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Abstract 23 

Long-term gridded precipitation products (GPPs) are crucial for climatology and hydrological 24 

research to overcome the limitations of gauge observations. Climate Hazards Group InfraRed 25 

Precipitation with Station data (CHIRPS) provides long-term daily precipitation data over the 26 

globe from 1981 to near-present, but its reliability varies across regions. This review aims to 27 

summarize the performance of CHIRPS from 123 research articles that published between 2015 28 

and 2021.The findings show that the number of CHIRPS validation studies has been increased 29 

dramatically in the past two to three years. The studies were primarily conducted in China, 30 

Ethiopia, Kenya, Uganda, and India, while a relatively few studies in North America, Central 31 

Asia, and Europe. The performance of CHIRPS varied depending on geographical location and 32 

climate condition, with better performance in Africa. In contrast to other GPPs, CHIRPS is 33 

always not the best product, but it is considerablely well in capturing monthly precipitation and 34 

is suitable for assessing drought. There are also shortcomings such as inaccurate estimation of 35 

sparse sites in complex terrain areas and inaccurate capture of extreme precipitation events. 36 

Future research directions on this topic should focus on: (1) enhancing CHIPRS through the 37 

integration of gauges, satellite and reanalysis data; (2) validating CHIRPS for extreme indices 38 

calculations and relate to large-scale atmospheric circulations like ENSO; (3) evaluating the 39 

capability of CHIRPS in hydrological modelling; and (4) further validating CHIRPS under 40 

various topographical and climate conditions. This review can act as a reference to scientists 41 

who wish to applyCHIRPS in their climatology analysis and hydro-climatic modelling as well 42 

as the CHIRPS developers to further improve the product. 43 
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 55 

1. Introduction 56 

Precipitation is one of the most important variables related to atmospheric circulation in 57 

weather and climate researches (Huffman et al. 2010, Sun et al. 2018). It is a key component of 58 

water cycle, driving the climate, meteorology, agricultural land and hydrology sectors (López 59 

López et al. 2018). Accurate precipitation data is essential for understanding the temporal and 60 

spatial variation characteristics of precipitation in different parts of the world (Bohnenstengel 61 

et al. 2011, ZHENG Jie 2016), not only for climate trends and variability research, but also for 62 

water management and hydrological modelling (Atiah et al. 2020a, Popovych and Dunaieva 63 

2021, Sharannya et al. 2020).The most common ways to get precipitationdata are throughgauge 64 

observations, ground-based radar,satellite data and reanalysis estimate(Sun et al. 2018).  65 

Gauge observations are considered as the most accurate precipitation data (Solakian et al. 66 

2020), however, lack of station dispersion in remote or difficult-to-reach places and the short 67 

measurement times are among common limitations(Essou et al. 2016). Ground-based weather 68 

radar has been progressively employed for rainfall forecast, monitoring, and analysis since the 69 

1970s. The key benefits of ground-based radar arethe ability to estimate large-scale 70 

precipitation, but it can only be used in more rich and densely populated areas due to the high 71 

installation and operating costs(Kidd 2001). With the advances of satellite technologies, 72 

geosynchronous satellites (GEO) and low earth orbit (LEO) satellites are then widely used to 73 

detect precipitation at a global scale(Maggioni and Massari 2018). 74 

Open-source gridded precipitation products (GPPs), with the advantages of wide spatial 75 

extent and temporal continuity, are potentially to compensate the shortcomings of gauge 76 

observations, especially in un-gauged or little gauges areas including the oceans, complex 77 

mountain ranges and deserts(Jiang et al. 2016). Comparing CHIRPS (Climate Reanalysis 78 

product, https://data.chc.ucsb.edu/products/CHIRPS-2.0/), MSWEP (Climate Reanalysis 79 

product, https://www.gloh2o.org/mswep/), IMERG (Satellite product, 80 

https://giovanni.gsfc.nasa.gov/giovanni/), and GPCP (Gridded Gauge, http://gpcp.umd.edu/) 81 

data for 2022 year(Figure 1). GPCP (Gridded Gauge) data has the lowest spatial resolution; 82 

CHIRPS, MSWEP, and IMERG are more suitable for regional scale studies than GPCP. In 83 

northern South America, and Southeast Asia, CHIRPS and IMGERG and GPCP are more 84 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://www.gloh2o.org/mswep/
https://giovanni.gsfc.nasa.gov/giovanni/


similar than MSWEP datasets with the precipitation is almost 3000mm/year to 4000 mm/year, 85 

MSWEP is lower than other three. The performance of the four types of data is consistent in 86 

Australia and west Africa. Overall, data on precipitation originates from various sources and 87 

behaves differently. However, infra-red (IR)satellite sensors frequently miss low precipitation 88 

events and underestimate orographic rains, whereas passive microwave(PMW)satellite 89 

retrievals have difficulty in detecting orographic precipitation, particularly in the winter 90 

season(Yilmaz and Derin 2014). Furthermore, the number and spatial coverage of gauge 91 

observations, satellite techniques, and data assimilation models all limit the dependability of 92 

GPPs(Sun et al. 2018).Hence, the capability of GPPs is highly uncertain in hilly regions with 93 

complex topography and the regions close to the coast. Due to the discrepancy between GPPs 94 

and actual precipitation, their use in hydrological modeling and flood monitoring is likely to be 95 

limited(Maggioni and Massari 2018, Maggioni et al. 2016, Solakian et al. 2020). 96 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) developed by 97 

Geological Survey (USGS) and University of California, Santa Barbara (UCSB)provides near 98 

global precipitation at the spatial resolutions of 0.05° and 0.25°from 1981 to near-present. It was 99 

developed to serve the gauge-limited Africa for drought monitoring by the USAID Famine 100 

Early Warning Systems Network (FEWS-NET). For instance, CHIRPS was used to calculate 101 

standardized precipitation index (SPI)for detecting and analyzing historical drought events in 102 

Africa. Satellite data, monthly gauge observations, and precipitation forecast factors were 103 

combined to create the Climate Hazards Precipitation Climatology (CHPClim) (Chris C. Funk 104 

2013).TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 was used to 105 

calibrate the global cold cloud duration (CCD) rainfall estimates and to integrate precipitation 106 

observations from various sources, including national and regional weather services, to 107 

generate CHIRPS data. 108 

CHIRPS outperformed PERSIANN-CDR, CMORPH-BLD, and TRMM-3B43 in 109 

assessing droughts in Europe, Oceania, and Africa(Zhao and Ma 2019). In regions with 110 

extensive gauge distribution, such as the southeastern United States, the southeastern Chinese 111 

province of Jiangsu province, South Africa, and the southeastern United States, CHIRPS was 112 

able to capture more than 75% of the drought events. As a result, CHIRPS can be employed as 113 

in drought monitoring that operates in real time (Zhao and Ma 2019), and it is suitable for 114 



tropical forests (Burton et al. 2018). CHIRPS is more consistent with station precipitation data 115 

than CFSR in different climatic zones (Dhanesh et al. 2020). Xiang et al. (2021) evaluated eight 116 

GPPs, including CHIRPS, for 1382 catchments in China, Europe, and North America, with 117 

CHIRPS V2.0 performedthe third best after the GPCC and MSWEP V2.0.On a daily basis, 118 

however, the performance of CHIRPS is not satisfactory. These studies show thatCHIRPS 119 

performs varies underdifferentgeographical and climate conditions. 120 

Meteorological research requires accurate meteorological data, and CHIRPS is an open 121 

source database with extensive coverage, lengthy time series (so far more than 40 years), and a 122 

range of time resolutions that is suitable for meteorological research. Many studies have been 123 

conducted to test the performance of CHIRPS, however, to the best of our knowledge, are view 124 

to summarize these work, particularly under the hydrological perspective, is not available in 125 

the literature. Hence, this review aims to provide an overview of the performance of CHIRPS 126 

in precipitation estimations at the global and regional scales as well as thehydrologic aspect. 127 

There is no literature review on the research progress of CHIRPS at present. This paper 128 

summarizes the benefits, drawbacks, and applicability of CHIRPS, enabling novices to rapidly 129 

comprehend CHIRPS data and select the most applicable data set. In addition, this review can 130 

act as a reference to the CHIRPS developers to understand better the advantages and limitations 131 

of the product across the globe, which is important for the improvement of the coming versions. 132 

 133 

Fig 1. The Spatial distribution map of different precipitation products in the year 2022 134 

(a)CHIRPS; (b)IMERG; (c)MSWEP; (d)GPCP products. 135 



 136 

2. Methodology 137 

In order to summarize the effectiveness of CHIRPS in a global context, we have conducted 138 

a literature search using the SCOPUS database with the terms “CHIRPS”and“precipitation” 139 

from January 2018 to December 31, 2021. The initial search has resulted more than 300 articles 140 

from the Scopus database. As this review only considered the studies related to the validation 141 

of CHIRPS in climate and hydrological aspects, the total number of papers is 112, and the 142 

previous few important papers on CHIRP/S (11 published before 2018) are added. Finally, 143 

bringing the total number of papers to 123. Conference proceedings and books were excluded 144 

from this review. The region of publication, type of data, time of study, validation method, 145 

statistical indicators, and conclusions of thestudies were extracted and compiled in an excel for 146 

further analysis and preparation of figures and tables. 147 

During the initial process, an ID code was assigned to each article based on the naming 148 

method adopted by(Pradhan et al. 2022).First, we identified the continent and country to which 149 

the studies belong to. Since most of the studies focused on the comparison analysis with other 150 

