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Abstract. This research targets general-purpose smart computer vision
that eliminates reliance on domain-specific knowledge to reach flexible
generic models for flexible applications. It proposes a novel deep learn-
ing approach in which several deep learning models are trained for each
image. Statistical information of each trained image is then calculated
and stored with the loss values of each model used in the training phase.
The stored information is finally used to select the appropriate models
for each new image data in the testing phase. To efficiently select the
appropriate model, a kNN (k Nearest Neighbors) strategy is used to se-
lect the best model in the testing phase. The developed framework called
KGDL (Knowledge Guided Deep Learning) was evaluated and tested us-
ing two computer vision benchmarks, 1) ImageNet for image classifica-
tion, 2) COCO for object detection. The results reveal the effectiveness of
KGDL in terms of accuracy and competitiveness of inference runtime. In
particular, it achieved 92% of intersection over union for COCO dataset.

Keywords: Knowledge-based Learning · Ensemble Learning · Com-
puter Vision · General-Purpose Artificial Intelligence.

1 Introduction

Deep learning has achieved outstanding results in a wide range of applications,
including medical applications [1], and intelligent transportation systems [2]. In
the domain of computer vision deep learning has been inspired by biological
vision in mimicking visual descriptions and learning into computer vision algo-
rithms. However, current deep learning techniques did not yet reach the flexible,
general-purpose intelligence that biological systems have. Currently, each model
is built using the domain knowledge of the application in question. This moti-
vates researchers and data scientists to investigate this challenging topic. Since
the learner does not have to infer the information from the data, integrating
a priori knowledge into the learning framework is an efficient way to deal with
sparse data. Several solutions have explored the domain knowledge in the learn-
ing process. To perform semantic face editing using pretrained StyleGAN, Hou et
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al. [3] presented a novel learning framework called GuidedStyle . It also made it
possible for a StyleGAN generator’s attention mechanism to select a single layer
for style alteration in an adaptive manner. Therefore, StyleGAN may make dis-
entangled and controllable changes to various features, including attractiveness,
mustache, eyeglasses, smiling, and gender. A cooperatively boosting framework
(CBF) was proposed by Li et al. [4] to iteratively combine the knowledge-guided
ontological reasoning module and the data-driven deep learning module. The
DSSN architecture is used by the deep learning module, which integrates the
original image and inferred channels as input. Branching for intra- and extra-
taxonomy reasoning is also included in the module for ontology reasoning. The
intra-taxonomy reasoning corrects misclassifications made by the deep learning
module based on domain knowledge. Dash et al. [5] reviewed the existing solu-
tions that explore domain knowledge. They reported that these solutions have a
major limitation in that each model is made using the knowledge that is unique
to the application in question. To overcome this limitation, we proposed in this
paper proposes a novel framework called KGDL (Knowledge Guided for Deep
Learning) as an alternative solution for the current computer vision deep learn-
ing architectures. To the best of our knowledge, this is the first piece of work
that thoroughly examines the information gleaned from the training data to
effectively address computer vision difficulties. The main contributions of this
research work are:

1. Proposing a novel framework called KGDL (Knowledge Guided Deep
Learning), which explores the knowledge extracted from the data to efficiently
select the best model for each testing data towards general-purpose learning. 2
Developing an intelligent strategy for the inference step in which the statistical
information of each image in the testing is first calculated and then compared
with the images of the knowledge base created in the training phase using kNN
to select the best model in the inference phase. 3. Evaluating the proposed
KGDL framework on two computer vision benchmarks, 1) ImageNet for image
classification, 2) COCO for object detection, using classification accuracy and
intersection over union metrics. The results show that the suggested framework
outperforms the baseline solutions in terms of the quality of the outcomes at a
reasonable cost in inference runtime.

