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A B S T R A C T   

The main objective of this study is to employ the Extreme Gradient Boosting (XGBoost) machine learning al-
gorithm to predict the power, wake, and turbulent characteristics of horizontal-axis wind farms under yaw- 
controlled conditions. For this purpose, a series of high-fidelity numerical simulations using LES method are 
performed over tandem NREL-5 MW wind turbines to generate the input data for training and testing in machine 
learning analysis. It is observed that XGBoost is more accurate for wake prediction of the yaw-controlled wind 
farms compared to ANN, which was used in previous studies. The results illustrate that XGBoost can predict the 
power with a mean deviation of 0.94 % for different yaw angles, while ANN can estimate the power generation 
with a mean deviation of 2.15 % for various tested yaw angles. At far wake regions (X > 2000 m) of the second 
wind turbine, the deviations reach below 1 %. Moreover, XGBoost requires a much shorter training time, 87.5 % 
faster than ANN. The power production of both wind turbines can be predicted more accurately with XGBoost 
compared to ANN. The wake prediction time of XGBoost is just 0.105 sec, while this time is 4.480 for the ANN 
model. In conclusion, XGBoost provides a significant reduction in error and training time compared to ANN and 
deep learning algorithms over yaw-misaligned wind farms.   

1. Introduction 

In order to reduce the total cost of wind power generation, wind 
turbines are usually clustered to form a wind farm. However, if the 
downstream turbines run in the wake of the upstream ones, their per-
formance may be significantly affected. Wind turbines operating in the 
wake regions typically produce less power and will face severe structural 
stresses than those running in freestream flows. Wind farm layouts 
generally are optimised to minimise the effects of the unfavoura-
ble wake. Several wake control techniques, such as yaw control, tilt -
control, and cone angle control techniques, are suggested to deflect the 
wake of upper-layer wind turbines in complex wind farm layouts [1]. 

One of the most common approaches to evaluate the wind-turbines 
aerodynamic performance and wake profile is to use computational 
fluid dynamics (CFD), for example large-eddy simulation (LES), which 
provides a more precise characterisation of flow structure over wind 
turbine blades than the Reynolds averaged Navier Stokes (RANS) model 

[2–4]. The improved mesh used to determine the boundary layer makes 
CFD modelling of a wind farm with tens of turbines highly computa-
tionally costly. The actuator-disk method (ADM) and actuator line 
method (ALM) coupled with large eddy simulation (LES) can simu-
late complex wind turbines by replacing the blades with actuator points 
[5]. Although the computational cost of LES is still quite expensive to 
resolve the turbulent characteristics in wake regions, the ALM-LES 
method has been successfully implemented to predict the wind turbine 
wake [6,7]. To explore the time-averaged wake structures, the RANS 
method is more computationally efficient than the LES. The common -
turbulence models in RANS, like standard k-ε, cannot accurately 
compute the turbulent flow in the turbine wake under atmospheric 
boundary layer (ABL) conditions, resulting in a failure in wake pre-
dicting, as noted by [8,9]. In general, low-fidelity CFD modelling can 
estimate wake characteristics that are more specific and precise. 
Therefore, high-fidelity CFD models may be used for various wind tur-
bine wake structures, power production, and other important 

Abbreviations: ADM, Actuator disk method; ALM, Actuator line method; ANN, Artificial neural network; CFD, Computational fluid dynamics; CNN, Convolutional 
neural networks; DNS, Direct numerical simulation; HAWT, Horizontal-axis wind turbine; LES, Large eddy simulation; ML, Machine learning; NREL, National 
Renewable Energy Laboratory; PALM, Parallelized Large-Eddy Simulation Model; RANS, Reynolds averaged Navier Stokes; VAWT, Vertical-axis wind turbine; 
XGBoost, eXtreme Gradient Boosting. 

* Corresponding author. 
E-mail address: mahdi.nakhchi@northumbria.ac.uk (M.E. Nakhchi).  

Contents lists available at ScienceDirect 

Energy Conversion and Management 

journal homepage: www.elsevier.com/locate/enconman 

https://doi.org/10.1016/j.enconman.2023.117708 
Received 17 May 2023; Received in revised form 20 September 2023; Accepted 24 September 2023   

mailto:mahdi.nakhchi@northumbria.ac.uk
www.sciencedirect.com/science/journal/01968904
https://www.elsevier.com/locate/enconman
https://doi.org/10.1016/j.enconman.2023.117708
https://doi.org/10.1016/j.enconman.2023.117708
https://doi.org/10.1016/j.enconman.2023.117708
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2023.117708&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy Conversion and Management 296 (2023) 117708

2

parameters. The Parallelized Large-Eddy Simulation Model (PALM) [10] 
is also used to compare the ADM and ALM approaches in wind farm 
models. However, this model is currently computationally expensive 

Table 1 
Recent studies on power and wake prediction of wind farms using machine 
learning.  