GPPs, in the second step, we extracted the values of the most used statistical indicators such as 151 

root-mean-square error (RMSE), correlation coefficient (CC) and bias. RMSE measures the 152 

absolute mean difference between GPPs and the corresponding gauge observations. RMSE 153 

close to 0 indicates a better performance. Meanwhile, CC measures the linear correlation 154 

between GPPs and gauge observation, with the values ranging from -1 to 1, indicating a high 155 

degree of negative/positive correlation, respectively (Gebrechorkos et al. 2018).The bias 156 

indicates how closely the mean of satellite rainfall correlates to the mean of observed 157 

rainfall(Bayissa et al. 2017). 158 

Besides that, we also extracted information of the most used categorical metrics such as 159 

probability of detection (POD), false alarm ratio (FAR)and critical success index (CSI). POD 160 

calculates the occurrence of precipitation detected by GPPs, but ignoring false alarms. On the 161 

other hand, FAR reflects the sensitivity of GPPs to precipitation events, which does not appear 162 

in station data but detected by GPPs. While, CSI shows the ability of GPPs to detect actual 163 

precipitation(Wang et al. 2020). The values of POD, FAR and CSI range from 0 to 1. A score 164 

of 1 for POD means that precipitation occurs in perfect agreement between GPPs and gauge 165 



observations, while a score of 0 means that there is no agreement at all. FAR measures the false 166 

alarm rate where a score of 0 indicates that no false alarms occurred. Meanwhile, the CSI index 167 

provides a measure of the critical success rate of mixing POD and FAR, a perfect score of 1 168 

means zero occurrences in both false alarms and misses categories(Ayoub et al. 2020). Finally, 169 

the performance of CHIRPS in hydrological modelling is also presented.3. Overview of CHIRPS 170 

assessment. 171 

 172 

3.1 General Overview 173 

Among the selected 123 articles, most of the studies were conducted in Asia (55 articles), 174 

followed by Africa (48 articles), South America (12 articles), Europe (3 articles), and 1 article 175 

for each North America, Oceania, and Southwest Pacific(There are four studies atthe global 176 

scale; however, it should be noted there is a study involved only Asia, North America, and 177 

Europe.--I want delete it) Figure 2 shows the distribution of CHIRPS performance assessment 178 

is uneven throughout the globe. Most studies were conducted in China (22 articles) and Ethiopia 179 

(20 articles), accounting about 34% of the selected literature. The number of articles on the 180 

Kenya, Uganda, and India areas exceeds or is equivalent to ten. Literature exists on the majority 181 

of African countries (particularly in North and East Africa), with anything from 5 to 9 articles 182 

per country.  183 

 184 

 185 

Figure 2. Geographical distribution of the CHIRPS validation studies. 186 



 187 

The number of publications has been increase significantly since 2017, where the highest 188 

number of 37 articles was found in 2021, and the second in 2020, with 36 articles. The total 189 

articles that published in 2018 and 2019 were 36, while the least number of papers in 2015 and 190 

2016, with 1 and 2, respectively. As can be seen from Figure 3, Asia has the most significant 191 

upward trend in publications, from only 1 publication in 2016 to 20 in 2021. The number of 192 

articles published in Africa is balanced, with 12 articles in all years except 2017 and 2019, 193 

where 5 and 7 articles were published respectively. South America also shows an increasing 194 

trend in the last five years, with 4 articles were published in both 2020 and 2021. Oceania and 195 

South West have one article each, published in 2016 and 2021, respectively. Overall, the 196 

validation of CHIRPS was conducted mostly in Asian and Africa. Some studies on CHIRPS are 197 

shown in Table 1. 198 

 199 

Table 1. The list of CHIRPS research 200 

Region Nation lon lat Coverage 

record_s

tart 

record_

end 

Gridded/Satellite/ other 

data 

CHIRP/S 

products 

observational 

data  

temporal_scal

e 

spatio_sc

ale 

 First-

author 

Global  Global  

180°

W–

180°

E 

20°S–

20°N 

tropical 

forests 

2015 2016 

TRMM 3b42 

v7,PERSIANN-

CDR,CMAP 

CHIRP v2.0 

Rain gauge 

data 

Monthly 0.25° 

C. 

Burton,  

Africa 

Burundi, 

Eritrea, 

Ethiopia, 

Kenya, 

Rwanda, 

and 

Uganda; 

28°–

52°E 

5°S–

20°N 

regional 1983 2015 TAMSA,ARC 2.0  CHIRPS \ 

Seasonal,Ann

ually  

0.25° 

Elsa 

Cattani 

South 

America 

Argentina 

71◦~6

7◦W 

30°S - 

40°S 

Semiarid 

Central-

Western  

1987 2016 \ CHIRPS 

49 rainfall 

stations 

Monthly，

Annually 

0.05◦ 

Juan A. 

Rivera 

Europe  Italy 

15.4

°-

18°

E 

36°-

41°N 

Calabria 1981 2010 GCM-RCM, E-OBS  CHIRPS \ Monthly 0.05° 

Giulio 

Nils 

Caroletti  

Africa Guinea  

18°W

–

20°E 

0°−12.5

°N 

The Gulf 

of Guinea  

1981 2014 \ CHIRPS 

18 rain gauge 

data 

Season 0.05° 

Adeline 

Bichet 



Africa 

Ethiopia, 

Kenya, 

Somalia, 

Uganda, 

Rwanda 

and 

Tanzania 

29°–

47°E 

10°S–

15°N 

Eastern 

Africa 

2006 2010 TAMSAT,ARC 2.0 CHIRP/S 

1,200 rain 

gauge data 

Daily, 

Dekadal and 

Monthly  

0.05° 

Tufa 

Dinku 

Asia China 

112°–

120°

E 

35°–

43°N 

The east 

of China. 

1981 2015 \ CHIRPS 

29rain gauge 

data 

Monthly, 

Seasonally, 

Annually 

0.05° Feng Gao 

South 

America 

Brazil 

58°-

53°W 

10°30′-

14°30′S 

 The 

Cerrado–

Amazon 

transition 

region 

1985 2017 

 GPM-3IMERGMv6, 

and GPM-

3IMERGDLv6,PERSI

ANN-CDR, 

PERSIANN-

CCS,PERSIANN 

CHIRPS-2.0, 32 stations  Monthly 0.05°  

Mairon 

Ânderson 

Cordeiro 

Correa de 

Carvalho  

Africa 

South 

Sudan 

24°–

36°E 

3°–

12°N 

The Nile 

Basin 

1983 2010 

GPCC 

7.0,PERSIANN-

CDR,TAMSAT-

2,ARC2,MSWEP 2.0 

CHIRPS v2.0 5 stations  

Monthly, 

Annually 

0.05° 

Mohamm

ed 

Basheer 

Asia India 

74°00

′–

76°30

′ E  

13°00

′–

15°30

′ N 

Tungabha

dra river 

basin. 

2000 2012 

GPCP-CDR 

v1.3,PERSIANN-

CDR,TRMM 3B42 

v7;SM2RAIN-CCI ; 

GPCC v.7,GPCC 

v.2018,GSMAP Gauge 

RNL v6 ,NCEP-

CFSR,PGF v2,PGF 

v2,MSWEP v1.2   

CHIRP 

v2.0 ,CHIRPS 

v2.0 

（0.05）,CHI

RPS v2.0 

（0.25） 

IMD,APHRO

DITE, 

Monthly,Ann

ually 

0.25°,0.0

5° 

Kolluru 

Venkates

h 

Asia Malaysia 

1°N–

8°N  

99°E 

–120°E 

regional 2008 2012 

TMPA 

3B42v7;PGFv3,GSMa

P_RNL 

CHIRPS 0.05 

CHIRPS 0.25 

41 rain gauge 

stations  

Monthly 

0.25°,0.0

5° 

Afiqah 

Bahirah 

Ayoub 

Africa Burundi 

28°58

′–

30°53

′E 

2°15′

–

4°30′

S  

regional 1983 2016 

PERSIANN‐

CDR,CRU 

CHIRPS v2.0 

14 

meteorological 

stations 

Daily, 

Monthly,Ann

ually   

0.25◦,0.0

5◦ 

Athanase 

Nkunzim

ana 

Asia Indonesia 

107°2

2′ 

E–

107°5

7′ 

E,  

6°43′

–

6°56′ 

S 

Upper 

Citarum 

basin 

2005 2018 TRMM ,SACA&D  CHIRPS Rain gauge 

Daily,Annuall

y 

0.05°,0.2

5° 

S.R. 

