking
the beacon sensor at target position, the challenge lies in
finding the path to the target by overcoming the steps.

• Escape amphitheatre: The escape amphitheatre is a com-
bination of the escape room and amphitheatre. Not only
does an individual need to find a path out of the sur-
rounding walls which have narrower gaps than the ones in
escape room, but also the robot needs to have the ability
to undertake 3D locomotion.

2) Evaluation Scheme: The performance of an individual
is evaluated by a fitness function that calculates normalized
Euclidean distance between the final position of an individual
and the target position in each arena. The fitness function used
is shown in Equation 1.

fitness =


1−

∥ptarget − pfinal∥
distancemax

,
∥ptarget − pfinal∥

distancemax
< 1

0 ,
∥ptarget − pfinal∥

distancemax
> 1

(1)

Where ptarget and pfinal are the position of target and the
final position of an individual respectively. fitness should
always be non-negative. ∥ptarget−pfinal∥

distancemax
< 1 means that an

individual is doing effective locomotion, i.e., moving towards
the target. ∥ptarget−pfinal∥

distancemax
> 1 implies that an individ-

ual is moving in the opposite direction of the target. In
this case, fitness is set to 0. distancemax is the distance
between the start point and target point, distancemax =√
(0.75− 0)2 + (0.75− 0)2 = 1.06.
A metric is also defined to quantify morphological diversity

within a population, to understand the extent to which DLES
falls into local optima. This is motivated by previous research
which has shown that morpho-evolution algorithms tend to
quickly stagnate to a morphology for which it is easy to learn
sub-optimal control, hindering innovation [28]. A morphologi-
cal descriptor is defined as [wheel: number of wheels, sensor:
number of senors, joint: number of joints, caster:number of
casters]. It is represented by an encoding that assigns a code
for each component combination. Each component can occur
at most 16 times. Hence, a body-plan is encoded by 4 digits,
representing the number of each component that the body-plan
has ([number of wheels, number of sensors, number of joints,
number of casters]), ranged by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F, G]. For instance, a body-plan which has 1
wheel, 2 sensors, 5 joints and 10 casters can be encoded by
014A. Then, the diversity of a population can be described by
a score of D:

D =
Nd

P
(2)

where Nd is the number of different body-plans in the
population. P is the total number of all possible body-plans,
in this case: P = 174 = 83521. In previous work [8], a
number of different diversity metrics were evaluated to find
the metric described to provide an appropriate categorisation
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between robots: a more fine-grained metric that took account
of placements of sensors etc., would result in a very large
space of potential designs with little overlap. Furthermore, the
investigations showed that small changes in placement do not
have a significant impact on performance.

C. Experimental Settings

Two setups are considered. The first answers the three
reserach questions posed above while the second is an ablation
study to obtain more insight into parameter settings.

There are four parameters that define the computational
budget for evolution, namely the size of the population in
the outer evolution loop, the number of generations in the
outer evolution loop, the size of the learning population in the
inner loop and the number of learning generations in the inner
loop. The same parameters are used for each of the escape
room, amphitheatre and escape amphitheatre experiments, and
are detailed in Table I specifying the detailed setup. This
setup was selected after empirical investigations (see Section
V-C) that suggested that a relatively small budgets of 10
generations was sufficient for convergence1. This concurs with
other work in the field e.g. [24] which use a similar number
of generations. It is also important to note that it is preferable
to minimise the number of generations as much as possible
when working in robotics particularly if the ultimate goal is
to evolve in hardware due to the significant computational
cost of such experiments. For the ablation study, five sets of
parameter settings listed in Table II were considered, and used
to investigate the weight of each parameter’s effect on DLES.

TABLE I
EXPERIMENTAL SETUP OF DLES

Evolution population 50
Evolution generation 10
Learning population 25
Learning generation 10
Total individual evaluated 125500

The total evaluation number is calculated by the addition
of evaluations of evolution and learning: total evaluation =
total learning evaluation + total evolution evaluation = Evo-
lution population * Evolution generation * Learning popula-
tion * Learning generation + Evolution population * Evolution
generation = 50 * 10 * 25 * 10 + 50 * 10 = 125500.