Author ML method Main findings 

Zhang and 
Zhao [16] 
(2020) 

Deep learning  • Wind farm wake prediction. 
4.8 % error compared to 

analytical models. 
Brogna et al. 

[27] 
(2020) 

Gradient-based and 
Gradient-free methods  

• Optimization of wind farms in 
complex terrain under 
uncontrolled conditions 

Ti et al.[17] 
(2020) 

ANN model based on the 
backpropagation (BP) 
algorithm  

• Wind farm wake prediction 
without yaw misalignment. 

Computation time could grow 
exponentially for wind farms. 

Ti et al. [28] 
(2021) 

ANN  • Power and wake profiles of wind 
farms are predicted with 
uncontrolled wake conditions. 

Computational expense is high 
for large-scale wind farms. 

RANS method is used for col-
lecting wake profiles. 

Chen et al. 
[29] 
(2021) 

Multilayer 
perceptron neural network 
(MLP-NN)  

• Wake profile and power 
production of multiple turbines 
were predicted using low-fidelity 
RANS model. 

Yang et al. 
[19] 
(2022) 

ANN  • power estimate with a mean error 
of 1.13 %. 

Requires significant 
computation recourses for 
training and testing. 

Purohit et al. 
[24] 
(2022) 

SVR, ANN, and XGBoost  • Wake profile of a single NREL-5 
MW wind turbine predicted. 

XGBoost requires less training 
time and more accurate. 

Yaw-misalignment was not 
considered.  

Fig. 1. Schematic view of NREL 5 MW wind turbine under yaw-control conditions.  

Table 2 
Geometric parameters of the horizontal-axis wind turbine.  

Parameter Value  

Rated output power (Pout) 5 MW  
Rated wind speed (Urated) 11.4 m/s  
Tip-speed ratio 7.0  
Rotor diameter (D) 126.0 m  
Rotational speed (Ω) 12.1 rpm  
No. of blades 3  
Hub height 90.0 m  
Hub diameter 3.0 m  
Cone angle (β) 2.5o  

Yaw angle (θ) − 30◦ to 30o   

Fig. 2. Forces on the wind turbine mid-section using ALM method.  
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and too complex in the performance prediction of large wind farm lay-
outs by considering the realistic inflow conditions under various wake 
conditions. 

In the past few years, machine learning methods like artificial neural 
networks (ANN) [11] and convolutional neural networks (CNN) [12,13] 
have been used to predict mechanical problems in many different fields. 
Wind turbine researchers are now focusing more and more on machine 
learning techniques for both steady [14] and transient fluid flow 
[15,16]. Neural networks may be trained to predict the output param-
eters as a function of input parameters precisely. Ti et al. [17] used ANN 
architecture with 2000 sub-models with one hidden layer to predict the 
performance of a wind farm layout with different numbers of horizontal- 
axis wind turbines (HAWTs). For the training, they used the back- 

propagation (BP) algorithm. Biswas et al. [18] used ANN for the pre-
diction of the wake region of vertical axis wind turbines (VAWTs) to 
examine the overall performance, power production and torque forces 
on the blade structures [18]. Yang et al. [19] combined ANN with a 
Bayesian machine learning algorithm to predict the wake of yaw- 
controlled wind farms. To directly estimate the power production of a 
wind farm by considering the wake losses, machine learning methods 
like the Long Short Term Memory (LSTM) network [20] are used. The 
review study of Stetco et al. [21] about the applications of machine 
learning methods to predict the performance of wind turbines showed 
that it is challenging to estimate the turbine wake, which needs to know 
the link among inflow circumstances, rotor properties, turbulent flow 
structure and vortex generations in the wake area. They showed that 
accurate wake predictions of wind farms could be done much faster and 
with accuracy comparable to high-fidelity CFD simulations if an 
appropriate machine learning model were used. However, the previous 
machine learning studies on wake prediction of wind farms require 
significant amount of time and also many simplifications must be 
considered to the wind farm model to make it possible to apply machine 
learning with significant amount of data. 

Fig. 3. Wind farm simulation flowchart using ALM-LES method.  

Fig. 4. Mesh generation over two wind turbines in tandem configuration.  

Fig. 5. Grid independence study over single wind turbine (Uin = 11.4 m/s, I =
θ = 0). 
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The eXtreme Gradient Boosting (XGBoost), is a modified and effi-
cient machine learning algorithm which is an improved edition of the 
Gradient Boosting framework [22,23]. The main improvement is in the 
regularised loss functions in the objectives of XGBoost, which improves 
its efficiency and performance for training large amounts of data. 
XGBoost is an effective collective machine learning algorithm which 
merges the output of particular output trees into a joint output. A recent 
study by Purohit et al. [24] showed that XGBoost is significantly more 

efficient compared to the artificial neural network (ANN) and support 
vector regression (SVR) machine learning algorithms in velocity and 
turbulence intensity prediction of wind turbine wakes. In addition, 
XGBoost has been successfully used to detect the faults in wind turbines 
[25] and to predict the power production of wind power [26]. The 
summary of the previous machine learning studies on power and wake 
prediction of different wind farm layouts is provided in Table 1. 