Rusli 

 201 



 202 

Figure 2. The number of articles on CHIRPS in different region from 2015 to 2021. 203 

 204 

Figure 4 illustrates the distribution of journals that published the CHIRPS validation 205 

studies, where Remote Sensing had the highest number of 28 articles, accounting for 22.22% 206 

of the literature. Atmospheric Research published the second highest number, with 13 articles. 207 

Theoretical and Applied Climatology, Water, Climate and Journal of Hydrology were published 208 

between three to ten articles. While, Theoretical and Applied Climatology, Hydrology and Earth 209 

System Sciences, Quarterly journal of the Royal Meteorological Society have published at least 210 

three papers. Consideration of the journal category, we found that the atmospheric field received 211 

the largest number of articles of CHIRPS, followed by remote sensing and hydrology. Fields of 212 

geography, natural science, earth science and environment have published less than ten articles. 213 



 214 

Figure 4. Journals commonly publish the CHIRPS validation studies.   215 

 216 

Figure 5 depicts the number of CHIRPS studies in six different evaluation time series of 217 

0-5 years, 6-10 years, 11-15 years, 16-20 years, 21-25 years, 26-30 years, 31-35 years, and 35-218 

39 years. Majority of the CHIRPS validation studies were conducted on a monthly basis, with 219 

the daily and annual scales following closely behind. Compared to other scales, only a few 220 

studies looked at the 5-day and 10-day scales. Among 123 articles, 100 of which are focused 221 

on the CHIRPS 0.05oresolution, 15 of which were the CHIRPS 0.25° resolution, seven studies 222 

focused both the 0.05°and 0.25°spatial scale, and one of which is about the CHIRP project. 223 

Table 2 lists the number of articles that applied the five commonly used statistical indicators.  224 



 225 

Figure 5. The number of CHIRPS assessment studies for different evaluation time scales. 226 

Table 2. Number of articles usingsix statistical indicators in the CHIRPS validation research. 227 

Statistical Metric Nmber of Article 

Continuous Statistical Metric 

RMSE 66 

CC 

BIAS 

30 

32 

Categorical Statistical Metric 

POD 37 

FAR 38 

CSI 17 

 228 

 229 

3.2 Continuous Statistical Metrics 230 

There are only a few studies focused solely on CHIRPS, where most the studies have 231 

compared CHIRPS with other GPPs such as TMPA3B43V7, PERSIANN-CDR, CMORPH, 232 

ARC 2.0,MSWEP, Integrated Multi-Satellite Retrievals for Global Precipitation 233 

Measurement(IMERG), GPCC and APHRODITE. Figure 6 shows the monthly CC values in 234 

different regions, where 45 % of the studies applied CC in comparing CHIRPS with other GPPs. 235 

For the monthly scale, studies in Ghana (0.97 – 0.99) and Ethiopia (0.84 – 0.96) have reported 236 



the best CC values (Dinku et al. 2018, Gebrechorkos et al. 2018). The range of the reported CC 237 

values is the largest in China and Iran, varying from 0.15 to 0.97 and 0.15 to 0.9, respectively. 238 

On the continent level, as shown in Figure 6(b), Africa had the best CC value of 0.89, followed 239 

by North America (0.88), Oceania (0.875), South America (0.85), Europe (0.845), Asia (0.79), 240 

South West Pacific (0.695) and East Africa (0.4). The CC values of CHIRPS in Yemen, 241 

Malaysia, Brazilian, Nigeria, United States, Tanzania, Kenya, Italy and Crimea are mostly 242 

above 0.6, showing a relatively good correlation of CHIRPS with gauge observations in this 243 

region. 244 

CHIRPS was similar to other GPPswhere the CC values of daily scale are not asgood as 245 

the monthly scale.Forexample,in China, the CC values ranged from0.27 to 0.7 on daily scale 246 

(An et al. 2020, Liu et al. 2019, Wu et al. 2018), while the CC values up to between0.9 and 0.97 247 

on monthly scale (Hsu et al. 2021, Pang et al. 2020, Xia et al. 2021). Similarly, in Iran, daily 248 

CC values range from 0.18 to 0.53, while monthly values range from 0.38 to 0.83(Ghozat et al. 249 

2020, Mokhtari et al. 2021).In Indonesia, the daily CC value is 0.28 and the monthly CC value 250 

of 0.79(Wiwoho et al. 2021). 251 



 252 

Figure 6. The CC values in monthly precipitation evaluation at the (a) national and (b) 253 

continental scales as well as (c) studies reported only a single CC value. 254 

 255 

Similarly, about 45 % of the studies have used RMSE in assessing the performance of 256 

CHIRPS. Figure 7 shows the RMSE values in monthly precipitation in different regions. 257 

Precipitation in different regions is different. In order to make RSEM comparable, precipitation 258 

regions are divided. According to the global average annual precipitation distribution, regions 259 

with an average annual precipitation of 500ml or less are classified as Figure 7(a), regions with 260 

an average annual precipitation of 1000ml or more are classified as Figure 7(c), and regions in 261 

between are grouped together Figure 7(b).  262 

 263 



 264 

Figure 7. The RMSE values of CHIRPS performance in monthly precipitation at the 265 

(a)average annual precipitation of 500ml or less precipitation region (b) average annual 266 

precipitation of 500ml to 1000ml, (c) average annual precipitation of 1000ml or more 267 

precipitation region 268 

In Figure 7(a), it can be seen that Pakistan(2.075), Egypt(2.0) have lower RMSE values 269 

than Chile(38.25), Iran(64.6), and Ethiopia(70.02). Brasilia(1.21) and Ghana(14) have lower 270 

RMSE values than Malaysia(99.36), Indonesia(109.26), and Cambodia(119) in regions with 271 

significant precipitation(Figure 7(c)). Burundi(58.35) and South Sudan(40), as well as regions 272 

with moderate precipitation(Figure 7(b)), have higher RMSE values than other nations. This is 273 

related to geographical location, precipitation distribution, density of rain stations, and 274 

differences in test accuracy. 275 

 276 



3.3 CategoricalStatistical Metrics 277 

About 30% of the studies reported the POD and FAR values, and 14% on the CSI values. 278 

In most articles, the threshold for rainfall used to distinguish between rainy and dry days is 0 279 

mm(Li et al. 2021, Liu et al. 2020), 0.1 mm(Xia et al. 2021), or 1 mm(Ayehu et al. 2018, Ayoub 280 

et al. 2020), and some studies used the threshold of 5mm (Paredes-Trejo et al. 2017, Rivera et 281 

al. 2018).The median values of POD, FAR and CSI on a daily scale for the CHIRPS evaluation 282 

in different regions are illustrated in Figure 8.The median values of POD for Burundi, India, 283 

Indonesia, Yemen andEgypt are among the highest, ranging from 0.73 to 0.85, while, the 284 

median POD values for China (0.36) and Spain (0.335) are relatively low (An et al. 2020, Liu 285 

et al. 2019, Xiao et al. 2020). Although studies have shown that the median POD value in China 286 

is 0.74at the monthly scale(Gao et al. 2018, Jiang et al. 2021, Pang et al. 2020, Peng et al. 2020, 287 

Wang et al. 2020, Xia et al. 2021), butthe daily scale assessment is not ideal. The region near 288 

the Indian Ocean had a higher POD median value, showing CHIRPS can detect precipitation 289 

in this region effectively. 290 

USA, Spain,and Brazil have the best FAR values when comparing CHIRPS with gauge 291 

observations, ranging from 0.03 to 0.12. The rates of false positive of CHIRPS in China, Togo 292 

and Benin are quite high, where the reported FAR median value are beyond 0.5. The reported 293 

CSI values of Egypt and Indonesia show a quite significantdifference, ranging from 0.08 and 294 

0.9. Relatively, the CSI median value in China is0.27.In Indonesia, India, Egypt, Ethiopia, and 295 

Burundi, the reported POD values were greater than 0.6 and the FAR values were less than 0.5.  296 

In Togo and Benin, the POD was less than 0.6, and the FAR reached the highest value of 297 

all (0.61) in these countries. In Brazil and the United States, the median POD valuesare 0.57 298 

and 0.51, and the average FAR values are 0.11 and 0.12, respectively.CSI is used as an indicator 299 

to comprehensively consider POD and FAR values, as shown in Figure 8(c), In the estimation 300 

of precipitation events, CHIRPS data is more suitable for the region around the Indian Ocean. 301 

 302 

 303 



 304 

 305 

 306 

Figure8. Spatial distribution of the (a) POD, (b) FAR and (c) CSI median values in different 307 

regions 308 



 309 

3.4 Hydrological Modelling 310 

CHIRPS is mostly incorporated into the Variable Infiltration Capacity (VIC) model (Funk 311 

et al. 2015, Wu et al. 2018), Hydro-BEAM, Xin'anjiang (XAJ) model (Xiang et al. 2021, Zhang 312 

et al. 2014), the Tsinghua Hydrological Model (Li et al. 2021), the fully distributed mesoscale 313 

Hydrologic Model (mHM) (Dembélé et al. 2020), The Hydrological Modeling (Hydro‑BEAM) 314 

(Abdelmoneim et al. 2020), Analysis Platform (HyMAP) routing module (Ghatak et al. 2018), 315 

HydrologiskaByrånsVattenbalansavdelning (HBV)(Goshime et al. 2019) and Soil and Water 316 

Assessment Tool (SWAT) (Tan et al. 2021). Most of the models were evaluated by one or two 317 

studies only, except for the SWAT model which was covered by 11 studies.  318 

Nash-Sutcliffe efficiency (NSE), percentage bias (PBIAS), Nash-Sutcliffe coefficient of 319 

efficiency (NSCE) and standard deviation ratio (RSR) are the frequently used statistical 320 

indicators in comparing the CHIRPS-based simulated and observed streamflow. In the literature, 321 

almost all the CHIRPS validation studies related to hydrological modelling assessment used 322 

