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Abstract. It has long been recognised that extreme coastal flooding can arise from the joint occurrence of extreme 
waves, winds and sea levels.  The standard simplified joint probability approach used in England and Wales can result 
in an underestimation of flood risk unless correction factors are applied.  This paper describes the application of a 
state-of-the-art multivariate extreme value model to offshore winds, waves and sea levels around the coast of 
England.  The methodology overcomes the limitations of the traditional method. The output of the new statistical 
analysis is a Monte-Carlo (MC) simulation comprising many thousands of offshore extreme events and it is necessary 
to translate all of these events into overtopping rates for use as input to flood risk assessments.    It is computationally 
impractical to transform all of these MC events from the offshore to the nearshore.  Computationally efficient 
statistical emulators of the SWAN wave transformation model have therefore been constructed.  The emulators 
translate the thousands of MC events offshore.  Whilst the methodology has been applied for national flood risk 
assessment, it has the potential to be implemented for wider use, including climate change impact assessment, 
nearshore wave climates for detailed local assessments and coastal flood forecasting.   

1 Introduction and background 
  It is well-known that coastal flooding in England arises 
as a combination of extreme sea levels and wave 
conditions occurring together, and consideration of 
extremes of their joint likelihood of occurrence is 
important [1, 2].  The Environment Agency (EA) of 
England has produced a national coastal flood boundary 
conditions report that provides industry with return 
period estimates of extreme sea levels around the 
coastline of the UK.  Information relating to extreme 
wave conditions and their joint likelihood of occurrence 
with extreme sea levels is, however, required to 
undertake coastal flood risk analysis and to support the 
design of coastal structures that protect critical 
infrastructure, including nuclear facilities. 
  This study, undertaken for the EA, comprises a 
multivariate analysis of extreme waves, sea levels and 
wind speeds around the coastline of England.  Whilst this 
analysis has been undertaken offshore, the results have 
been translated to the nearshore using a combination of a 
wave transformation model and a statistical emulation 
method.  Outputs from the study can potentially be used 
for a range of purposes, including national and local-scale 
flood risk analysis and future climate change impact 
assessments. 
  There is a long tradition of undertaking analysis of the 
joint probability of waves and sea conditions around the 
coastline of England with two distinct approaches in 
widespread use.   These two approaches comprise a 
simplified method that involves the use of environmental  
joint probability contours and a robust risk-based 
statistical method. 
  Joint probability contouring methods involve the 
development of contours that have some defined equal 
probability of exceedence, and include those developed 

and explored by a range of authors [3,4,5,6].  An example 
of the approach adopted in England is shown in concept 
in Figure 1. 
 

 
Figure 1 Conceptual diagram showing a traditional joint 
probability contour 
 
  It is of note, however, that for flood risk analysis and 
risk-based structural design, it is the probability of 
exceeding a response (or consequence) of interest that is 
of relevance.  In general terms this latter aspect requires 
integration of the joint probability density of the loading 
variables, over the response function of interest. 

Pr(� > �) = � ��
 

�>�
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(1) 
  Where Z is a response variable of interest and X is a 
vector comprising the forcing sea conditions.  Joint 
probability contours are generally developed in the 
absence of knowledge of the response function.  Their 
application does not lend itself to the direct evaluation of 
the required quantity of interest, i.e. the probability of 
exceeding a specified value of the response variable. 
  In this analysis Equation 1 is solved directly using a 
multivariate method that involves extrapolation of the 
joint probability density to extreme values.  The output of 
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the multivariate extremes analysis is a Monte-Carlo 
simulation comprising many 1000’s of extreme sea 
condition events.   In principle, it is necessary to 
transform all of the events output from the offshore 
Monte Carlo simulation through to the nearshore.  It is, 
however, of note that 2D wave transformation models 
can be computationally time consuming to run.  Rather 
than attempt to run the model for all of these events a 
statistical model emulation method was employed.  This 
method ensures practical runtimes for this national scale 
analysis.  
 