Based on the above literature review, wake prediction has been the 

Fig. 6. General architecture of XGBoost algorithm and BP network for machine learning over wind farm layout.  

Fig. 7. Validation of the present model with previous models over NREL 5 MW wind turbine.  
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subject of a relatively small amount of research through the application 
of machine learning approaches. Moreover, all of the previous studies 
were focused on typical straight wind turbines in their training models. 
However, in real wind farms, the upstream wind turbines are in wake- 
controlled conditions to increase their overall power production. The 
main reason that the previous machine learning studies on wind farms 
have imposed several simplifying assumptions was that the training time 
and precision would be significantly affected by considering more 
realistic input parameters. Recently, Ti et al. [17] proposed a machine 
learning analysis to model the wake profile of a wind farm layout in 
tandem form. They used ANN based on back-propagation (BP) for this 
purpose. However, they used a low-fidelity model for CFD simulations 
(ADM-RANS) to reduce the computational costs. In addition, they used 
wind turbines in uncontrolled wake conditions. Consequently, it is 
crucial to suggest a novel machine learning investigation that relies on 
advanced techniques such as LES and takes into account the influence of 
wake misalignment, such as yaw control, within the training algorithm. 
Reducing the training time is also another major parameter in machine 
learning based on a huge amount of data. In summary, the main nov-
elties of this work can be summarised as:  

• Considering the yaw angle misalignment effects in machine learning 
of a wind farm at different inflow velocities for the first time.  

• Using XGBoost to predict wind farm wake and power generation for 
the first time.  

• Significant reduction in error and training time compared to ANN 
and deep learning algorithms proposed by previous studies.  

• Saving tens of thousands of CPU hours on a high-performance 
computing cluster. 

The paper’s structure highlights the key sections: 1. Introduction, 
literature review on the significance of machine learning in wind farms. 
2. Physical description of the wind farm layout. 3. Mathematical 
formulation of the LES method using the Incompact3D code. Addition-
ally, we will introduce the optimisation equations of the XGBoost 
method. 4. Results and discussion, where we analyse the ML outcomes 
and compare the precision of the proposed model, and 5. Conclusion, 
summarising the findings and emphasising their broader implications. 

2. Physical description 

The computation domain of two NREL 5 MW wind turbines by 
considering the inflow disturbance is shown in Fig. 1. The wind turbine 
characteristics are also provided. The wind turbines have a rotor 
diameter of D = 126 m and rotate with a rotational speed of Ω = 12.1 
rpm. The domain has a 20D length in the streamwise direction (x), 8D in 
the lateral direction (z) and a height of 6D in the y-direction. The up-
stream wind turbine is placed at a 2D distance from the inlet, and the 
distance between the wind turbines is kept constant at 7D [30]. The 
typical distance (7D) between the wind turbines is used to avoid addi-
tional wake at smaller distances and additional power transmission and 
maintenance costs of larger wind farms with more distance (larger than 
7D) between the turbines. This distance also provides the possibility of 
validation with previous studies in this field. The inflow turbulent in-
tensity varied from 2 % to 26 % in this study, and the inflow velocity in 
the streamwise direction (U) varies from 11.4 to 15 m/s. The contours 
and simulation results are provided for the rated inflow velocity of 11.4 
m/s over the NREL 5 MW wind turbine to produce the maximum rated 
power. The physical parameters of the 3D wind farm used in this study 
are provided in Table 2. The yaw angle of the upstream turbines varies 
between ( − 30o < θ < 30o). It is mentioned by Nash et al. [1] that the 
yaw angle could be positive or negative. The velocity inlet boundary 
condition is selected at the inlet, while the pressure outlet boundary 
condition is selected at the outlet of the domain. Slip wall boundary 
condition is imposed on the sidewalls of the domain. It should be noted 
that using higher yaw angles will impose additional forces on the wind 
turbine blades and will reduce their life expectancy. However, in this 
study all possible yaw angles are considered to provide a general ma-
chine learning approach for various wake control conditions. 

3. Mathematical formulation 

The Incompact3D code is a high-order finite-difference fluid flow 
solver on a Cartesian mesh. This code is developed in Fortran language 
to model different incompressible flows [31]. The main advantage of 
this solver is its better simulation speed and convergency with millions 
of elements on HPC clusters, and it provides the ability to model wind 

Fig. 8. Instantaneous axial velocity contours for different yaw angles.  
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farms by considering all the geometrical parameters of the wind tur-
bines, such as all details of wind turbine airfoils, tower sections, hub 
height, and also yaw, tilt and cone angles. Moreover, it can model both 
horizontal-axis and vertical-axis wind turbines with a different number 
of blades. This code can predict essential output parameters of wind 
farms, such as the overall output power. 