NSE, hence we compiled the reported NSE values for the daily and monthly scales in Table2.On 323 

the monthly scale, the reported NSE values for both the calibration and validation periods are 324 

quite consistent. In most studies, the NSE values of CHIRPS werehigherthan 0.63 during the 325 

calibration period, while the best NSE reached up to 0.96 during the validation periods. The 326 

difference of the NSE values between the calibration and validation periods is slightly larger in 327 

the daily scale than that of the monthly scale. The NSE values ranged from-7.75 to 0.9 and -328 

4.48 to 0.82 for the calibration and validation periods, respectively (Table 3). The NSE value 329 

of the Lancang River Basin that covering five countries of Myanmar, Cambodia, Laos, Thailand, 330 

and Vietnam, was the highest in both monthly and daily scales. Meanwhile, India has the lowest 331 

NSE levels, 0.54 on a monthly basis and 0.55 on a daily measure. 332 

 333 

 334 

 335 

 336 

Table2. Reported NSE values for monthly and daily streamflow assessment in different 337 

parts of the world. (Daily scale: D, Monthly scale: M) 338 



Country/region Basin Data Scale Model Calibration Validation Author 

Ethiopia The upper 

GilgelAbay Basin 

CHIRPS 0.05° SWAT 0.71(M) 0.85(M) Duan et al. (2016) 

Myanmar, Cambodia, 

Laos, Thailand, Vietnam 

the Lower Lancang-

Mekong River Basin 

CHIRPS  0.05◦,0.25◦ SWAT 0.91 ~ 0.96(M); 

0.78 ~ 0.9(D) 

0.82 ~ 0.9(M); 

0.78 ~ 0.9(D) 

Luo et al. (2019) 

India Tungabhadra river 

basin. 

CHIRP 

v2.0 ,CHIRPS 

v2.0  

0.25◦,0.05◦ SWAT 0.61 ~ 0.8(M) 0.68 ~ 0.8(M) Venkatesh et al. 

(2020) 

India The Gurupura river 

basin 

CHIRPS v2.0  0.25◦,0.05◦ SWAT 0.54 ~ 0.66(M) 

0.55 ~ 0.67(D) 

0.55 ~ 0.65(M) 

0.55 ~ 0.62(D) 

Sharannya et al. 

(2020) 

Egypt Eastern Nile Basin CHIPRS v2.0  0.05° SWAT 0.77 ~ 0.87(M) 0.79 ~ 0.88(M) (Abdelmoneim et 

al. 2020) 

China BRB,HRB and LRB 

basin 

CHIRPS 0.25◦ CREST  0.81 ~ 0.87(M) 

0.61 ~ 0.62(D) 

0.88 ~ 0.89(M) 

0.71 ~ 0.73(D) 

(Zhang et al. 

2014) 

West Africa  Lawra CHIRPS 0.25◦ HBV-

light 

0.64(M) 0.71 ~ 0.73(or 

<0.5)(M) 

(Poméon et al. 

2017) 

Ethiopia upper GilgelAbay 

Basin 

CHIRPS 0.05° SWAT 0.56(D) 0.52(D) (Duan et al. 2019) 

Ethiopia  Lake Ziway 

Watershed 

CHIRPS 0.05° HBV  0.71(D) 0.64(D) (Goshime et al. 

2019) 

the USA, Brazil, Spain, 

Ethiopia, and India 

---- CHIRPS 0.05° SWAT −0.44 ~ 0.46(D) −0.39 ~ 

0.42(D) 

(Dhanesh et al. 

2020) 

Thailand Huai Bang Sai 

Watershed 

CHIRPS v2.0  0.05° SWAT 0.55(D) 0.14(D) (Gunathilake et al. 

2021) 

The Republics of Benin 

and Togo 

the Mono River 

Basin 

CHIRPS 0.05° HBV-

light 

0.58(D) 0.67(D) (Hounguè et al. 

2021) 

Kenya Lake Victoria Basin  CHIRPS 0.05° SWAT −7.75 ~ 0.24(D) −4.83 ~ -

0.13(D) 

(Le and Pricope 

2017) 

 339 

3.4  Analysis on different time scales 340 

    The ability of CHIRPS varies across various time scales. In Nigeria, correlation values on 341 

the Monthly and Annual scales were superior to those on the Daily and Dekadal scales, while 342 

RMSE values on the Dekadal scale showed a small difference between the Monthly and 343 

Seasonal scales (Muhammad Usman, 2018). In Ethiopia, CHIRPS captured the shapes of the 344 

rainfall on a monthly scale but less accurately on a seasonal scale (Getachew Dubache). It also 345 

demonstrated excellent agreement with ground-observed rainfall data at monthly and seasonal 346 

time scales over the Ziway Lake Basin, Ethiopia (Aster Tesfaye Horofa). However, CHIRPS 347 

performed poorly at daily and annual scales, whereas seasonal cycles in Togo and Benin were 348 

accurately depicted (Nina Rholan Houngu'e). With correlation coefficients of 0.5, CHIRPS was 349 

inadequately correlated to gauge data on a daily time scale in Tanzania (Yeganantham 350 



Dhanesh) . Five-day aggregation was the minimum time scale that can be used for the products 351 

to reach an accuracy better than monthly-mean of gauge data (Yeganantham Dhanesh) . 352 

    Compared to in-situ data, CHIRPS performed better on a monthly timescale in the Lower 353 

Mekong River Basin (Southeast Asia) (Chelsea Dandridge, 2019). Nevertheless, CHIRPS was 354 

in good agreement with rain gauge measurements, which were rated as follows: annual scale, 355 

seasonal scale, and monthly scale over the Huanghuaihai Plain (Fanchen Peng).Evidently, the 356 

CHIRPS performance on the monthly scale in Bali Island is more good than its performance on 357 

the daily scale.(Liu Chian-Yi) Similarly, CHIRPS estimates have a high correlation on dekadal 358 

and monthly time scales but a lower correlation for daily estimates. In Turkey, CHIRPS tends 359 

to underestimate high precipitation volumes of 25–80 mm per decade and 150–300 mm per 360 

month (Hakan Aksu). 361 

    For South Africa, CHIRPS data correlate well with observed monthly precipitation data 362 

for all used stations, with an average coefficient of determination of 0.6 and bias of 0.95, which 363 

is better to the daily scale (J A du Plessis, J K Kibii). 364 

    In West Africa, CHIRPS performed relatively well on the seasonal scale (r > 0.90) 365 

compared to the annual scale (Winifred Ayinpogbilla Atiah). CHIRPS is helpful for the analysis 366 

of all extreme events. 367 

    On a global regional scale, the efficacy of CHIRPS was evaluated using 368 

CC,RMSE(mm),ME(mm), and BIAS(%), with monthly data being superior to daily data 369 

(Yeganantham Dhanesh). 370 

 371 

4. CHIPRS Performance in Different Continents of the World 372 

4.1 Asia 373 

4.1.1East Asia 374 

Over the Chinese mainland, CHIRPS performed better in high-precipitation areas, in the 375 

summer than in the winter, and exhibited modest sensitivity to typhoon weather(Bai et al. 2018). 376 

Corrected CHIRPS can better capture the frequency of precipitation episodes and better reflect 377 

the spatial properties of yearly precipitation than uncorrected CHIRPS(Li et al. 2019). 378 

Comparing the precipitation estimates of TMPA3B42V7, PERSIANN-CDR and IMERG, 379 

CHIRPS performed well after TMPA3B42V7 and IMERG (Jiang et al. 2021, Wei et al. 2020).  380 

On the watershed scale in China, CHIRPS matched precipitation variability of gauge 381 

observations at the monthly, seasonal, and annual precipitation estimations quite well(Gao et 382 

al. 2018, Yu et al. 2020). When CC, RMSE, Bias and POD were used as indicators, CMORPH 383 



and GPM had better performance than CHIRPS in capturing extreme precipitation as well as 384 

mountainous and desert areas in the upper Yangtze River Basin(Xiao et al. 2020). In contrast, 385 

CHIRPS was inferior than MSWEP and TMPA in the Huaihe River basin. CHIRPS 386 

underestimated winter precipitation and overestimated other seasons in the Yellow River Basin 387 

and the Jialing River(An et al. 2020, Pang et al. 2020), and performed badly in the Pearl River 388 

Basin in precipitation forecasting(Xia et al. 2021).An overestimation of precipitation was 389 

observed in the Beijiang, Huai, and Liao basins, with a better performance in the wet areas (R2= 390 

0.86) than dry areas (R2= 0.7)(Zhang et al. 2014).In Tibetan Plateau (TP), CHIRPS V2 391 

performed better under the wet conditions than the dry conditions, and it tendsto underestimate 392 

small precipitation events (0-2 mm/day) and to overestimate large precipitation events (2-25 393 

mm/day) (Liu et al. 2019).  394 

In arid zones, CHIRPS showed a moderate performance on the inter-annual precipitation 395 

estimation (CC = 0.72, RMSD = 22.39 mm), but it performed well in terms of relative error 396 

(SD), with the lowest overestimation of only 5%(Wang et al. 2020). CHIRPS was similar to the 397 

site data in the Huanghuaihai Plain (cumulative CC value of 0.92),although it underestimated 398 

the rainfall rates of 0-10 mm/month and 200-500 mm/month(He et al. 2018), CHIRPS could 399 

describes the temporal variability of precipitation in Taiwan on the seasonal, annual, and inter-400 

annual scales(Hsu et al. 2021).CHIRPS performed exceptionally well in the southwest of China, 401 

and it had superiority in hydrological simulation in the southern Tibetan Plateau(Li et al. 2021).  402 