2 Model set up and data 
   
  The objective of the analysis described here is to 
provide multivariate extreme sea conditions in the 
nearshore region around the coast of England for 
potential use in structural design and flood risk analysis.   
The method comprises two main components: Offshore 
multivariate (joint) probability analysis; offshore to 
nearshore wave transformation of the extreme events. 
  To implement the method the coastline was sub-divided 
into 24 different regions, each region comprising a 
SWAN wave transformation model domain, Figure 2.  A 
separate offshore multivariate extreme value model was 
developed for each of the 24 regions. 

 
Figure 2 SWAN wave model grids and multivariate data set 
locations 
 
Time series sea level data was obtained from the network 
comprised within the UK Coastal Monitoring and 
Forecasting (UKCMF) service operated by the EA.  Prior 
to implementation within the multivariate analysis, the 
water level data was de-trended and updated to present. 
Wave and wind data was obtained from a hindcast of 

wave conditions using the WaveWatch III Model 
(WWIII), undertaken by the Met Office.  The grid 
resolution for this model is 8km and the timespan of the 
hindcast is from January 1980 to June 2014 which 
therefore includes the severe winter storms of 2013/2014 
that caused significant flooding in England.  Data from 
1980 to 2000 is available at a 3-hour resolution and from 
2000 onwards at a 1-hour resolution.  The wave model 
was driven with wind data from the ECMWF ERA-
interim (global) and Unified (regional) models.  The 
hindcast study provided spectral components of waves. 
The locations of the WWIII points where wave and wind 
information was extracted for the multivariate extreme 
value analysis for each region are shown in Figure 2.   
 
3 Multivariate extreme value method 
   
  The objective of the multivariate extreme value analysis 
was to extrapolate the joint probability density of the 
waves, winds and sea level information to extreme values 
whilst ensuring the appropriate dependence between the 
variables was captured.  The variables considered in this 
analysis were significant wave height, wave period, wave 
direction, directional spreading, wind speed, wind 
direction and sea level.  Of these, only wave height, wind 
speed and sea level required extrapolation to extremes.  
The approach adopted for undertaking this extrapolation 
was that developed by [7].  Further description on the 
justification for the use of this model in the context of 
coastal wave and water level analysis, and flood risk 
modelling, is provided by [8,9,10]. 
  The method works pairwise by fitting non-linear 
regression models above specified thresholds.  This 
analysis is undertaken after de-clustering of the time 
series data, marginal univariate extremes fitting and 
transformation to uniform scales of each of the variables.  
Once fitted, the multivariate model enables simulation of 
synthetic extreme sea conditions.  The simulation method 
involves use of the residuals obtained from fitting the 
regression model, hence capturing some of the natural 
variability within the dependence structure.  The 
properties of the synthesised events include preservation 
of the marginal extremes of waves, winds and sea levels 
and also the dependence within the extremes.  A 
conceptual diagram depicting synthetic and empirical 
events from which the multivariate model was fitted, on 
transformed scales, is shown in Figure 3. 
  The multivariate method was used to generate synthetic 
events that were representative of 10,000 years offshore 
(typically > 0.5million events) of each of the 24 SWAN 
models. 
 
4 Offshore to Nearshore wave 
transformation modelling 
 
  The model chosen to transform the wave conditions 
from offshore to inshore was the well-known SWAN 
model [11].  The objective of the SWAN modelling was 
to transform the offshore multivariate extreme sea 
condition data to a series of nearshore locations with a 
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1km spacing along the coastline, at approximately the -
5mODN contour, Figure 4.    
 
  This sea bed elevation was chosen because in shallower 
water, wave breaking increases and the bed levels vary 
significantly.  It is thus desirable to separate out the 
complex surf zone and structure related aspects to enable 
flexibility with regard to sensitivity analysis relating to 
beach levels on the foreshore and at the structure, for 
example. 

