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Two iterative reweighted algorithms for systems
contaminated by outliers

Jing Chen, Manfeng Hu, Yanjun Liu, Quanmin Zhu

Abstract—This study proposes two iterative reweighted algo-
rithms for systems whose data are contaminated by outliers.
For the negative effect caused by the outliers, traditional least
squares and gradient descent algorithms cannot obtain unbi-
ased estimates, while the variational Bayesian and expectation-
maximization algorithms have the assumption that the prior
knowledge of the outlier is available. To deal with these dilemmas,
two iterative reweighted algorithms are developed. By assigning
suitable weights for each data set, unbiased parameter estimates
can be obtained. In addition, the weights of the corrupted data
sets become smaller and smaller with the increased number of
iterations, and then the contaminated data can be picked out
from the data sets. The proposed algorithms do not require the
prior knowledge of the outliers. Convergence analysis and nu-
merical experiments show effectiveness of the iterative reweighted
algorithms.

Index Terms—System identification, iterative reweighted algo-
rithm, outlier, weight matrix, least squares algorithm

I. INTRODUCTION

With the development of big data and machine-learning technolo-
gies, system identification becomes more and more important in
modern society [1]–[4]. For example, in engineering practices [5],
chemical industries [6], and medical areas [7]. System identification
is constituted of two parts: one is structure identification [8], [9],
and the other is parameter estimation [10]–[12]. For a black box
model, one should determine its structure first, and then identify the
parameters. In this paper, we try to estimate the parameters with the
assumption that the structure of the considered model is known a
priori.

There exist plethora of parameter estimation algorithms in the past
few decades, e.g., the least squares (LS) algorithm, the gradient de-
scent (GD) algorithm, the expectation maximization (EM) algorithm,
and the variational Bayesian (VB) algorithm. Among them, the LS
and GD algorithms are most widely used [13]–[17]. The LS algorithm
has faster convergence rates with the cost of heavy computational ef-
forts, while the GD algorithm has less computational costs but slower
convergence rates. Therefore, the LS algorithm is a better choice for
systems with simple structures and low-order, and the GD algorithm
performs better for complex nonlinear models and high-order models
[18], [19]. For systems with good data, these two algorithms can
achieve satisfactory outcomes. However, in application, some data are
usually noisy or contaminated by outliers, e.g., transmission errors,
process disturbances, and instrument degradation [20]–[22]. The LS
and GD methods are typically sensitive to outliers, resulting models
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usually cause biased estimates and model-order mismatch. Therefore,
developing some novel identification algorithms which can identify
systems with outliers is essential to parameter estimation.

To diminish the effect caused by the outliers, the most widely
used method is to assign different kinds of noises to describe the
dynamics of the outliers. Since Gaussian distribution noise cannot
be sufficient to describe the outliers, other probabilistic distributions,
such as t-distribution and Laplace distribution are usually considered
[23], [24]. For example, in [25], a VB approach combining a t-
distribution noise is utilized to identify the models with outliers, while
the statistical parameters of the noises and the model parameters are
interactively updated. In [10], Liu et al integrates the EM algorithm
with a t-distribution noise to remove the effect of outliers. In [26], an
iterative maximum likelihood estimator combining an outlier-robust
bipercentile estimator is proposed for systems with outliers, where
the K-distribution is applied to model the outliers. These methods
have an assumption that the distribution of the outlier should be
known a priori; otherwise, they will be inefficient. In addition, one
should study the statistical characteristics of the noise to diminish the
negative effect caused by outliers [27], [28].

Inspired by the method in [29], [30], this paper identifies the
systems with outliers in another way: design two iterative reweighted
algorithms which can automatically pick out all the outliers from the
data sets, and then can obtain unbiased parameter estimates based
on the good data. The proposed algorithms are resistant to outliers
and result in improved accuracy and reliability of process modeling
and prediction. In summary, compared with the work in [10], [23]–
[26], the advantages of the proposed algorithms are summarized as
follows:

1. do not require any prior knowledge about the outliers, e.g., the
prior distributions of the outliers;

2. do not need to study the statistical characteristics of the outliers,
for example, the distributions of the outliers do not need to be updated
in each iteration;

3. can automatically pick out the contaminated data based on the
weight estimates.

The rest of this study is organized as follows. Section II introduces
the systems with outliers and the traditional LS and GD algorithms.
Section III develops two iterative reweighted algorithms. Section IV
presents some properties of the iterative reweighted algorithms. Nu-
merical experiments are provided in Section V. Section VI concludes
this paper and points out future directions.

II. SYSTEMS WITH OUTLIERS AND TRADITIONAL
ALGORITHMS

Some notations are defined first: ∥X∥ =
√

λmax[XXT] denotes
the 2-norm of a matrix X; λmax[·] means the maximum eigenvalue
of a matrix; T indicates the matrix transpose.