 403 

4.1.2 South Asia 404 

There was a strong linear relationship (CC> 0.70) between CHIRPS and Surface 405 

Precipitation Gauge (SPG) in Pakistan, Sri Lanka and Bangladesh(Alahacoon et al. 2021, 406 

Montes et al. 2021, Nawaz et al. 2021, Usman and Nichol 2020).In addition, CHIRPS was able 407 

to capture the maximum precipitation in the northeastern region and outperformed PERSIANN-408 

CDR in Pakistan (Nawaz et al. 2021, Ullah et al. 2019).CHIRPS can effectively captured heavy 409 

rainfall in Bhutan, but poorly in hilly areas and during the monsoon season(Khandu et al. 410 

2016).In India, CHIRPS showed a better performance in comparison with IMD daily rainfall 411 

data in the Nethravathi Basin (Sulugodu and Deka 2019). It was used to study the trend of 412 

precipitation over the Bhilangana River basin, demonstrating that it can be reliably used as an 413 



alternative GPP in areas where observational data are scarce, incomplete in time series, and 414 

difficult to access directly(Banerjee et al. 2020). 415 

CHIRPS was used in drought researchin the Bundelkhand region, where a significant 416 

downward trend in SPI-1 at 95% confidence level was observed using CHIRPS throughout the 417 

38-year monsoon season, ranging from -0.16 to -0.33 mm/month(Pandey et al. 2021). Drought 418 

hazard mapping of India has been generated using CHIRPS (Ghatak et al. 2018). CHIRPS was 419 

used to calculate SPI and RAI, which in turn generated agricultural drought monitoring 420 

data(Alahacoon and Edirisinghe 2021). 421 

In the Varahi river basin, the hybrid ML model employing Intrinsic Time-scale 422 

Decomposition (ITD) and CHIRPS precipitation data outperforms all other modelsin predicting 423 

daily and weekly flows (Wang et al. 2021). The IMD rainfall-driven streamflow emerged as the 424 

best followed by the TRMM, CHIRPS05, and CHIRPS25, with theR2, NSE, and PBIAS values 425 

were in the ranges of 0.63 to 0.86, 0.62 to 0.86, and −14.98% to 0.87%, respectively(Sharannya 426 

et al. 2020). TRMM 3B42 v7, CHIRP, and CHIRPS(0.05) datasets performed better than other 427 

datasets and can be used for hydrological modeling and climate change studies in similar 428 

topographic and climatic watersheds in India(Venkatesh et al. 2020). 429 

CHIRPS exhibited a strong correlation with gauge data during the wet season in the Lower 430 

Lancang-Mekong River Basin as compared to the dry season(Dandridge et al. 2019).The NSE 431 

values of CHIRPS in the SWAT model were 0.93 at the monthly scale and 0.84 at the daily 432 

scale. As a conclusion, CHIRPS performed well in precipitation estimate and provides a lengthy 433 

precipitation time series spanning 1981 to the present, allowing it to be utilized as a substitute 434 

precipitation input data for hydrological simulations in in the Lower Lancang-Mekong River 435 

Basin(Luo et al. 2019). 436 

 437 

4.1.3 Southeast Asia 438 

Some studies have been conducted using comparative validation and most of them were 439 

on CHIRPS, TRMM, IMERG, PERSIANN and GSMaP data, For a data-sparse region, TRMM 440 

and CHIRPS in terms of hydrological and hydraulic aspects may be used to generate a dam-441 

break hazard map and CHIRPS outperformed GPM, and PERSIANN in a Humid Tropic 442 

Watershed, CHIRPS have a good performance on wet periods, but satellite-based rainfall has 443 



large variance compared with rain gauge data along mountain area in wet periods.(Le et al. 444 

2020, Liu et al. 2020, Rahmawati et al. 2021, Rusli et al. 2021, Wiwoho et al. 2021, Yudianto 445 

et al. 2021). Ayoub et al. (2020)found that CHIRPS25 and CHIRPS05 slightly overestimated 446 

the rain gauge data in Malaysian.While,CHIRPS did not outperform IMERG at the daily and 447 

seasonal scales, but it performed wellat monthly scale.  448 

Basically, CHIRPS overestimated the frequency of moderate(5–10 mm/day)rainfall events 449 

while underestimated the frequency of minor (0-1 mm/day) rainfall events and heavy(> 50 450 

mm/day) rainfall events over Indonesia(Liu et al. 2020).In Cambodia, TRMM 3B42V7 451 

performed better than CHIRPS in capturing precipitation(Phoeurn and Ly 2018). At lower 452 

rainfall rates, CHIPRS maintained a 6-12 % NRMSE(Wiwoho et al. 2021). CHIRPS showed 453 

relatively low bias relatively in Vietnam Basins compared to TMPA, GPM IMERG and 454 

PERSIANN, which may be beneficial for long-term drought water planning(Le et al. 2020). 455 

A comparison of CHIRPS,PERSIANN and GPM in streamflowsimulations using SWAT 456 

was conducted in the Brantas watershed of East Java, Indonesia, with CHIRPShad a slightly 457 

better performance atthe daily scale than other GPPs (Wiwoho et al. 2021). Similarly, 458 

theWflow_sbm model driven by CHIRPS also performed well, with an average daily rainfall 459 

estimate of 7.80 mm/day in the Upper Citarum basin in Indonesia (Rusli et al. 2021). 460 

 461 

4.1.4 Western Asia 462 

CHIRPS could be applied on rainfall estimate(Wang et al. 2021)and drought 463 

assessments(Alejo and Alejandro 2021) in western Asia due to the good capability in detecting 464 

precipitation during the wet seasons. In regions and months dominated by convective 465 

precipitation, CHIRPS has a good performance in estimating rainfall, with a strong correlation 466 

with elevation variables in Iran(Saeidizand et al. 2018). However, it tended to underestimate 467 

precipitation in the ranges of 25-80 mm/10-days and 150-300 mm/month in Turkey, which may 468 

be due to the cyclones influenced precipitation the most in winter and the least in spring (Aksu 469 

and Akgül 2020).The computed CC values between the areal average of observed and CHIRPS 470 

were 0.49, 0.82, and 0.33 for the daily, monthly, and annual time scales in the Kosar Dam 471 

basin(Mokhtari et al. 2021). 472 

In Iran,CHIRPS showed good annual performance (CC = 0.80 and FRMSE = 0.57) and 473 



poor daily performance (CC = 0.34, FRMSE = 5.72) and was the most accurate in the south 474 

and southwest. It detected no/light precipitation the best (POD > 0.9) and mild and moderate 475 

rainfallthe worst (POD = 0.1) (Ghozat et al. 2020).A comparison assessment of six different 476 

GPPs in Yemen including CHIRPS, NCEP CFSR, PERSIANN-CDR, TRMM3B42, Unified 477 

Gauge-Based Analysis of Global Daily Precipitation (CPC) and ERA-5 at the daily scale and 478 

the monthly scale , CHIRPS was the most accurate product(Al-Falahi et al. 2020). 479 

 480 

4.2 Africa 481 

The CHIRPS studies in Africa are mainly related to the agricultural drought monitoring 482 

(Agutu et al. 2017). For temporal and spatial trends and variability of rainfall research, the 483 

results shows that CHIRPS data had a satisfactory skill to estimate monthly rainfall and also 484 

can be used for predicting future rainfall and climate impact research in areas lacking rain 485 

gauges (Atiah et al. 2020a, Cattani et al. 2018, Muthoni et al. 2018, Ngoma et al. 2021), 486 

Relevant literatures proves that CHIRPS data can be used for Analysis of regional rainfall 487 

changes(Wenhaji Ndomeni et al. 2018), dry and wet season detection (Fall et al. 2021), high-488 

intensity rainfall events(Umer et al. 2021) and EI Niño-Southern Oscillation ( ENSO ) (Mesa 489 

et al. 2021). Studies have shown that CHIRPS V2.0 reflect the precipitation characteristics of 490 

the region as good as the TMPA 3B42V7, and even better than other GPPs in Sub-Saharan 491 

Africa (Harrison et al. 2019), East and South Africa(Cattani et al. 2021). 492 

 493 

4.2.1 Western Africa 494 

In hydrological simulation,CHIRPS had a NSE value of 0.64, which was an average 495 

levelin the flow simulation of HBV light model was compared with NCEP CFSR, 496 

CMORPHv1.0 CRT, CMORPHv1.0 RAW, PERSIANN CDR, RFE 2.0, TAMSAT, TMPA 497 

3B42V7, TMPA 3B42RTV7 and GPCC FDDv1 in several West African watersheds(Poméon et 498 

al. 2017). Hence, CHIRPS was used to the precipitation trend and characteristics analysis in 499 

this region, the rainfall increase recent years in West African Sahel,and rainfall has been 500 

reported to increase but the average duration of wet spells has greatly decreased over the Gulf 501 

of Guinea (Bichet and Diedhiou 2018a, b, Okrah et al. 2019, Sacré Regis M et al. 2020).  502 