2 Related Work

Yin et al. [6] suggested a new model called Domain Knowledge Guided Recur-
rent Neural Networks (DG-RNN), which explicitly incorporated domain knowl-
edge from the medical knowledge graph into an RNN architecture. The authors
addressed the integration of domain knowledge by dynamically utilizing com-
plex medical knowledge (such as relations between clinical occurrences). Liu et
al. [7] suggested a prior knowledge-guided deep learning-enabled (PK-DL) syn-
thesis method that makes use of the conditional deep convolutional generative
adversarial network (cDCGAN) algorithm. Prior information, including famil-
iarity with basic electromagnetic theorems and expertise in antenna design, was
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purposefully employed early in the proposed process. By directing the image
production process with a knowledge network, Hou et al. [3] introduced Guid-
edStyle to perform semantic face editing on pretrained StyleGAN. Additionally,
it enabled a StyleGAN generator’s attention mechanism to adaptively choose a
single layer for style manipulation. As a result, StyleGAN can execute disen-
tangled and controllable modifications along various attributes, such as attrac-
tiveness, mustache, eyeglasses, smiling, and gender. Dong et al. [8] suggested a
deep HSI denoiser-based iterative hyperspectral image super-resolution (HSISR)
approach to take advantage of both deep image prior and domain knowledge like-
lihood. They demonstrated how to develop an iterative HSISR method into a
unique model-guided deep convolutional network by taking the observation ma-
trix of HSI into consideration during the end-to-end optimization (MoG-DCN).
The unfolded deep HSISR network may also operate in various HSI scenarios
thanks to the representation of the observation matrix by subnetworks, which
increases the adaptability of MoG-DCN. For the classification of land cover,
Li et al. [9] presented a novel domain knowledge-guided deep collaborative fu-
sion network (DKDFN) with performance-boosting for minority categories. More
specifically, a multihead encoder and a multibranch decoder structure are used
by the DKDFN. The encoder’s architecture makes it likely that enough comple-
mentary information may be gleaned from several modalities. The multibranch
decoder performs semantic segmentation and reconstructs multimodal remote
sensing indices to enable land cover categorization in a multitask learning setup.
Li et al. [4] suggested a cooperatively boosting framework (CBF) to iteratively
integrate the knowledge-guided ontology reasoning module and the data-driven
deep learning module. The deep learning module utilizes the DSSN architec-
ture and uses the DSSN’s input to integrate the original image and inferred
channels. The module for ontology reasoning also includes branches for intra-
and extra-taxonomy reasoning. More particularly, the intra-taxonomy reason-
ing which is essential to enhance classification performance, directly corrects
misclassifications made by the deep learning module based on domain knowl-
edge. To replicate the workflow of radiologists, Mingjie et al. [10] suggested an
Auxiliary Signal-Guided Knowledge Encoder Decoder (ASGK). Particularly, the
external linguistic signals assist the decoder in better mastering prior informa-
tion during the pre-training phase, while the auxiliary patches are investigated
to increase the frequently used visual patch features before being provided to the
transformer encoder. Yang et al. [11] suggested the SEmantic Guided Attention
(SEGA) mechanism, in which semantic knowledge is used to direct visual per-
ception top-down regarding which visual cues should be paid attention to when
separating one category from the others. As a result, the novel class embedding
can be more discriminative even with small sample sizes. To put it more specifi-
cally, a feature extractor is trained to transfer visual prior knowledge from base
classes to a few images of each novel class and integrate them into a visual proto-
type. Then, they developed a network that converted semantic information into
category-specific attention vectors, which will be applied to feature selection to
improve the visual prototypes.
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According to this succinct literature analysis, the key problem with the
present deep learning methods is that each model is created using knowledge
specific to the application in question. This requires data scientists to be well
knowledgeable about the particular application domain. The trained model in
this study was created without the assistance of a domain expert, using a general
deep learning approach that explores knowledge of the trained data.

Fig. 1. KGDL Framework: The deep learning models are first trained. The training
data is maintained in a knowledge base to accurately combine the results across the
trained models. During the inference phase, the model’s suitability for a specific set of
test data is assessed using the kNN approach.

3 KGDL: Knowledge Guided Deep Learning

3.1 Principle

The KGDL framework is illustrated in Figure 1. It is based on deep learning,
kNN, relevant knowledge from the training and testing data. The main idea is
that several deep learning models are trained in the training phase, and then
the knowledge base is used to select the best model that will be used in the
inference phase for each testing image. First, the data is extracted from the
various images. Various deep learning architectures are then trained, and the
pertinent data resulting from this training stage is preserved in a knowledge
base. The combined data is further utilized along with kNN to determine which
model is appropriate for a given test dataset during the inference phase. of similar
images using the kNN technique. Detailed description of the KGDL components
is given in the following.
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3.2 Training

We consider a set of l images used in the training, say I = {I1, I2...Il}. The
training is performed using the set of n models M = {M1,M2, ...Mn}. Each
image Ii is plugged to each model Mj for the training. The loss value vij is
determined by computing the error between the output of the model, Mj , and
the ground truth associated to the image, Ii. The features of Ii (denoted Fi) and
the loss value, vij , are saved into the knowledge base. We also use the standard
back-propagation to optimize the weights of the models in M.