The solver provides the ability to select direct numerical simulation 
(DNS) or LES for the transient flow simulation in the domain. In this 
study, the LES method with a time step size of δt = 0.02sec is chosen for 
the simulations. This method can be used as a high-resolution turbulence 
model for the present simulations to capture both instantaneous and 
time-averaged results in the wake region of the wind turbines. To cap-
ture small eddies, a subgrid-scale (SGS) model is selected for the LES 
method. The governing equations of this model can be expressed as [32]: 

∂ũi

∂xi
= 0 (1)  

∂ũi

∂t
+ ũj

∂ũi

∂xj
= −

1
ρ

∂p̃
∂xi

+ ν ∂
∂xj

(
∂ũi

∂xj

)

−
∂τSGS

ij

∂xj
+ si (2)  

Where u, p, and ν are velocity tensor, pressure, and kinematic viscosity, 
respectively. si is a source term, and τSGS

ij = ũiuj − ũiũj is the SGS sym-
metric stress tensor. In the present work, the Smagorinsky model is used 
for the numerical modelling of the wind farm domain. Based on the 
Smagorinsky model, the subgrid-scale stress tensor can be expressed as 
[32]: 

τSGS.dev
ij = τSGS

ij −
1
3
τSGS

kk δij ≈ − 2νSGSS̃ij (3)  

where S̃ij =
1
2

(
∂̃ui
∂xj

+
∂̃uj
∂xi

)

is the resolved strain tensor. The SGS viscosity 

can be written as [32]: 

Fig. 9. Cross-section view of instantaneous vorticity magnitude in the wake region of the wind farm layout at different sections.  
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νSGS = (CsΔ)
2
⃒
⃒
⃒
⃒S̃ij

⃒
⃒
⃒
⃒ (4)  

In which Cs = 0.168 is the Smagorinsky’s constant. The resolved strain 

magnitude can be evaluated as 
⃒
⃒
⃒
⃒S̃ij

⃒
⃒
⃒
⃒ =

̅̅̅̅̅̅̅̅̅̅̅̅

2S̃ijS̃ij

√

. 

To model the wind turbine blades, hub and tower, the actuator line 
method [33] is used to replace each part of the wind turbine with body 
force lines and link them together with some actuator points. The details 

of actuator points employed on the NREL wind turbine blades can be 
found in [34]. Fig. 2 shows the details of forces and different design 
parameters at the mid-section of the NREL 5 MW turbine. Vn and Vθ are 
the normal and tangential velocity components on the aerofoil, γ is the 

pitch angle, ϕ = tan− 1
(

Vn
rω− Vθ

)
is the velocity angle, and α = ϕ − γ is the 

angle of attack. The relative and tangential velocity components (Vrel, 
Vt) are calculated as [35]: 

Vrel =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
n + V2

t

√

, Vt = rω − Vθ (5)  

The drag and lift forces (FD,FL) on wind turbine airfoils can be computed 
as [35]: 

FL =
1
2

ρVrel.c.CL (6)  

FD =
1
2

ρVrel.c.CD (7)  

where c is the chord length of the blade in streamwise direction ρ, CL and 
CD are density, drag and lift coefficient, respectively. To calculate the 
forces on the wind turbine blades in the normal and tangential di-
rections, the lift and drag forces can be divided as: 

Fn = FLcosϕ+FDsinϕ, Ft = FLsinϕ − FDcosϕ (8) 

The drag and lift forces on each cell of the turbine tower can be 
calculated as 

Ftower
D = 0.5ρU2

ref CDtower Acell (9)  

where CDtower = 1.0 is chosen as the tower induced drag coefficient. 
The CFD simulation flowchart of the ALM-LES method used in this 

study using the Incompact3D solver is provided in Fig. 3. For different 
inflow velocities and turbulent intensities, the simulations were 

Fig. 10. Front view of comparison between XGBoost and ALM-LES results of 
axial wake generation of two wind turbines under yaw-controlled conditions (θ 
= 15◦). 

Fig. 11. Hub-height view of comparison between XGBoost and ALM-LES results of axial wake generation of two wind turbines under uncontrolled and yaw- 
controlled conditions. 
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performed at different yaw-controlled conditions to capture the 
instantaneous and time-averaged wake profile in the downstream region 
of a wind turbine. The turbine properties, including the blade airfoils, 
hub, and tower, are imposed in the ALM section of the solver. The flow 
characteristics and boundary conditions are set in the LES part of the 
solver to model the turbulent flow structure in the domain. These data 
are linked together in the solver. After collecting all required data for 
different inflow velocities and yaw angles, the machine learning analysis 
is performed to predict the power generation and wake profile of the 
wind farm. 

Cartesian mesh is chosen as the computational domain to perform 
the ALM-LES simulations. The mesh is refined at the centre to capture 
the wake and vorticities in the downstream region accurately. The mesh 
is gradually smoothed toward the other layers of the domain. Details of 
the mesh used in the wake region in this study are shown in Fig. 4. 