The spatial variability of precipitation in the upper east part of Ghana was well distributed; 503 



however most (33.76%) of the changes occurred in northeast (Okrah et al. 2019). The 504 

performance of CHIRPS waswell in theVeaCatchment with the seasonal CC (0.99), NSE (0.98), 505 

and percentage deviation (4.4 and 8.1%) values. Drought frequency in the catchment region 506 

was 45.5% in 1999 and 2003 and 54.5% in 1990 and 2013(Larbi et al. 2018). 507 

CHIRPS matched considerably well with the rainfall stations in Nigeria (Ogbu et al. 2020). 508 

In the SudanoSahelian zone, CHIRPS performed well in the 10-day (CC = 0.5 to 0.8), monthly 509 

(CC = 0.81, RMSE = 63.47 mm/month) and seasonal (CC = 0.79, RMSE = -27.3mm/season) 510 

scales (Usman et al. 2018). The studies showed that CHIRPS V2 overestimated low-intensity 511 

rain and underestimated high-intensity rain in Ghana, with the strongest connection with the 512 

East Coast rainfall stations (CC = 0.77), and good for analyzing extreme events(Atiah et al. 513 

2020a, Atiah et al. 2020b).   514 

 515 

4.2.2 Eastern Africa 516 

CHIRPS data was used to analysis precipitation characteristics of Eastern Africa(Fenta et 517 

al. 2017).Systematic biases of CHIRPS decreased significantly in space on both monthly and 518 

annual scales. The biases increase with the amount of rainfall, so it is small in dry 519 

months(Kimani et al. 2018). On the time scales of day, 10 days and month, CHIRP and CHIRPS 520 

products had a high correlation and low deviation with gauge data(Dinku et al. 2018). Although 521 

CHIRPS performed worse than CMORPH and MSWEP in the Lake Victoria basin(Omondi et 522 

al. 2021), but research shows that when station data cannot be obtained in East Africa, CHIRPS 523 

should be the preferred data source for climate change and hydrological analysis(Gebrechorkos 524 

et al. 2018). 525 

In Ethiopia, on the monthly and seasonal time scales in the Ziway Lake Basin, the 526 

performance of CHIRPS products was marginally superior to that of GPM-IMERG (Hordofa 527 

et al. 2021). In the Upper Blue Nile Basin, it was discovered that CHIRPS had a good 528 

consistency with rainfall stations at 10 days, monthly, and seasonal scales(Bayissa et al. 2017), 529 

a good ability to detect precipitation (POD = 0.99 to 1.00), high CC values (0.81 to 0.88), and 530 

relatively low RMSE values (28.45 mm/10-day to 59.03 mm/month). Changes in altitude had 531 

a less impact on CHIRPS(Ayehu et al. 2018). On the Western Margins of the Ethiopian 532 

Highlands, CHIRPS slightly overestimated precipitation in low-altitude areas and slightly 533 



underestimated precipitation in plateau areas; the proportion of high-intensity daily rainfall 534 

events was also overestimated(Belay et al. 2019). The CHIRPS precipitationanalysis in the 535 

HorroGuduruWollega Zone revealed a declining trend in most months (Feke et al. 2021). In 536 

general, TAMSAT v3.1and CHIRPS-2.0 products outperformed the reanalysis data（ERA5） 537 

set with a high correlation coefficient and index of agreement values, as well as low Root Mean 538 

Square Error and BIAS values in Ethiopia(Dubache et al. 2021). 539 

The CC values between CHIRPS and station data in Tanzania were less than 0.5(Lu et al. 540 

2020), but CHIRPS, on the other hand, performed well in Burundi at the annual, monthly, and 541 

seasonal levels. The CC values of CHIRPS were greater than 0.78, indicating that it could detect 542 

rainfall of less than 1 mm/d. However, detecting rain of more than 20 mm/d is problematic 543 

(Nkunzimana et al. 2020).CHIRPS also shows good performance in hydrological simulation 544 

(Alemu et al. 2020, Alemu and Bawoke 2020, Alquraish and Khadr 2021, Belayneh et al. 2020). 545 

In the upper GilgelAbay Basin, CHIRPS outperformed TRMM and CFSR in terms of 546 

hydrological simulation of the SWAT model(Duan et al. 2019). 547 

 548 

4.2.3 Southern and NorthernAfrica 549 

The validation of CHIRPS with 46 South African rainfall stations revealed a good 550 

correlation,with an average CC value of 0.6 and a bias value of 0.95(du Plessis and Kibii 551 

2021).CHIRPS was appropriate for estimating the monthly precipitation in the Nile Basin in 552 

South Sudan (Basheer and Elagib 2019). AlthoughCHIRPS performed well in Egypt, but it 553 

lagged behind IMERG in detecting precipitation. Moreover, CHIRPS fulfilled moderately in 554 

hydrological simulationin Egypt(Nashwan et al. 2019). 555 

 556 

4.3 South America 557 

4.3.1Northern part of South America 558 

In Brazil, CHIRPS in the northeastern region was in good agreement with the site data 559 

(CC = 0.94), high values were underestimated and low values were overestimated. CHIRPS 560 

worked well during the rainy season (March to May, bias= -4.60%), but the ability to detect 561 

precipitation is weak (POD = 0.44) (Paredes-Trejo et al. 2017).  562 

The total precipitation increased by 2.8 mm per year, with a maximum of 45.1 mm and a 563 



minimum of 37.9 mm over the past 37 years, according to a precipitation analysis of the 564 

Amazon Basin’s precipitation trend using CHIRPS. The CC and RMSE values for the Amazon 565 

basin were 0.981 and 363.6 mm/year, respectively (Paca et al. 2020). While, the daily scale had 566 

low mean absolute error (0.97 mm) and RMSE (3.65 mm/day) (Moraes Cordeiro and Blanco 567 

2021). CHIRPS V2.0 demonstrated an outstandingperformance in February and Novemberin 568 

the Cerrado–Amazon Transition, Brazil(Carvalho et al. 2020). In the Mearim River Drainage 569 

Basin, CHIRPS was good in estimating daily rainfall, especially from December to May 570 

(Xavier et al. 2021). In addition, dnCHIRPS (ME = 0.01 mm/month and PB = 1.1%) corrected 571 

by a dense rain gauge network had a better performance than CHIRP (ME = 10.0 mm / month 572 

andPB = 23.6 %) and CHIRPS ( ME = 0.08 mm/month and PB = 7.4 %) (Mu et al. 2021). 573 

 574 

4.3.2 Southern Part of South America 575 

CHIRPS has a good consistency with local station data in the southern part of South 576 

America (Rivera et al. 2018, Zambrano et al. 2017). Monthly scale analysis reveals that satellite 577 

products overestimatedprecipitation in the northern region of Chile(Zambrano et al. 578 

2017).Using SPI to assess the dry and wet conditions of the semi-arid areas in central and 579 

western Argentina, CHIRPS can fully displayed the temporal variation characteristics of SPI in 580 

warm-season precipitation-dominated regions, but it overestimated the area of cold-season 581 

precipitation(Rivera et al. 2019). A deviation of 11% and an average absolute error of 15.3 mm 582 

were recorded in the middle part of the Argentina's Andes Mountains, and CHIRPS shows a 583 

significant overestimation of total precipitation from April to June (cold season) and poorly for 584 

areas particularly above 1000 m(Rivera et al. 2018). 585 

 586 

4.4 Europe, Oceania and Pacific Region 587 

In southern Italy, 13 global climate models from the ENSEMBLES project's output set 588 

were compared to the E-OBS data set and CHIRPS. GCM-RCM and CHIRPS matched well in 589 

terms of mean, error, and standard deviation, with CHIRPS having a CC value of 0.94(Caroletti 590 

et al. 2019). In the comparison of precipitation estimated between CHIRPS products and 591 

measuring stations in the Crimea region, the mean CC value of CHIRPS was 0.73. The monthly 592 

mean readings of stations and CHIRPS were 30.4 mm and 37.2 mm, respectively(Popovych 593 



and Dunaieva 2021). 594 

Comparing the GPPs with EI Nino Southern Oscillation (ENSO) and Indian Ocean Dipole 595 

(IOD), it discovered that, on an inter-annual scale in Australia, CHIRPS was consistent with 596 

the precipitation estimation of the Australian Bureau of Meteorology. From 1981 to 2014, 14 597 

weak-strong ENSO events and 12 IOD events accounted for 12% and 7%, respectively, of total 598 

precipitation. During ENSO and IOD, seasonal differences in the precipitation product system 599 

were more pronounced (Forootan et al. 2016). Over the Southwest Pacific Region, GSMaP, 600 

IMERG, CMORPH, and CHIRPS were compared with MSWEP. CHIRPS had a good 601 

consistency with reference data, and the RMSE values of CHIRPS (1.1 - 1.9 mm/day) was 602 

lower than that of IMERG ( 1.4 -2.7 mm/day ) and CMORPH ( 1.8 - 2.9 mm/day)(Wild et al. 603 

2021). 604 

Table 3 .The list of CHIRPS performance on different continents of the World 605 

Region CHIRPS performance Reference 

Africa 

Western 

Africa 

Ghana The performance of CHIRPS waswell in theVea Catchment with the seasonal CC (0.99) Larbi et al. (2018) 

Nigeria 

CHIRPS performed well in the 10-day (CC = 0.5 to 0.8), monthly (CC = 0.81, RMSE = 63.47 mm/month) 

and seasonal (CC = 0.79, RMSE = -27.3mm/season) scales  Usman et al. (2018) 

Ghana 

overestimated low-intensity rain and underestimated high-intensity rain in Ghana，and good for analyzing 

extreme events Atiah et al. (2020a); Atiah et al.( 2020b) 

Eastern 

Africa 

Kenya CHIRPS performed worse than CMORPH and MSWEP in the Lake Victoria basin Omondi et al.( 2021) 

Ethiopia performance of CHIRPS products was marginally superior to that of GPM-IMERG  Hordofa et al. (2021) 

Ethiopia had a good consistency with rainfall stations at 10 days, monthly, and seasonal scales Bayissa et al.(2017) 

Tanzania The CC values between CHIRPS and station data were less than 0.5 Lu et al. (2020)  

Burundi it could detect rainfall of less than 1 mm/d. However, detecting rain of more than 20 mm/d is problematic  Nkunzimana et al. (2020) 

Ethiopia shows good performance in hydrological simulation 

Alemu et al. (2020); Alemu and 

Bawoke(2020) 

Southern 

and 

NorthernAfri

ca 

South Africa  CC value of 0.6  Du Plessis and Kibii (2021) 

Egypt 

performed behind IMERG in detecting precipitation， CHIRPS fulfilled moderately in hydrological 

simulationin  Nashwan et al.(2019). 