V. RESULTS AND DISCUSSION

For each scenario, experiments are conducted over 20 repli-
cates in order to provide meaningful statistical data. Fitness
and diversity are measured in each experiment.

A. Evolution and Learning

The baseline EA experiment applies evolution to the pop-
ulation of morphologies without learning. The controller not
inherited version of DLES applies learning then assigns the

1This contrasts with work in combinatorial optimisation in which much
larger budgets are normally used.

learned fitness to the individual while the controller inherited
scheme overwrites the genome of each offspring with the
learned controller. In this section, the three schemes are
evaluated on the three environments, namely escape room,
amphitheatre and escape amphitheatre. Results are shown in
Figure 7 and Figure 8.

The first column of Figure 7 plots the fitness associated
with the individuals of the outer loop over each generation
for each experimental scheme. Any individual with fitness
around 0.9 or higher is considered to be a successful individual
(close enough to the target). There are two main observations:
(1) evolution + learning (with inheritance) outperforms the
other methods, and the effect becomes more apparent as the
complexity of the task increases; (2) using learning without
inheritance does not improve performance when compared to
the baseline of evolution only. The latter point contrasts to
some previous work, e.g. [12] which clearly demonstrates a
strong Baldwin effect, i.e. finding that selecting for controllers
that are more capable of learning improves performance.
Suggesting that the framework used in [12] evolves robots
in a simpler morphological design-space, consisting only of
articulated 3D rigid parts connected via motor actuated hinge
joints. In contrast, this framework permits free-form skeletons
and a variety of actuators (wheels and/or joints) and sensor
types.

Figure 8 compares the improvement per generation of
the performance of the evolution+learning (with inheritance)
method to each of the other two methods, where improvement
is calculated as the fitness score of former approach minus
the compared approach. This clearly demonstrates that in
the most complex arena (escape amphitheatre) the magnitude
of the improvement increases over generations while in the
most simple case, the magnitude of the improvement gained
is smaller and stays roughly constant. It seems clear that
the evolutionary process is boosted by inheriting the learned
controller in complex domains, rather than just selecting for
controllers that have the capacity to learn. The magnitude
of improvement justifies the additional cost associated with
learning, for example approximately doubling the best fitness
obtained compared to the no-learning method.

The middle column of Figure 7 shows the progress of the
inner learning loop, in which there are 10 learning evolutionary
generations for each generation of the outer loop. There is
a statistically significant difference between the two methods
at generation 10, with the learning with inheritance method
outperforming the learning (no inheritance) approach. Again
the difference in performance become clearer as the difficulty
of the task increases.

The final column shows the change in the diversity metric
measured in the outer evolution loop. This illustrates the
change in diversity of body-plans over time of the three
approaches, calculated using the metric described in Section
IV-B2. The morphological diversity of the three approaches are
very similar, indicating the performance difference is mainly
associated with the difference in learning approaches rather
than by morphological differences.

In summary, in all environments, the addition of a guided
learning mechanism that includes inheritance improves per-
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TABLE II
EXPERIMENTAL SETTINGS FOR PARAMETER STUDY

Outer loop (evolution) population size Outer loop generations Learning population size Learning loop generations
Setup 1 50 10 25 10
Setup 2 100 10 25 10
Setup 3 50 20 25 10
Setup 4 50 10 50 10
Setup 5 50 10 25 20

Fig. 7. Plots of evolution and learning performance: Three approaches: evolution and learning with controller inherited, evolution and learning without
controller inherited and evolution only, in escape room, amphitheatre and escape amphitheatre: the best fitness in both of the evolution (column 1) and
learning loops (column 2) and diversity curves are plotted. Best fitness plots show the mean of the fitness of the best individual per generation over 20
replicates (solid line), and the standard deviation. Diversity describes the morphological variety of the population per generation, showing mean diversity
(solid line) and standard deviation over 20 replicates.

formance, but does not increase the morphological diversity
of the population. Significant difference in performance is
observed even after one generation with the learning with
inheritance method, indicating that controllers benefit from
learning at very early stage of evolution. As the difficulty of
the environments increases, the advantage of evolution and
learning with controller inherited become stronger. Overall,
all of the evidence shows that DLES (evolution and learning
with controller inherited) is the superior method.