A. Systems with outliers
Consider the following model

y(t) =

m∑
i=1

giφi(t) + v(t), t = tno1 , · · · , tnoq , (1)
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and

y(t) =

m∑
i=1

giφi(t) +ϖ(t), t = tab1 , · · · , tabs , (2)

where y(t) is the output, φi(t) is the information element con-
stituted of the input and output data before sampling instant t,
gi, i = 1, · · · ,m are the unknown parameters, v(t) is a Gaussian
white noise and satisfies v(t) ∼ N(0, δ2), and ϖ(t) is an outlier. In
general, model (1) contaminated by a Gaussian white noise is termed
as normal model; while model (2) contaminated by outliers is called
abnormal model. Assume that the number of the collected data is L,
s+ q = L and q > m. Define the cost function

J(g1, · · · , gm) =
L∑

t=1

m∑
i=1

[y(t)− giφi(t)]
2.

Decompose the above cost function into two parts

J(g1, · · · , gm) =

q∑
l=1

m∑
i=1

[y(tnol)− giφi(tnol)]
2 +

s∑
o=1

m∑
i=1

[y(tabo)− giφi(tabo)]
2. (3)

Indeed, those abnormal sampling instants are unknown a priori, and
their corresponding data sets have negative impact on the parameter
estimation. The focus of this paper is to use the proposed algorithms
to pick out the contaminated data/abnormal model, and then to obtain
unbiased parameter estimates.

B. Review of the traditional algorithm
Define the following two vectors,

G= [g1, · · · , gm]T,

φ(t) = [φ1(t), · · · , φm(t)]T.

Then, Equation (3) is rewritten as

J(G) =

q∑
l=1

[y(tnol)−φT(tnol)G]2 +

s∑
o=1

[y(tabo)−φT(tabo)G]2. (4)

For the systems with outliers, the LS algorithm can be written as
[32],

Ĝ= [

q∑
l=1

φ(tnol)φ
T(tnol) +

s∑
o=1

φ(tabo)φ
T(tabo)]

−1 ×

[

q∑
l=1

φ(tnol)y(tnol) +
s∑

o=1

φ(tabo)y(tabo)]. (5)

The expectation of the estimate is

E[Ĝ] = E
{
[

q∑
l=1

φ(tnol)φ
T(tnol) +

s∑
o=1

φ(tabo)φ
T(tabo)]

−1 ×

[

q∑
l=1

φ(tnol)y(tnol) +

s∑
o=1

φ(tabo)y(tabo)]
}

=E
{
[

q∑
l=1

φ(tnol)φ
T(tnol) +

s∑
o=1

φ(tabo)φ
T(tabo)]

−1 ×

[

q∑
l=1

φ(tnol)φ
T(tnol)G+φ(tnol)v(tnol) +

s∑
o=1

φ(tabo)φ
T(tabo)G+φ(tabo)ϖ(tabo)]

}

=G+ E
{
[

q∑
l=1

φ(tnol)φ
T(tnol) +

s∑
o=1

φ(tabo)φ
T(tabo)]

−1 ×

[φ(tnol)v(tnol) +φ(tabo)ϖ(tabo)]
}
.

Since the noise v(tnol) is Gaussian white, the above equation can be
simplified as

E[Ĝ] =G+ E
{
[

q∑
l=1

φ(tnol)φ
T(tnol) +

s∑
o=1

φ(tabo)φ
T(tabo)]

−1 ×

[φ(tabo)ϖ(tabo)]
}
. (6)

Those outliers ϖ(tabo), o = 1, · · · , s make the estimates Ĝ biased.
Unlike the LS algorithm, the GD algorithm generates an estimation

sequence. By designing the negative direction and its corresponding
step-size, such a sequence can converge to the true values. Let Ĝk−1

be the estimate of G in iteration k − 1. Using the GD algorithm to
update the parameter vector yields the following iterative function,

Ĝk = Ĝk−1 + λ

q∑
l=1

φ(tnol)[y(tnol)−φT(tnol)Ĝk−1] +

λ

s∑
o=1

φ(tabo)[y(tabo)−φT(tabo)Ĝk−1], (7)

where λ is the step-size, one can use the method in [15] to choose a
suitable step-size, that is,

0 < λ <
2

λmax[
q∑

l=1

φ(tnol)φ
T(tnol) +

s∑
o=1

φ(tabo)φ
T(tabo)]

,

wherein λ
s∑

o=1

φ(tabo)[y(tabo)−φT(tabo)Ĝk−1] makes the estimates

biased.
Clearly, if the systems are contaminated by outliers, the traditional

LS and GD algorithms are both inefficient [8], [9], [31].
Remark 1: Two methods can eliminate the bias: (1) study the

characteristics of the outliers and try to diminish the effect caused
by these outliers [23]–[25]; (2) pick out all the abnormal data, and
then estimate the parameters based on the normal data.