A grid independence study is performed to find the optimum grid for 
the simulations. As shown in Fig. 5, eight different grids (1.28 ≤ δ ≤

5.70m) are chosen in this study. The grids illustrate the mesh size at the 
centre of the refined mesh region. The grid study shows that by raising 
the number of elements from 3.42 million to 10.36 million, power 
generation will be increased significantly. By gradually increasing the 

number of elements, this deviation becomes smaller. It can be seen that 
the deviation of output power for δ = 1.28m compared to δ = 1.52m 
(element number of 112.37 million) is less than 0.2 %. Therefore, this 
mesh size is accurate enough to capture the power production of the 
NREL 5 MW wind turbine. 

In this study, the XGBoost algorithm is utilised to create a fast and 
efficient model for the prediction of wake and power production of the 
wind farm model at different yaw-controlled conditions. The XGBoost 
algorithm employs the boosting ensemble learning basis to reduce errors 
and create more accurate models [36]. Fig. 6a shows the XGBoost al-
gorithm flowchart. The main advantage of XGBoost compared to the 
other machine learning methods is better accuracy in wind farm pre-
dictions and more efficient training in parallel computing. The training 
is performed on the UK national supercomputer (ARCHER2) on Intel 
CPU nodes. The input parameters are inflow hub-height velocity (Uin), 
turbulent intensity (I), yaw angle (θ), and thrust coefficient (Ct). The 
velocity data in the flow field are interpolated into 360,000 data points 
in a matrix V for the training process. The inflow velocity varies from 8 
to 15 m/s. Turbulent intensity at the inlet of the wind farm varies from 2 
to 26 % which is reported by previous studies over wind farm layouts 
[9,37]. The yaw angle, which is the main novelty of this study varies 

Fig. 12. Comparison between CFD and ML for wake profiles at different distances from downstream yaw-controlled wind turbine.  

Fig. 13. Comparison of the CFD results with machine learning analysis for axial velocity at the hub-height (Y = 90 m).  
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from − 30 to 30 degrees. The wind turbines usually operate in smaller 
yaw misalignments. However, large angles are selected for training 
purposes to make the predictions more general. In this study, 32 ALM- 
LES sample simulations are required to capture all necessary data for 
the training. The objective function at t-th iteration to be trained in 
XGBoost can be expressed as [24]: 

L
t
=
∑n

i=1
l
(
yi, ŷt− 1

i + ft(xi)
)
+Ω(ft) (10)  

where yi is the target parameter at i th case, ŷt− 1
i is the prediction of the 

parameter at t − 1 iteration, ft is a function that minimises the objective 
function L t, and Ω

(
ft
)

is the regularisation term. By applying a second- 
order Taylor expansion in the XGBoost algorithm, this equation can be 
expressed as [24]: 

L̂
t
=
∑n

i=1

[
gift(xi)+ 0.5hif 2

t (xi)
]
+Ω(ft) (11)  

where gi and hi are the gradients and Hessians of the cost function, 

respectively. The following learner minimises the loss function by 
calculating a scoring function (Eq. (12)) which evaluates the training 
tree quality, and the optimal weights can be written as: 

L̂
t
(q) = − 0.5

∑T

j=1

( ∑
i∊Ijgi

)2

∑
i∊Ijhi + λ

+ γT (12)  

w*
j =

∑
i∊Ijgi

∑
i∊Ijhi + λ

(13) 

The exact stingy algorithm was utilised to compute all possible trees 
for all parameters to find the optimum tree structure. The loss reduction 
after splitting can be expressed as: 

L splt = 0.5

[
(
∑

i∊ILgi)
2

∑
i∊ILhi + λ

+
(
∑

i∊IRgi)
2

∑
i∊IRhi + λ

+
(
∑

i∊Igi)
2

∑
i∊Ihi + λ

]

(14) 

The machine learning architecture of ANN based on the BP algorithm 
which is used for comparison with XGBoost in this study is shown in 
Fig. 6b. More details about this algorithm and its application for wake 
prediction of wind farms can be found in [17]. 

4. Results and discussion 

The numerical method used in the present analysis is validated 
before further analyses to ensure that the results are accurate and reli-
able. As there are no physical experiments for this analysis, the results 
are first validated with various numerical studies. The variation of the 
tangential forces with the blade radius is computed from the present 
simulation and compared to those of Dose et al. [38] and Onel et al. [32], 
as shown in Fig. 7a. It is observed that a close agreement is obtained 
between the present study and the fully resolved mesh (FRM) analysis of 
Dose et al. [38], whereas there are some deviations among the present 
simulation and ALM results of Onel et al. [32]. This is due to different 
numerical methods employed; however, the deviations are very small 
and within an acceptable level. It should also be noted that the present 
simulation captures the tip loss behaviour reasonably well, which is very 
important for wind turbine analysis. In addition to the forces applied to 
the blades, it is also important to capture the wakes. Fig. 7b compares 
the dimensionless wake profile, expressed in U/Uref, extracted at 2D (D is 
the rotor diameter) from the turbine in the downstream wake region, 
computed from the present simulation and that of Miao et al. [39]. The 
two studies show a remarkable level of agreement, which ensures that 
the numerical model can capture the downstream wake profiles. 