Asia East Asia China 

better in high-precipitation areas and in summer(Mainland China) Bai et al 

well after TMPA3B42V7 and IMERG(Shanghai) Wei et al. (2020) 

CMORPH and GPM had better performance than CHIRPS in capturing extreme precipitation(The upper 

Yangtze River Basin) (Xiao et al. 2020) 

CHIRPS was inferior than MSWEP and TMPA(Huaihe River basin Pang et al(2020); An et al.(2020) 

performed badly in precipitation forecasting(The Pearl River Basin Xia et al.(2021) 

overestimation of precipitation was observed (The Beijiang) Zhang et al. (2014) 

performed better under the wet conditions, and it tends to underestimate small precipitation events  and 

to overestimate large precipitation(The Qinghai-Tibet Plateau) Liu et al.(2019) 



CHIRPS performed exceptionally well in the southwest of China, and it had superiority in hydrological 

simulation(The southern Tibetan Plateau) Li et al. (2021) 

 South Asia 

Pakistan outperformed PERSIANN-CDR Nawaz et al. (2021); Ullah et al. (2019) 

Bhutan can effectively captured heavy rainfall Khandu et al. (2016) 

India a better performance in comparison with IMD daily rainfall data Sulugodu and Deka (2019) 

India Drought hazard mapping Pandey et al. (2021) 

 / used in drought research(Afghanistan, the Tibetan Plateau, China, and Myanmar) Ghatak et al. (2018) 

India 

can be used for hydrological modeling and climate change studies in similar topographic and climatic 

watersheds  Venkatesh et al. (2020) 

Mekong 

River Basin performed well in precipitation estimate ,a substitute precipitation input data for hydrological simulations Luo et al. (2019) 

Southeast 

Asia 

Malaysia slightly overestimated the rain gauge data Ayoub et  

Indonesia a slightly better performance atthe daily scale than PERSIANN and GPM in streamflow simulations Wiwoho et al.(2021) 

Indonesia 

underestimated the frequency of minor (0-1 mm/day) rainfall events and heavy(> 50 mm/day) rainfall 

events over  Liu et al. （2020） 

Western Asia 

Turkey underestimate precipitation in the ranges of 25-80 mm/10-days and 150-300 mm/month in Turkey Aksu and Akgül (2020) 

Iran showed good annual performance (CC = 0.80 and FRMSE = 0.57) and poor daily performance Ghozat et al. (2020) 

Yemen 

CHIRPS was the most accurate product than NCEP CFSR, PERSIANN-CDR, TRMM3B42,and Unified 

Gauge-Based Analysis of Global Daily Precipitation (CPC),ERA-5 Al-Falahi et al. (2020) 

South America 

Brazil 

good agreement with the site data (CC = 0.94)， but the ability to detect precipitation is weak (POD = 

0.44)  Paredes-Trejo et al. 2017).  

Brazil 

The CC and RMSE values for the Amazon basin were 0.981 and 363.6 mm/year, respectively (Paca et al. 

2020). While, the daily scale had low mean absolute error (0.97 mm) and RMSE (3.65 mm/day)  Moraes Cordeiro and Blanco （2021) 

Chile products overestimatedprecipitation in the northern region of Chile Zambrano et al. （2017). 

Argentina 

CHIRPS shows a significant overestimation of total precipitation from April to June (cold season) and 

poorly for areas particularly above 1000 m Rivera et al. (2018). 

Europe, Oceania and 

Pacific Region 

 Italy 

GCM-RCM and CHIRPS matched well in terms of mean, error, and standard deviation, with CHIRPS 

having a CC value of 0.94  Caroletti et al.( 2019). 

Crimea in the Crimea region, the mean CC value of CHIRPS was 0.73.  Popovych and Dunaieva (2021) 

Australian CHIRPS was consistent with the precipitation estimation of the Australian Bureau of Meteorology Forootan et al. (2016). 

South West 

Pacific 

 the RMSE values of CHIRPS (1.1 - 1.9 mm/day) was lower than that of IMERG ( 1.4 -2.7 mm/day ) 

and CMORPH ( 1.8 - 2.9 mm/day) Wild et al.(2021). 

 606 

 607 

5. Future directions 608 

5.1 Improvement of CHIRPS 609 

The Globally Gridded Satellite (GriSat) TIR observations from 1981 to 2008 and the 610 

Climate Prediction Center dataset (CPC) TIR observations from 2000-present were utilized for 611 

the creation of CHIRPS. The linear relationships between the TMPA and TIR CCD data were 612 

examined from 2000 – 2013 to correct CHIRPS. Eventually, CHIRPS was finally combined 613 



with observation gauges, but the data before 2000 (CHIRP) still had a systematic bias(Shen et 614 

al. 2020). Hence, CHIRPS should be continuously improved, for example, by adding more 615 

reference data for the bias correction, whether on a monthly or daily basis(Gebremedhin et al. 616 

2021). More techniques should be explored to improve the accuracy of CHIRPS. For example, 617 

characterizing the sub-pixel spatial heterogeneity within the coarse pixels with a probability 618 

distribution function (PDF) technique(Li et al. 2019).  619 

The Gaussian Copula function is useful to calculate the uncertainty of CHIRPS in 620 

estimating precipitation (Mokhtari et al. 2021). Overestimation of precipitation by CHIRPS in 621 

the region of deep convective systems frequently results from a lack of rain gauges (Kimani et 622 

al. 2018).It is worth noting that the use of other correlation functions to assess the sensitivity of 623 

bias correction need to be further investigated. For example, the Bayesian approach is suitable 624 

for reducing the systematic error, especially for high altitude areas with well-distributed rain 625 

gauge networks. Using rain gauge data as a reference, the non-linear power bias correction 626 

method was used to correct improve CHIRPS over the Lake Ziway Watershed in Ethiopia. 627 

Comparable results were obtained when simulating the daily streamflow using the gauge and 628 

the bias-corrected CHIRPS(Goshime et al. 2019). 629 

There is still a lack of in-depth studies on spatial downscaling using CHIRPS that results 630 

in products with higher accuracy and finer resolutions products. According to the literature, the 631 

nearest-neighbor (NN) and bilinear (BL) methods are commonly used to downscale CHIRPS. 632 

While, thedaily bias of CHIRPS can be significantly reduced by using the Geographically 633 

Weighted Regression (GWR) merged method, even in areas with complex topography. A better 634 

accuracy could eventually be achieved by adding the accuracy-effective explanatory variables 635 

(Gebremedhin et al. 2021).Besides that, future research should also consider the improvement 636 

of multi-source heterogeneous precipitation data assimilation and fusion algorithm on CHIRPS 637 

with other products (Jiang et al. 2021). 638 

 639 

5.2 Extreme Event Assessment 640 

If gauges are unavailable, drought analysis could be still performed using CHIRPS, 641 

whichhelps to develop drought contingency and mitigation plans as well as policies for climate 642 

change adaptation(Pandey et al. 2021).CHIRPS is mainly used to measure SPI and Rainfall 643 



Anomaly Index (RAI) for quantifying drought, which is helpful for in-depth analysis of the 644 

significant impacts of extreme drought events to the agricultural sector(Ngoma et al. 2021). 645 

CHIRPS can act as a major precipitation input for different extreme indices calculations, can 646 

refer to a list of extreme indices that available in Climpact (https://climpact-sci.org/). CHIRPS-647 

based monthly precipitation or extreme indices could also be used to relate drought with El 648 

Niño-Southern Oscillation (ENSO), the main driver of global tropospheric water vapor content 649 

fluctuations.  650 

Although satellite precipitation products are widely used globally, basins are not 651 

prioritized as territorial management units (Xavier et al. 2021).However,compared to TRMM 652 

and GPM IMERG, there are fewer studies on the ability to capture extreme precipitation events 653 

based on CHIRPS estimates at the watershed scale. However, in certain watersheds, CHIRPS 654 

could provide reliable rainfall estimates for streamflow prediction(Alquraish and Khadr 2021). 655 

Before applying CHIRPS to hydrological modelling,theprobability distribution matching(Li et 656 

al. 2019), power transformations, distribution transfers and empirical correction(Belayneh et al. 657 