III. ITERATIVE REWEIGHTED ALGORITHM

The basic idea of iterative reweighted (IRE) algorithm is to assign
different weights for each cost function, and those weights of the
abnormal data have smaller values or equal to zero. Finally, all the
cost functions of the abnormal data are picked out from the original
cost function.

A. Weighted LS algorithm
Define the cost function as

J(G) =

q∑
l=1

w(tnol)[y(tnol)−φT(tnol)G]2 +

s∑
o=1

w(tabo)[y(tabo)−φT(tabo)G]2. (8)

At first, there is no quantifiable confidence of data. Therefore, all the
initial weights are assigned as the same value, that is

w0(tnol) = w0(tabo) =
1

L
, l = 1, · · · , q, o = 1, · · · , s.

The parameters updated by the LS algorithm are formulated as
follows

Ĝk = [

q∑
l=1

wk−1(tnol)φ(tnol)φ
T(tnol) +
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s∑
o=1

wk−1(tabo)φ(tabo)φ
T(tabo)]

−1 ×

[

q∑
l=1

wk−1(tnol)φ(tnol)y(tnol) +

s∑
o=1

wk−1(tabo)φ(tabo)y(tabo)]. (9)

Remark 2: When wk−1(tnol) = wk−1(tabo) = 1
L

, the above
equation is the same as Equation (3). To obtain unbiased estimates,
one should update the weights in each iteration.

Actually, an ideal weight designing method is to assign smaller
weights for the cost functions whose output data are contaminated
by outliers. To this end, we first compute the residual errors of each
data set once Ĝk is obtained,

εk(tnol) = |y(tnol)−φT(tnol)Ĝk|, l = 1, · · · , q, (10)

εk(tabo) = |y(tabo)−φT(tabo)Ĝk|, o = 1, · · · , s. (11)

Two methods can be applied to compute the weights:
Method 1:
Let

w̄k(t) =
1

εk(t)

and

Wk =
L∑

t=1

w̄k−1(t).

Then, normalizing these weights yields

wk(t) =
w̄k(t)

Wk
.

Method 2:
Let

εmax
k = max{εk(tno1), · · · , εk(tnoq ), εk(tab1), · · · , εk(tabs)}.

Then, the weights for each data set can be assigned as

wk(t) =
εmax
k − εk(t)

mεmax
k −

q∑
l=1

εk(tnol)−
s∑

o=1

εk(tabo)

. (12)

The steps of the weighted LS (W-LS) algorithm are listed as
follows:

W-LS algorithm
(1) Collect y(t) and φ(t), t = 1, · · · , L
(2) Form Ĝ0 = [0, 0, · · · , 0]T and

w0(t) = 1/L, t = 1, · · · , L
(3) for k = 1, 2, · · · , do

(3-1) Update Ĝk according to Equation (9)
(3-2) Compute εk(t), t = 1, · · · , L based on

Equations (10) and (11)
(3-3) Update wk(t), t = 1, · · · , L according to

Equation (12)
end

until convergence

Remark 3: According to Equation (12), at least one model is
picked out from the stacked model in each iteration. When the
iterations become larger, some normal models will mistake for
abnormal models. To deal with this dilemma, we can choose

εmax
k = max{εk(tno1), · · · , εk(tnoq ), εk(tab1), · · · , εk(tabs)}+ ϱ,

where ϱ is a small positive constant.

Remark 4: Different from the traditional LS algorithm, the W-LS
algorithm cannot yield the parameter estimates in only one iteration
because the weights are regarded as hidden variables. The parameters
and weights are interactively estimated until both converge to their
true values.

B. Weighted GD algorithm
Based on the cost function in (8), the direction of the weighted

GD (W-GD) algorithm is computed by

dk =

q∑
l=1

w(tnol)φ(tnol)[y(tnol)−φT(tnol)Ĝk−1] +

s∑
o=1

w(tabo)φ(tabo)[y(tabo)−φT(tabo)Ĝk−1]. (13)

Then, the parameter estimates are updated by

Ĝk = Ĝk−1 + λkdk, (14)

where

0< λk <
2

λmax[Mk +Nk]
,

Mk =

q∑
l=1

wk−1(tnol)φ(tnol)φ
T(tnol),

Nk =

s∑
o=1

wk−1(tabo)φ(tabo)φ
T(tabo).

The weights wk−1(tnol) and wk−1(tabo) are computed by Equation
(12).

Remark 5: Unlike the GD algorithm, the W-GD algorithm requires
computing the eigenvalues of the information matrix [Mk +Nk] in
each iteration because the weights are always changing. It will lead
to heavy computational efforts [33], [34].