 
Figure 3 Diagram showing synthetic events simulated from the 
multivariate model and underlying empirical data. 
 

 
 
Figure 4 Example SWAN model domain with nearshore output 
points highlighted (approx. -5mODN contour) 
 
For reasons relating to numerical stability and runtime 
efficiency, the new SWAN models were set up using a 
200m regular mesh. The SWAN models were set up in a 
stationary mode with a constant wind direction and speed 
applied.  Each of the new models was calibrated using a 
range of different events selected, based upon analysis of 
historical peak events.  An example of the performance of 
a calibrated SWAN model is shown in Figure 5. 
  For computational reasons, rather than attempt to run 
SWAN 2D for the many 1000’s of events within each 
region, a statistical model emulation method was 
employed [12].  A statistical emulator is similar in 

concept to a traditional “look-up table” approach used in 
coastal flood forecasting systems, for example.  The 
process involves running the SWAN 2D model for a 
subset of events (known as the design points). 
Interpolation techniques are then applied to predict the 
results for other events (not run in SWAN 2D).   
  Traditional look-up table approaches are typically 
applied using regular or recti-linear grids and linear 
interpolation techniques.  As the output from SWAN is 
generally not a linear function of the inputs, these 
traditional look-up tables can be inefficient and require a 
large number of design point simulations. 
 

 
Figure 5 Example SWAN wave calibration performance – 
Central South Coast. 

  Gaussian Process Emulators (GPE’s) [12], are a more 
sophisticated interpolation technique and have been 
shown to be efficient when used in the context of wave 
transformation modelling [13].  To select the design 
points used to fit the emulator and hence used to define 
the boundary conditions for the SWAN model, the 
Maximum Dissimilarity Algorithm (MDA) was applied 
using a previously established methodology [14].  The 
use of the MDA ensures the multivariate parameter space 
is captured efficiently. Once fitted, the GPE can then be 
used in place of SWAN to transform all of the extreme 
events from offshore to nearshore with significant 
computational savings when compared to traditional 
look-up table approaches. Figure 6 shows the 
performance of the GPE, when compared to a traditional 
look-up table approach, in terms of RMSE of Hs.  The 
analysis, undertaken using a benchmark dataset involving 
simulation using the SWAN model for all events, shows 
the performance of a traditional look-up table created 
using 17000 SWAN model simulations (dashed line).  
The GPE shows significant efficiencies and reaches the 
same RMSE with around 200 SWAN simulations, a 
significant computational saving, particularly in the 
context of this analysis comprising 24 regions. 
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Figure 6 GPE comparison against a traditional look-up table 
(dashed line). Y axis units are metres. 

  To verify the performance of the GPE, outputs at 
selected nearshore points were compared with measured 
data from nearshore wave buoys operated by the Channel 
Coastal Observatory (CCO).  An example comparison is 
shown in Figure 7.  The larger highlighted points are 
“design points” from the SWAN model itself.  The other 
data points are GPE predictions.  The comparison shows 
good agreement and the emulator outputs fall within the 
general scatter arising as a result of uncertainties within 
the input boundary conditions and those associated with 
the SWAN model, as well as the emulator itself. 

 

Figure 7 GPE comparison against measured nearshore 
wave data (highlighted points are actual SWAN model 
runs). Axis units are metres. 
 
  GPEs have been fitted between the offshore and each 
nearshore output point.  The resulting output of the GPEs 
is therefore a full multivariate distribution of extreme 
events at a 1km resolution.  This data set can be used for 
a wide variety of uses as discussed below. 
 