At the end of this step, the following variables are created and saved:

1. n matrices, each one, say matrix W (i), represents the trained weights of the
model, Mi.

2. The knowledge base KB, which contains l rows. The ith row contain the
relevant information of the image Ii. It contains the features Fi, and the set
of the n loss values {vi1, vi2...vin}.

The loss values will be computed using the loss functions according to the
considered problems. For instance, Binary Cross-Entropy Loss is used for clas-
sification problem as follows:

L(y, y∗) = −y × log(y∗)− (1− y)× log(1− y∗), (1)

where y is the ground truth value, y∗ is the predicted value by the model.
Diss loss could be used for segmentation problem, as follows:

L(y, y∗) = 1− 2× y × y∗ + 1

y + y∗ + 1
. (2)

1 was appended to the numerator and denominator to prevent the function
from being undefined in extreme cases, such as when y = y∗ = 0. For the hy-
perparameter optimization of the n models, we adopt the recent greedy search
algorithm (GHO) [12]. In order to converge to the locally optimal solution with
the hope that this decision will result in a globally optimal solution, the GHO
algorithm optimizes every hyperparameter while holding the others constant. Up
until all of the hyperparameters are optimized, the local solution for each one is
optimized iteratively. Therefore, the greedy algorithm reduces the exponential
computational cost of the hyperparameter optimization.

3.3 Inference

In the inference stage, the features Fnew of the new image Inew are determined.
The knowledge base KB is then explored to select the best model using kNN
algorithm. It calculates the separations between the features of the new image
and the features of all training images in the knowledge base. Thus, it discovers
the images that resemble the new image the most. A user-specified integer k
determines the neighborhood size. The neighborhood of an image is defined in
the space of the measured distances. The best model can then be chosen to be
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utilized, inferring the output of the new image by receiving majority votes or
an average guess of the k nearby neighborhood, which are the k closest images
in terms of distance. We propose a variant of kNN that computes the distances
adjusted to accommodate the image features, as the conventional Euclidean dis-
tance measure would produce inaccurate distances for image data. The primary
explanation is that the data drift problem has resulted in quite varied distri-
butions for images from various classes. Therefore, it is hard to measure the
similarities between images accurately. Instead of using the manually created
similarity measures directly to solve this problem, we suggest an end-to-end
similarity metric learning network. The proposed similarity metric consists of
two modules:

1. Similarity metric network: It is a fully connected neural network that
seeks to determine how similar the features of two images are. To assess the
degree of similarity between the trained images and the new image, we use a
fully connected neural network with a single hidden layer. The inputs of the
subsequent similarity measurement function are the feature vector of the new
image (Fnew) and the feature vector of each trained image (FIi):

S(Fnew, FIi) = 1− σ(concat([Fnew, FIi ])C), (3)

C is is the coefficient of similarity metric function.
2. Smooth similarity loss learning: Backpropagation optimization of the sim-

ilarity metric function is done by measuring the surrogate loss of the similarity
network developed in the first step. Synthetic images are captured from sev-
eral distributions when training the network. To compute the ground truth (the
similarity value), we determine the similarity between the distributions of the
images at hand.

Finally, the weights of the best model are used to infer the output of the new
image.

4 Numerical Results

To evaluate the KGDL framework, intensive simulation have been carried out
using well-known benchmarks to compare it with recent deep learning solutions
in solving computer vision based applications.

Setting Details We will first go through the details of our experiment in this sec-
tion. Then, we’ll compare our classification, and object detection results to those
of baseline models. ImageNet and COCO are well-known computer vision bench-
marked datasets that transfer to other datasets. We chose these benchmarks and
undertake experiments on the ImageNet 2012 ILSVRC challenge classification
task and on the COCO challenge object detection task. Inspired by the work
of Xie et al. [13], we remove from the dataset the images from the ImageNet
and COCO validation set. We utilize a batch size of 2048 by default for labeled
images, and we decrease the batch size when the model cannot fit in the mem-
ory. We discover that employing 512, 1024, or 2048 batch sizes result in the
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same speed. The batch size for labeled images is used to calculate the number
of training epochs and the learning rate. With a dropout rate of 0.5, we apply
dropout to the last layer of our framework and the baseline models.

Baseline Methods We compare the proposed KGDL framework with the follow-
ing baseline methods: 1) Classification: We use two recent algorithms for com-
parison of the classification task, namely Revised RESNET [14] and MViTv2
[15]. 2) Object Detection: We use two algorithms for comparison regarding the
object detection task, MViTv2 [15] and Improved Yolov5 [16].