The effect of the yaw angle misalignment on the unsteady flow 
behaviour around two wind turbines in arrays is illustrated in Fig. 8 

Table 3 
Comparison between the ANN and XGBoost machine learning results with CFD 
simulations for different yaw angles.  

Yaw ¼ 15o 

Axial location CFD XGBoost ANN 

U (m/s) U (m/s) Error % U (m/s) Error % 

X = 500 10.442 10.415 − 0.26 10.608 1.59 
X = 1000 9.730 9.727 − 0.03 9.280 − 4.62 
X = 1500 8.101 8.113 0.15 7.779 − 3.97 
X = 2000 9.800 9.799 − 0.01 9.872 0.73  

Yaw ¼ 25o 

Axial location CFD XGBoost ANN 
U (m/s) U (m/s) Error % U (m/s) Error % 

X = 500 9.381 9.385 0.04 9.572 2.03 
X = 1000 11.083 10.924 − 1.43 10.590 − 4.44 
X = 1500 8.179 8.217 0.46 8.014 − 2.01 
X = 2000 9.830 9.832 0.02 10.02 1.93  

Yaw ¼ -30o 

Axial location CFD XGBoost ANN 
U (m/s) U (m/s) Error % U (m/s) Error % 

X = 500 8.327 8.334 0.08 8.327 − 0.08 
X = 1000 11.413 11.395 − 0.15 11.108 − 2.67 
X = 1500 8.448 8.331 − 1.38 8.187 − 3.09 
X = 2000 9.698 9.763 0.67 9.580 − 1.22  

Fig. 14. The effects of Inflow velocity on prediction accuracy of machine learning over yaw-controlled wind turbines.  
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through instantaneous velocity contours. It can be clearly seen that the 
wake close to the second turbine is highly influenced by the upstream 
turbine at all yaw angles shown in this figure. At θ = 15◦ , the wake of 
the upstream turbine is slightly shifted to the side due to the yaw 
misalignment to the inflow wind before reaching the downstream tur-
bine. Despite the wake deflection, the downstream wind turbine is still 
majorly in the wake of the upstream turbine. As a result, the velocity 
magnitudes are much lower and the vortex generations are stronger in 
the wake region of the downstream turbine compared to that of the 
upstream turbine. These effects on the downstream wind turbine can be 
reduced by controlling the yaw angle. Therefore, the performance of the 
downstream wind turbine can be improved. The wakes behind the 
downstream turbine at these angles are also strong due to the influences 
of the turbulence from the upstream turbine; however, the velocity fields 
are slightly improved compared to the θ = 15◦ case. 

The evolution of vorticity behind each turbine at different distances 
(X = 2D, 5D and 9D) are plotted on a plane normal to the wind direction 
in Fig. 9. At X  = 2D (2D behind the upstream wind turbine), a tip 
vorticity ring can still be observed at the yaw angle of 15◦. However, this 
vorticity is deformed to the side when the yaw angle is further increased. 
The side to which the wake is deflected depends on whether the yaw 
angle is controlled in the positive direction (clockwise looking at from 
the wind direction) or negative direction (anti-clockwise looking at from 

the wind direction). The wake deflections are more pronounced behind 
the downstream wind turbine at X  = 5D and X  = 9D as the vortex 
generations are stronger as seen in the previous figure. At θ = 25◦ and 
θ = − 30◦ , the wakes of the downstream wind turbines at both distances 
are completely deformed. The vorticity close to the downstream turbine 
is stronger than that of the upstream turbine, and the magnitude be-
comes higher as it goes further downstream behind the downstream 
wind turbine. 

Fig. 10 compares the time-averaged velocity distributions across 
wind turbines obtained from a flow simulation using an ALM-LES 
method and predicted from the Machine Learning procedure using the 
XGBoost tool. An error contour is also presented to indicate the differ-
ence in percentage between the two methods. The wake development 
from each turbine and the wake interactions can be observed in this 
figure. The velocity magnitudes behind the downstream turbine are 
significantly lower compared to that of the upstream turbine. It is seen 
that the flow fields predicted by the two methods are very similar, which 
indicates that the XGBoost machine learning model can capture and 
predict the wake structures generated from both upstream and down-
stream turbines correctly. The errors between these two methods are 
within 4 %, which is an acceptable limit. It is also the first time that the 
effects of the yaw angle misalignment are considered in a machine 
learning model. Unlike the study of Ti et al. [17], the present study uses 

Fig. 15. Comparison of normalised power generation of two wind turbines for ML with CFD at different yaw angles.  

Fig. 16. Comparison of training and prediction time of ANN and XGBoost over wind farm layout.  
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an LES method to solve the flow governing equations to train the ma-
chine learning model. At the same time, it improves the resolution and 
accuracy of the unsteady flow structures predicted by the machine 
learning model. 