B. An analysis of evolved robots

Examples of individuals generated in each the three sce-
narios are presented in Figure 9. A demo video of evolved

robots working in all three scenarios can be found on https:
//doi.org/10.6084/m9.figshare.23735742.v2.

In the escape room, robots need to have the ability to
make turns to move around the surrounding walls. Joints or
casters attached on sides can help to change the direction
of motion in order to avoid being stuck by walls. Since the
floor is flat in escape room, wheels, joints and casters can
all be used to drive effective 2D motion. In the amphitheatre,
joints are more important for locomotion as there are steps
requiring an individual to have the ability to overcome height
changes in its path. Joints are used to tilt the body when
the locomotion is driven by wheels or casters. Joints can
also be used as legs to drive locomotion directly as well.
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Fig. 8. The improvements of evolution and learning approach with controller inheritance over evolution and learning approach without controller inheritance
and evolution only. The improvement is calculated by the fitness score of former approach minus the latter approach. For example, improvement of evolution
and learning (controller inherited) over evolution and learning (controller NOT inherited) is the fitness of evolution and learning (controller inherited) minus
evolution and learning (controller NOT inherited) at each generation for the 20 replicates.
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Fig. 9. Robots generated in various scenarios: First, second and third row
are robots generated in escape room, amphitheatre and escape amphitheatre
respectively.

In the escape amphitheatre, the challenges in both escape
room and amphitheatre exist. Robots need joint to provide
3D locomotion ability and casters/wheels to move around
surrounding walls.

Figure 10, Figure 11 and Figure 12shows the component
distribution of individuals with fitness greater than 0.3 in each
environment for evolution and learning with controller inher-
ited, evolution and learning without controller inherited and
evolution only. A fitness value higher than 0.3 is considered
to be a ‘working individual’ as the robot is moving towards
the target in the right direction.

It can be seen that when the controller is inherited, body-
plans gradually adapt to different scenarios. In the escape
room, all of the components can contribute towards providing
effective functionality. For instance, wheels, joints and casters
can provide 2D locomotion, sensors can help to find the target,
while joints and casters can help to get around the walls.
Thus there is a good deal of flexibility in terms of finding
a suitable morphology, which makes the evolutionary process
less challenging. Also, due to the fact that robot always starts
in the same place facing in the same direction, it might be
possible to generate a behaviour that gets to the target with
pure luck for simple arena such as escape room. In the harder
arenas, such as the amphitheatre and the escape amphitheatre,
the need for other types of components starts to become
apparent. In the controller inherited approach, it is obvious that
senors, joints and casters are more often used in the designs
than in the other two cases (evolution and learning without
controller inheritance and evolution only).

The results imply that the mechanism which uses evolution
and learning with inheritance facilitates the emergence of
morphologies that are better adapted to the environment in
which a task is learned. The results can be interpreted as
demonstrating the emergence of morphological intelligence
[29], i.e. in which the approach produces body-plans with
components that can overcome specific challenges in each
arena.

C. Parameter Influence: Evolution and Learning Budgets

In Section V-A, evolution and learning with controller
inherited approach of DLES has shown superior performance.
In this section, the contribution of each of the parameters of
evolution and learning with controller inherited approach of
DLES are studied. Detailed parameters are listed in Table II.
Experiments with each setup were replicated five times in
the ablation study (in contrast to the experiments in the
previous section which were repeated 20 times for statistical
significance). All experiments are conducted in the escape
amphitheatre since it is the most difficult scenario for robots
to be successful.

The parameters studied are listed in Table II. For each setup
in Table II, one parameter is changed while keeping all the
other parameters constant. Setup 1 and setup 4 study the effect
of changing the size of the outer evolutionary loop population,
setup 4 and setup 5 study the effect of changing the number
of generations in the outer loop, setup 2 and setup 3 study
the effect of changing the size of the learning population, and
setup 1 and setup 2 study the effect of changing the number of
learning generations in the inner loop. The results are shown
in Figure 13, Figure 14, Figure 15 and Figure 16.

From the figures, it can be seen that the benefit of increasing
the computational budget (e.g. via increasing the outer loop
population size, number of outer loop generation, learning
population size and number of learning generations) rapidly
diminishes. The final experimental setup used (50 evolution
population size, 10 evolution generations, 25 learning popula-
tion size and 10 learning generations) is determined by these
results, and concurs with similar results found by others, e.g.
[5], [9], [24].