 
 
 

5 Case Study application 
   
  The nearshore multivariate data set has the potential to 
be used for a number of applications including flood risk 
analysis, engineering design and climate change impact 
assessment.  To demonstrate the application of the data 
here, a wave overtopping response function has been 
used for a structure located on the South Coast of 
England. 
  Wave overtopping methods generally require sea 
conditions at the toe of the structure to be estimated.  It is 
thus necessary to transform the sea conditions from the 
nearshore to the structure toe.  There are a range of 
methods that can be applied to undertake this 
transformation [15,16].  The method of Battjes and 
Janssen method is used for the calculation of surf zone 
breaking in both SWAN 1D and 2D and the former was 
applied for this study. 
  To translate the data at the toe of the flood defence 
structures to overtopping discharges for use in flood 
inundation analysis, the BAYONET wave overtopping 
model was applied [17].  BAYONET is a neural network 
overtopping tool.  It is based on the widely used CLASH 
overtopping database and follows the general model of 
the CLASH neural network [18] but incorporates 
additional information relating to uncertainty.   
  The Monte Carlo realisations at the nearshore point have 
been transformed through SWAN 1D and BAYONET 
into peak overtopping rates, Figure 8.  The overtopping 
rate samples were then ranked and empirical return 
periods assigned.  These results have then been analysed 
to determine an empirical distribution of overtopping 
rates as shown in Figure 9 .  
  Highlighted in Figure 9 (larger points) are events that 
have been extracted from the traditional joint probability 
100 year contour (Figure 1) and used to calculate 
overtopping rates.  In practice, points on the 100 year 
contour are analysed and the highest overtopping rate 
obtained would be assigned a return period of 100 years.  
It is, however, evident from this analysis the overtopping 
rate obtained using this method is closer to a 30 year 
return period.  This highlights how flood risk can be 
underestimated unless correction factors are applied.  
These findings are consistent with earlier work in this 
area [2]. 
  The new method estimates return period overtopping 
rates directly and hence avoids the use of these correction 
factors. 

 
Figure 8 1D profile representation used for overtopping 
rate estimation on the case study site. 
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Figure 9 Distribution of extreme overtopping rates 
obtained from the new multivariate method, compared 
with those from a traditional contour (large points) 

  Given site-specific bathymetry and coastal defence 
structural geometry, it is straightforward to undertake this 
analysis for any/all structures along the coastline of 
England.  This can provide a consistent source of 
information for coastal flood risk analysis. 

6 Discussion and conclusions 
  The limitations of the joint probability contour 
approach, widely used in practice for coastal flood risk 
analysis and the design of coastal structures in England 
have been described.  A multivariate extreme value 
analysis of offshore waves, winds and sea levels has then 
been undertaken around the coast of England.  A robust 
statistical method has been applied in 24 different areas.  
The output of the multivariate extremes analysis 
comprises a Monte Carlo sample of 1000’s of events.  To 
robustly estimate the return period of response variables 
it is, in principle, necessary to transform all of these 
events through to the nearshore and then to relevant 
response functions, including wave overtopping rates. 
  To undertake the offshore to nearshore wave 
transformation 24 separate SWAN wave models have 
been set up.  To minimise the computational effort 
involved in transforming all of the Monte Carlo events 
through the SWAN models, a series of emulators have 
been developed that provide nearshore outputs at a 1km 
resolution approximately along the -5mODN contour of 
England.  A nearshore data set comprising many 
thousands of extreme wave and water level events has 
therefore been created.  To demonstrate the application of 
this data set, wave overtopping rates have been calculated 
using SWAN 1D and Bayonet linked to the nearshore 
multivariate data set.  These results have been compared 
with the results obtained from the widely applied joint 

probability contour method.  The results of this analysis 
show the traditional method to underestimate flood risk.  
This confirms the findings of previous analyses. 
  It is suggested the dataset and methodology described 
here can be widely used for a range of purposes 
including; flood risk analysis, sea level rise impact 
analysis, coastal flood forecasting and the design of 
coastal structures. 