The influences of the yaw angle variations on the velocity fields at 
the hub height and wake behaviour are demonstrated in Fig. 11. The 
yaw angles are varied between − 30◦ and 30◦ . When the yaw angle is set 
to 0◦, the downstream wind turbine operates entirely within the wake of 
the upstream turbine, leading to a considerable decrease in the perfor-
mance of the downstream turbine. At θ = 15◦ , it can be observed that 
the wake is deflected to the left side, looking from the wind direction, 
which reduces the impact of the upstream wake on the downside one. 
Although the performance of the upstream turbine is affected by the 
misalignment of the yaw angle to the inflow wind, the power of the 
downstream wind turbine can be improved, thereby increasing overall 
power output. The upstream wake is further deflected as the yaw angle is 
increased. The comparisons between the ALM-LES simulations and the 
predictions of the XGBoost model show that the flow fields obtained 
from the two methods are almost identical at θ = 0◦ . Overall, the pro-
posed machine learning model accurately predicted the unsteady flow 
behaviour within an acceptable error limit (±4%). 

In addition to the velocity contours, the velocity profiles at various 
distances from the turbine in the downstream region are also plotted in 
Fig. 12 to quantitively compare the two methods. The results are plotted 
for the θ = 15◦ and θ = − 30◦ cases. The profiles are almost identical in 
the wake region of the upstream one (X = 2D and X = 5D), but there are 
some deviations in the wake region of the downstream wind turbine (X 
= 9D and X = 12D), where the flow is more unsteady and turbulent due 
to the merging of wake structures. Nevertheless, the deviations are 
neglectable, and it is concluded that the machine learning model 
employed in this study well-predicted the wake profiles, which is 
essential for the aerodynamic analysis of wind turbines. 

Fig. 13 illustrates the comparison between the CFD results with 
machine learning analysis for the axial velocity at the hub height of two 
wind turbines in tandem configuration. The comparison shows that the 
velocities at the inlet and wake of the first turbine are captured precisely 
for all cases. These deviations become larger at higher yaw misalign-
ment angles. It observed that differences become slightly larger in the 

wake region of the second wind turbine, which is due to uncontrolled 
wake conditions of the downstream wind turbine. 

Table 3 quantitatively compares the accuracy of XGBoost, the 
employed machine learning model, with the ANN machine learning 
model and the CFD simulation for the prediction of streamwise velocity 
magnitudes at different axial locations at various yaw angles. The errors 
higher than 1 % are observed at X  = 1000 at θ = 25◦ and X  = 1500 at θ 
= 30◦. However, the errors are within 2 % and can be considered low, 
especially compared to the ANN model of which errors are higher than 4 
%. Therefore, it can be noted that the XGBoost model can predict similar 
streamwise magnitudes as the CFD model without requiring significant 
computational resources. 

The effects of inflow velocity on deviations between the machine 
learning analysis and CFD simulations are provided in Fig. 14. The wind 
turbine under investigation is a 5 MW offshore wind turbine with a rated 
wind speed of 11.4 m/s. Generally, the wind condition at sea is more 
steady and less turbulent than the condition on land. Therefore, it is 
assumed that the wind turbine is operating at around the rated wind 
speed, and three inflow speeds of 11.4 m/s, 13 m/s, and 15 m/s are 
selected in this study. The comparison is provided for three different 
inflow velocities at the yaw angle of 25◦. The error is defined as |Error| =
⃒
⃒
⃒
UML − UCFD

UCFD
× 100

⃒
⃒
⃒. The comparison is provided at the flow stream direc-

tion at the hub height of the two HAWTs. The results show that gener-
ally, the XGBoost machine learning can precisely capture the velocity for 
inflow velocities at an extreme yaw angle of 25◦. The same trend was 
observed by comparing the results for different yaw angles. It is 
observed that small deviations can be detected in the wake region of the 
first wind turbine. These deviations become larger and reach 2 % at 
higher inflow velocities. For all cases, these deviations become larger in 
the wake region of the second wind turbine. The main reason is that the 
second wind turbine is in uncontrolled conditions and the vorticities are 
larger. At far wake regions of the second wind turbine, the deviations 
gradually start to decrease and reach below 1 % at far distances of X >
2000 m. 

Fig. 15 illustrates the comparison of the normalised power genera-
tion of each wind turbine at various yaw angles, obtained from the ALM- 
LES method and the XGBoost machine learning method. The results 
predicted from the artificial neural network (ANN) method are also 
added to the comparison to evaluate the accuracy of each method. It can 
be seen that the predictions from the XGBoost machine learning method 
are in close agreement with the ALM-LES method, whereas some small 
offsets are present between the ALM-LES method and the ANN method. 
Results obtained demonstrate that the power produced from the up-
stream wind turbine is maximum at θ = 0◦ ; however, the power from the 
downstream turbine is minimal at this angle. Although increasing the 
yaw angle reduces the power output of the upstream turbine as it is not 
facing the inflow wind directly and loses a certain amount of kinetic 
energy due to the misalignment of the yaw angle, it improves the per-
formance of the downstream turbine, which increases the overall power 
output of both wind turbines combined. It is found that the greatest 
production is obtained at θ = ±30◦ . The results illustrate that the 
XGBoost can predict the power with a mean deviation of 0.94 % for 
different yaw angles. These deviations between ANN predictions and 
CFD results are larger. ANN can estimate the power generation with a 
mean deviation of 2.15 % for various tested yaw angles. 