VI. CONCLUSION

In this paper, a dual loop evolution structure (DLES) for
robot evolution with learning in a rich morphological space is
proposed. DLES enables the evolution of robots that exhibit
a diverse array of forms adapted to a specific environment by
augmenting an evolutionary loop with a learner. Specifically
three approaches are compared on three locomotion tasks:
evolution and learning with controller inherited, evolution and
learning without inheriting the controller, and evolution only.
The results show that evolution and learning with inheritance
of the controller results in more efficient and more effective
performance than the other two approaches. We argue that
augmenting evolution with individual learning is essential
when trying to evolve robots in complex morphological spaces
with closed loop control due to the challenges in matching
a neural controller to a new morphology. It appears that
inheriting the learned controller is mandatory if there is to
be a benefit from the additional cost associated with learning.
In this respect, the results concur with previous work e.g. [11]
that also found a benefit in inheriting learned controllers, rather
than just selecting for controllers that are capable of being
improved. Similarly, [11] used a design-space that evolved
robots in simulation that could also be physically created.
However, it is important to note that other work that evolved in
a simpler design-space that is only ever simulated (e.g. [12])
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Fig. 10. Component distribution of individuals with fitness greater than 0.3 in the escape room. The fist row of plots show the component distribution for
evolution and learning with controller inherited. The second row of plots are the distribution for evolution and learning without controller inherited. The third
row of plots are the distribution for evolution only. The threshold of 0.3 fitness value is applied considering individuals that function properly.

Fig. 11. Component distribution of individuals with fitness greater than 0.3 in the amphitheatre. The fist row of plots show the component distribution for
evolution and learning with controller inherited. The second row of plots are the distribution for evolution and learning without controller inherited. The third
row of plots are the distribution for evolution only. The threshold of 0.3 fitness value is applied considering individuals that function properly.

demonstrated that while learning is important, inheritance of
the learned controller is not necessary (i.e. a Baldwin effect is
observed). We postulate that in very complex design spaces,
inheriting the learned controller effectively provides a mecha-
nism to enable evolution to proceed more rapidly, by directly
influencing selection of high performing learned controllers
that can be passed to future generations. It was also observed
that the evolution and learning with inheritance mechanism
enables the population to rapidly adapt its ‘morphological
preference’ over time to match the environment, i.e. in its
selection of suitable sensors and actuators, in contrast to the
other approaches. This might be viewed as the emergence
of morphological intelligence [29]. The components of the
framework are general enough that the same framework can be
used to evolve other types of robotic systems. For example, the

CPPN representation used here to represent bodies and brains
could be applied to a completely modular system (where the
skeleton is formed from choosing between a set of pre-formed
parts as in [11] and also to soft robotics systems (e.g. [30]).

An obvious extension to this work would be to consider
how to further augment the learning process with knowledge
learned in past generations across populations. In this work
the learner is seeded with a single inherited controller, but this
could be adapted to make use of additional information, i.e.
taking inspiration from some of the literature in the cultural
learning field [31]. Determining what information is useful to
inform future generations remains a topic for research. Finally,
the work is motivated by the desire to evolve robots that
can be physically built to conduct tasks in the real world.
Therefore we intend to evaluate the best robots evolved in
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Fig. 12. Component distribution of individuals with fitness greater than 0.3 in the escape amphitheatre. The fist row of plots show the component distribution
for evolution and learning with controller inherited. The second row of plots are the distribution for evolution and learning without controller inherited. The
third row of plots are the distribution for evolution only. The threshold of 0.3 fitness value is considering individuals that function properly.

Fig. 13. DLES with different settings: the effect of changing outer evolution
population size.

Fig. 14. DLES with different settings: the effect of changing outer evolution
generation.

Fig. 15. DLES with different settings: the effect of changing inner learning
population size.

Fig. 16. DLES with different settings: the effect of changing inner learning
generation.

simulation in order to assess the reality gap between simulated
and physical versions. As first noted in [7], we expect that an
additional period of individual learning will be necessary for
every physical robot built to cross an inevitable reality gap.
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