7 References 
 

1. Bruun, J.T. and Tawn, J.A., 1998. Comparison of 
approaches for estimating the probability of coastal 
flooding. Journal of the Royal Statistical Society: 
Series C (Applied Statistics), 47(3): 4 

2. Hawkes, P.J., Gouldby, B.P., Tawn, J.A. and Owen, 
M.W., 2002. The joint probability of waves and 
water levels in coastal engineering design. Journal 
of Hydraulic Research, 40(3): 241-251 

3. De Michele, C., Salvadori, G., Passoni, G. and 
Vezzoli, R., 2007. A multivariate model of sea 
storm using copulas, Coast. Eng.  54 (10), Pgs 734–
751,. 

4. Salvadori G., Michele C.D., Durante F, 2011 On the 
return period and design in a multivariate 
framework Hydrology and Earth System Sciences 

5. Corbella S. and Stretch D., 2013. Simulating a 
multivariate sea storm using Archimedean copulas, 
Coastal Engineering, 76 , Pg. 68–78, June 

6. Serinaldi, 2015 Dismissing Return Periods, 
Stochastic Environmental Research and Risk 
Assessment, 29(4), pp 1179-1189.. 

7. Heffernan J. E. and Tawn J. A.,2004. A conditional 
approach for multivariate extreme values. Journal of 
the Royal Statistical Society, Series B (Statistical 
Methodology), 66(3), 497–546  

8. Lamb, R. et al., 2010. A new method to assess the 
risk of local and widespread flooding on rivers and 
coasts. Journal of Flood Risk Management, 3(4): 
323-336. 

9. Wyncoll D. and Gouldby B., 2014 Application of a 
multivariate extreme value method to flood risk 
analysis, J. Flood Risk Man. 8(2), 142 

10. Gouldby B, Mendez F, Guanche Y, Rueda A and 
Minguez R.m 2014 A methodology for deriving 
extreme nearshore sea conditions for structural 
design and flood risk analysis, Coast. Eng, 88 

11. Booij, N., Ris, R.C. and Holthuijsen, L.H., 1999. A 
third-generation wave model for coastal regions: 1. 
Model description and validation. Journal of 
Geophysical Research: Oceans, 104(C4): 7649-
7666. 

12. O´Hagan, A., 2006. Bayesian analysis of computer 
code outputs: A tutorial. Reliability Engineering & 
System Safety, 91(11): 1290-1300. 

13. Camus, P., Mendez, F.J. and Medina, R., 2011a. A 
hybrid efficient method to downscale wave climate 
to coastal areas. Coastal Engineering, 58(9): 851-
862. 

 

 

 

 
DOI: 10.1051/01007 (2016), 6E3S Web of Conferences e3sconf/201

FLOODrisk 2016 - 3rd European Conference on Flood Risk Management 
7 0701007

5



 
 
14. Camus, P., Mendez, F.J., Medina, R. and Cofiño, 

A.S., 2011b. Analysis of clustering and selection 
algorithms for the study of multivariate wave 
climate. Coastal Engineering, 58(6): 453-462. 

15. Goda Y 2000, Random seas and the Design of 
Maritime Structures, World Scientific Publishing, 
ISBN 981-02-3256-X 

16. Battjes, J . A., and J.P. F. M. Janssen 1978 Energy 
loss and set-up due to breaking of random waves, 
Proc. 16th International Conference on Coastal 
Engineering, p, 569-587, Am. Soc .of Civ. Eng.,New 
York 

17. Kingston, G., Robinson, D., Gouldby, B. and 
Pullen, T., 2008. Reliable prediction of wave 
overtopping volumes using bayesian neural 
networks. . FLOODrisk 2008, Keble College, 
Oxford, UK. 

18. Van Gent, M.R.A., Van den Boogaard, H.F.P., 
Pozueta, B. & Medina, J.R. 2007. Neural network 
modelling of wave overtopping at coastal structures. 
Coastal Engineering 54(8): 586-593. 

 

 

 

 
DOI: 10.1051/01007 (2016), 6E3S Web of Conferences e3sconf/201

FLOODrisk 2016 - 3rd European Conference on Flood Risk Management 
7 0701007

6