As shown in Fig. 16, the proposed method can provide a set of high- 
resolution flow data at a significantly reduced computational cost. It was 
observed that the training time of the XGBoost was 87.5 % faster than 
ANN with the same amount of input data. The training process of 4800 
sub-domains took around 13.20 h for ANN, while it took only 1.53 h for 
XGBoost. The prediction of the XGBoost is also much faster than the 
ANN architecture based on the BP algorithm. The wake data prediction 
of XGBoost is just 0.105 sec, while this time is 4.480 sec for the ANN 
model. 

The overall power production of the wind farm at different yaw 

Fig. 17. Overall power estimation of the wind farm at different yaw angles and 
inflow velocities using the XGBoost algorithm. 
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angles and inlet velocities are provided in Fig. 17. The yaw angle and 
inflow velocities are plotted in dimensionless forms as U* = U/11.4, 
and θ* = θ/30. These dimensionless parameters are in the ranges of 
− 1 < θ* < 1 and 1 < U* < 1.315. It can be seen that the power pro-
duction reaches higher than 9 MW under yaw-controlled conditions 
with the highest inlet velocity of 15 m/s. The overall power generation is 
improved by 2.37 MW compared to the uncontrolled wake conditions 
with U* = 1, and θ* = 0. 

5. Conclusion 

With advances in computing technology, machine learning algo-
rithms are now widely used in various engineering applications. This 
paper utilises the benefits of the capabilities of a machine learning 
model to forecast the performance of two tandem wind turbines as well 
as to investigate the unsteady wake behaviour behind each turbine. A 
well-known ALM-LES method is employed to run the unsteady flow 
simulations to train the machine learning model. The XGBoost model is 
used as a machine learning model in this paper. Based on the results 
obtained, the following conclusions are drawn.  

• The wake behind the upstream wind turbine is primarily deflected at 
the yaw angle of ± 30◦, and the velocity field behind the downstream 
wind turbine is improved as the impact of the turbulence and wakes 
of the upstream wind turbine is significantly reduced due to wake 
deflection. At the axial distance of 9D behind the upstream wind 
turbine with the yaw angle of ± 30◦, it can be clearly seen that the tip 
vorticity is completely deformed with stronger vortex generation.  

• As a result, the overall power production from both the upstream and 
downstream wind turbines is improved as a combined power of 9 
MW is achieved at θ = ±30◦ and the inlet velocity of 15 m/s, which is 
2.73 MW higher than the uncontrolled configuration.  

• The errors between the ALM-LES method and the machine learning 
with the XGBoost method are within 4 %, which is acceptable. Errors 
higher than 2 % are associated with capturing the wakes of the 
downstream wind turbine with strong vortex generation. Neverthe-
less, a close agreement between the two methods is obtained in 
predicting the wake profiles, the axial velocity profiles and the flow 
field with small deviations detected at X  = 9D and 12D.  

• In terms of the training time, the XGBoost method is 87.5 % faster 
than the ANN method with the same amount of input data. The 
training process takes around 13.20 h with the ANN method, how-
ever; it takes only 1.53 h with the XGBoost method. The prediction of 
the wake data takes 0.105 sec with the XGBoost method, whereas it 
takes 4.480 sec with the ANN method. Despite faster training and 
prediction time, it is also observed that the XGBoost method can 
provide better accuracy compared to the ANN method.  

• Results also illustrate that the XGBoost method predicts the power 
with a mean deviation of 0.94 % compared to 2.15 % with the ANN 
method. 

One of the assumptions of this study is that the wind turbine under 
investigation operates at around the rated wind speeds, and only three 
wind speeds (11.4 m/s, 13 m/s, and 15 m/s) are considered in this 
analysis. In the future, a wide range of wind speeds below and above the 
rated wind speeds will be explored to investigate the effects of various 
wind speeds. 

Future studies can focus on investigating the influence of atmo-
spheric flows in machine learning of wind farm layouts. Also, the limi-
tation of the machine learning study is the noticeable training time for 
large and more complex wind farm layouts. Therefore, it is essential to 
propose faster ML algorithms for this purpose. The authors will consider 
future works where blades yaw-angle and tilt-angle become part of the 
machine learning model. Including the HAWTs yaw-angle and tilt-angle 
in the machine learning model depends on the complexity of its 

implementation and collecting enough data for training and validation. 
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