2020) could be considered to improve the extreme streamflow simulations.  658 

 659 

5.3 Hydrological Evaluation 660 

CHIRPS is potentially to replace gauges in low and medium altitudes as well as data-poor 661 

areas(Nawaz et al. 2021), but the applicability of CHIRPS needs to be first investigated (Alejo 662 

and Alejandro 2021). This is because the choice of precipitation datasets has a significant 663 

impact on the uncertainty in the parameters and performance of hydrological models(Sharannya 664 

et al. 2020). In a multi-satellite product validation study, the triple collocation method can be 665 

used for regions with few gauges or when the reference data is not available(Xia et al. 2021). 666 

Hydrological models are the primary instrument for the management of water resources 667 

and ecology. Since the SWAT model has been widely used in the CHIRPS validation studies, 668 

so it would be better to use the same model to minimize the uncertainty in the hydrological 669 

model selection, so that a fair comparison could be done in the future. The research on bias 670 

correction of CHIRPS data, as well as the adjustment and optimization of hydrological model 671 

parameters in different regions, can be strengthened in the future. 672 

The capability of CHIRPS in estimating other hydro-meteorological variables, i.e., 673 

https://climpact-sci.org/


evapotranspiration, soil moisture and groundwater, should be considered in the future to better 674 

understand the spatial hydrological efficiency of CHIRPS(Zhang et al. 2014).CHIRPS is 675 

excellent for disaster index building due to their time series and spatial benefits.The multi-676 

hazard approach and disaster risk management are combined in the context of “hydro-climatic 677 

intensity”(Fall et al. 2021). There is a need to combine CHIRPS with other high-precision 678 

precipitation products such as IMERG and MSWEP for hydrological simulation in different 679 

climatic zones (Ghozat et al. 2020). 680 

 681 

5.4 CHIRPS Validation  682 

Validation of CHIRPS should be performed in areas with varied climatic and geographical 683 

conditions, i.e., complex terrain, coastal areas, river basins, and oceans. It helps to enrich the 684 

literature content, which would advanced our understanding of how altitude, climate type, 685 

longitude, and latitude affect the accuracy of CHIRPS. Although prior research has 686 

demonstrated that CHIRPS is appropriate for Asia, but the performance of CHIRPS is not as 687 

good as IMERG, CMORPH and GSMaP-Gauge-RNL V6, especiallyin mountainous 688 

areas(Venkatesh et al. 2020, Wang et al. 2020, Xiao et al. 2020). Previous studies were carried 689 

out in places was conducted in places with dense rain gauge networks, subsequent studies 690 

would be conducted in regions with sparse rain gauge networks to expand the existing 691 

literature(Xiang et al. 2021). 692 

More CHIRPS validation study is required in dry and semi-arid regions because 693 

precipitation in these regions can vary greatly, particularly in the rainfed situations. These 694 

potential causes of error should be captured in more detail, which will need observations at 695 

higher elevations to fully characterize the precipitation over the area(Rivera et al. 2018). 696 

CHIRPS has been proved to be the most reliable satellite product in Africa (especially in 697 

West Africa), and its consistency with gauge data is better than other products such as IMERG 698 

and ERA5. The comparative study of CHIRPS in other regions is not sufficient in quantity and 699 

structure,  and there is no consistent conclusion, such as the study on the applicability of 700 

different landforms in the same latitude, different landforms in the same climate, and 701 

drought/wet seasons in different climate zones (latitudes).  A reliable conclusion needs to be 702 

formed to provide a basis for further optimization of CHIRPS data. 703 



 704 

5.5 Quality control of Reference Data 705 

During the CHIRPS testing process, the vast majority of which are validated through 706 

comparison with gauge data. Rain gauge data is generally considered to be real data. Manual 707 

or automated weather stations provide the field data. Numerous studies have demonstrated the 708 

potential for error in manned station data records. Systemic error also causes problems for 709 

automatic stations. Therefore, it is a new direction to study the quality control of site data before 710 

CHIRPS validation. 711 

 It is known that relocations of climate stations or modifications to measurement 712 

techniques and procedures can cause pauses in climate records. Approximately one such split 713 

occurs every 15 to 20 years. Moreover, when comparing climate analyses across regions, 714 

varying levels of data quality may influence the results and exacerbate extreme event 715 

statistics(Desiato 2019). 716 

It is recommended to perform stringent quality checks on climate data sets. The quality 717 

controls is generally divided into fundamental integrity, outlier, and spatial consistency 718 

(Lawrimore et al. 2011). Station records should be homogenized in order to detect and eliminate 719 

non-climatic signals. Different methods are used to homogenize climate variables, such as The 720 

Adapted Caussinus-Mestre Algorithm for Homogenizing Networks of Temperature Series 721 

(ACMANT) which has been used successfully to homogenize climate variables (precipitation, 722 

temperature, and relative humidity) with good results(O.E. Adeyeria 2019). For the relative 723 

homogenization procedure to be successful, the time series should be consistent. Similarly, the 724 

significance of the spatial consistency test is reliant on having suitable neighboring 725 

stations(Hunziker et al. 2018). 726 

    There are currently few studies on the quality control of gauge data and examples of gauge 727 

data correction prior to CHIRPS verification. Therefore, in order to enhance the reliability of 728 

CHIRPS data inspection, it is necessary to conduct out quality control of gauge data. In addition, 729 

multiple data synchronization testing is a recommended practice; However, under long-term 730 

records, gauge data also contained breakpoints and errors(Vy 2021); Reanalysis products like 731 

ERA-5 does not include any direct measurement of rainfall Whether from satellites or a group 732 

of sensors(Tang et al. 2020).The reanalysis products that does not rely on the rainfall station 733 



can be compared and tested for long time series CHIRPS data. 734 

 735 

6.Conclusion 736 

This review summarizes the performance of CHIRPS in precipitation estimation and 737 

hydrological modelling from123 articles.The performance of CHIRPS has been conducted 738 

mostly in China and Africa, while there are a relatively few studies from North America, central 739 

Asia, and Europe.The literature with research duration of 31-35 years is the most, accounting 740 

for 23.58% of all the articles. In general, the difference of the performance between CHIRP, 741 

CHIRPS (0.25°) and CHIRPS (0.05°) is small, but vary in different regions. 742 

On the monthly scale, the reported CC values werehigher in Africa than other regions. The 743 

RMSE values reported in East Africa and South West Pacific are better than Asia and South 744 

America. The median POD values of Burundi, India, Indonesia and Egypt were better at daily 745 

scales, but a relatively poor performance can be found in Chinaand Spain. The FAR values of 746 

USA, Spain, Brazil, and Ethiopia are close to 0, and least ideal in China, Togo and Benin. 747 

Overall, CHIRPS performedwell on the monthly scale in Asia and Southeast Asia such as 748 

Vietnam and Malaysia. In most areas of China, the performance of CHIRPS in precipitation 749 

estimationafter TMPA 3B42V7, GPM-IMERG and MSWEP V2.0, but the capturing of regional 750 

precipitation events in China is not accurate enough. 751 

CHIRPS performed on par with TRMM-3B43 at the global scale assessment. Previous 752 

research had shown that CHIRPS detected all typical drought occurrences in terms of time 753 

change, making it more suitable for recent drought monitoring as well as in tropical 754 

forests.SWAT is the most popular hydrological model for assessing the capability of CHIRPS 755 

in hydrological modelling. On the daily scale, the gap between calibration phase and validation 756 

phase NSE values was somewhat greater than on the monthly scale. 757 

Although CHIRPS has some limitations, however, it can be used in areas with few 758 

gaugesdue to the temporal and spatial coverage. One of the shortcomings of CHIRPS data 759 

algorithm is the lack of uncertain information of inverse distance weighting algorithmwhen 760 

combining CHIRP with site data(Chris C. Funk 2013). The limitation of CHIRPS lies in the 761 

accuracy and effectiveness of TRMM data as input data, and its snow measurement ability is 762 

limited (Bai et al. 2018). 763 



Future CHIRPS validation research should be conducted in regions with complex 764 

topography, coastal regions, river basins (mountains, hills, and plains), and oceans with varying 765 

climate zones. It is important to develop un-biasing procedures that address the likelihood 766 

of precipitation and the amount of precipitation. In addition,a deeper assessment of the impact 767 

of altitude, climate type, longitude, and latitude is required for enhancing the research results 768 

of CHIRPS. Methods of function, data fusion, and downscaling can be used to enhance 769 

CHIRPS' spatial resolution. 770 

In the meantime, CHIRPS can be used to compute hydro-meteorological variables, i.e., 771 

evapotranspiration, which can be used to study natural disasters such as floods and droughts 772 

and in conjunction with hydrological models to analyze hydrological research under various 773 

climatic conditions. For instance, the adjustment and optimization of semi-distributed 774 

hydrological model parameters based on CHIRPS.Inaddition,bias correction methods such as 775 

probability function and the Gaussian Copula model for CHIRPS can greatly reduce the bias 776 

between CHIRPS data and observed data. It is better capture precipitation events and 777 

characteristics.  778 

CHIRPS is products that combine gauge data correction and is difficult to avoid the impact 779 

of gauge data quality in use. In future research, on the one hand, we can focus on quality control 780 

of rain gauge data; and on the other hand, we can strengthen the research on the correction of 781 

CHIRPS data through reanalysis products(such as ERA-5) and multiple types of satlite data. 782 
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