Fig. 2. Classification rate and Runtime of the proposed solutions and the SOTA models
for different training samples of the ImageNet.

Fig. 3. Performance of the proposed solutions and the SOTA models for object detec-
tion use case using COCO dataset.

Results on Image Classification Using the previously described ImageNet, the
initial experiments compare the KGDL’s accuracy against SOTA image classifi-
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cation methods (Revised RESNET, and MViTv2). Figure 2 demonstrates that
KGDL surpasses the two baseline algorithms in terms of classification rate and
it is very competitive in terms of inference runtime when the percentage of the
number of images used as input is varied from 20% to 100%. Thus, the classifica-
tion rate of the KGDL is 93% whereas the baseline methods go below 90% when
the entire ImageNet is processed in the training phase. These results are ob-
tained thanks to the selective strategy used in the inference step, which explore
the knowledge base to find the best model for each testing image.

Results on Object Detection Using the previously described COCO dataset, the
next experiments compare the KGDL’s accuracy against SOTA object detection
methods (MViTv2, and Yolov5). Figure 3 demonstrates that KGDL surpasses
the two baseline algorithms in terms of IoU (Intersection over Union) and it is
very competitive in terms of inference runtime. The IoU of the KGDL is 91%
whereas the baseline methods remains below 86% when the entire COCO dataset
is processed in the training phase. These outcomes were again made possible by
the inference step’s selective strategy, which looked through the knowledge base
to identify the most appropriate model for each testing image.

5 Discussion and Future Perspectives

In this section, We go over some current difficulties and major problems with the
built KGDL framework, and by considering such framework as a foundation, we
demonstrate potential future paths for computer vision applications. The first
challenge of the KGDL is to find a smart way for adding human experience and
knowledge to computer vision tasks. By examining the earlier works, we discover
that the majority of studies which integrate the human experience, only concen-
trate on natural language processing. Understanding the causes makes it clear
that adding human experience and knowledge to the model at every stage is diffi-
cult, with the exception of direct labeling. To solve this issue, we plan to integrate
inverse reinforcement learning in the KGDL framework. It entails extrapolating
another agent’s hidden preferences from its observed behavior, avoiding the need
to manually specify its reward function. Therefore, the interaction between the
environment (human experience in our case), and the agent (KGDL framework
in our case) will be done automatically and without the need to manual as-
sessment. The second challenge is how to design an evaluation benchmark for
knowledge-guided deep learning. The existing solutions including KGDL frame-
work consider standard benchmarks such as ImageNet, PASCAL VOC, CIFAR
and MNIST. Creating a useful test benchmark is essential for the community’s
development of knowledge-guided deep learning. In order to effectively explore
this research topic, it is crucial to discover how to create benchmarks and eval-
uation methodologies for knowledge-guided deep learning. We plan to investi-
gate the use of attention diversification in building benchmarks specified for
knowledge-guided deep learning. It consists to reassign appropriate attention to
diverse task-related features for domain generalization. We will inspire attention
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diversification for designing both the training and testing data for evaluating
the knowledge-guided deep learning-based frameworks. The third challenge is to
make multi-task learning into practice. It is difficult to totally tackle a real-world
task with just one categorization because it is complex and usually required in-
tensive computation and intelligent learning processes. We have seen optimism
for a universal model through human-in-the-loop fine-tuning with the emergence
of a unified large-scale pre-training method. we plan to adopt a suitable method
to incorporate human knowledge into huge models as existing machine learning
models, in particular, are not as intelligent as humans.

6 Conclusion

This work has addressed the challenges related to establishing general-purpose
and flexible AI using the existing deep learning models and proposed a novel
general-purpose deep learning approach for tackling generic computer vision ap-
plications. For each set of visual data, many deep learning models have first been
trained. Following that, the statistical data for each trained image is computed
and stored along with the loss values of each model used during the training.
In the testing step, the right models for each new set of image data are ul-
timately chosen using the stored information. A kNN (k Nearest Neighbors)
technique is employed to effectively choose the optimal model during the testing
phase. ImageNet benchmark was used to evaluate the created knowledge-guided
deep learning system. The outcomes presented validated the KGDL framework’s
higher accuracy and strong inference runtime competitiveness compared to the
baseline methods. Since the runtime of the KGDL is critical, in particular for
real-time processing based applications, we plan to improve the knowledge base
exploration by investigating on kNN query processing techniques for finding the
best model in the inference phase.
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