C. Iterative reweighted algorithm
In the iterative reweighted (IRE) algorithm, the cost function is

defined as

J(G) =
[ q∑

l=1

|y(tnol)−φT(tnol)G|p +

s∑
o=1

|y(tabo)−φT(tabo)G|p
]
, (15)

where ∥α∥p = (|α1|p+ |α2|p+ · · ·+ |αn|p)
1
p (α ∈ Rn) is a p-norm.

Transform J(G) into

J(G) =
[ q∑

l=1

|y(tnol)−φT(tnol)G|p−2[y(tnol)−φT(tnol)G]2 +

s∑
o=1

|y(tabo)−φT(tabo)G|p−2[y(tabo)−φT(tabo)G]2
]
.

(16)

Compare Equation (16) with Equation (15), the weights can be
assigned as

wk(tnol) = |y(tnol)−φT(tnol)G|p−2,

wk(tabo) = |y(tabo)−φT(tabo)G|p−2.

Since the parameter vector G is unknown, we can use its estimate
in iteration k − 1 to replace it,

wk(tnol) = |y(tnol)−φT(tnol)Ĝk−1|p−2,

wk(tabo) = |y(tabo)−φT(tabo)Ĝk−1|p−2.
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A larger error |y(tnol) − φT(tnol)Ĝk−1| means that the output
encounters an outlier, and then its corresponding weight should
be assigned as a smaller value. Therefore, we usually assume that
0 < p < 2. For different p, we have

1) When p = 2, the IRE algorithm is the same as the LS
algorithm, and in this case, the parameter estimates are biased.

2) When p = 1, the weight is computed by

wk(t) =
1

|y(t)−φT(t)Ĝk−1|
,

which means that the IRE algorithm is equivalent to the W-LS
algorithm.

3) When 0 < p < 1, since the parameter estimates in the first
few iterations are not accurate, we have no confidence of the
residual errors. Therefore, in the first few iterations of the IRE
algorithm, a small p is better.

4) When 1 < p < 2, in the last few iterations, a large p is better.
5) When p > 2, the IRE algorithm is divergent.
Remark 6: Based on the discussions mentioned above, we can

choose a small p in the first few iterations, and then assign a larger
p in the remaining iterations.

The weights of the IRE-LS and IRE-GD algorithms are updated
by

wk−1(t) = |y(t)−φT(t)Ĝk−1|p−2. (17)

Then, the steps of the IRE algorithms are listed as follows:

IRE algorithms
(1) Collect y(t) and φ(t), t = 1, · · · , L
(2) Form Ĝ0 = [0, 0, · · · , 0]T, w0(t) = 1/L

(3) for k = 1, 2, · · · , do
(3-1) Update Ĝk based on Equation (9) or (14)
(3-2) Compute wk(t), t = 1, · · · , L according to

Equation (17)
(3-3) Normalize wk(t), t = 1, · · · , L
(3-4) Compare wk(t), t = 1, · · · , L with ϵ, if wk(t) < ϵ

(ϵ > 0 is given a priori), let wk(t) = 0

end
until convergence

Remark 7: To pick out the models which are contaminated by
outliers, we can assign a small positive constant ϵ a priori. If the
weight is smaller than ϵ, its corresponding model can be regarded as
an abnormal model.

IV. PROPERTIES OF ITERATIVE REWEIGHTED ALGORITHMS

In this section, we derive some properties of the IRE algorithms.

A. Convergence properties
The convergence properties of the IRE algorithms are given in the

following theorems.
Theorem 1: Assume that the system with outliers is written by

(1), and the number of the collected data sets is L (the number of the
normal data sets is q, and L

2
< q 6 L). The parameter estimates are

updated using (9) and (17). Then, the IRE-LS algorithm is convergent,
and the estimates Ĝk are unbiased when L → ∞.

Proof: Define the normal and abnormal weight sets as

W (no) = {w(tno1), · · · , w(tnoq )},
W (ab) = {w(tab1), · · · , w(tabs)}.

Rewrite the cost function in iteration k − 1 as

J(Wk−1(no),Wk−1(ab), Ĝk−1)

=

q∑
l=1

wk−1(tnol)[y(tnol)−φT(tnol)Ĝk−1]
2 +

s∑
o=1

wk−1(tabo)[y(tabo)−φT(tabo)Ĝk−1]
2,

which denotes the errors between the true outputs and predicted
outputs in iteration k − 1. To prove that the IRE-LS algorithm is
convergent, we aim to obtain that the cost function in iteration k is
less than or equal to the cost function in iteration k − 1.

Fixing the weights Wk−1(no) and Wk−1(ab) and using the LS
algorithm to update the parameters, we have

J(Wk−1(no),Wk−1(ab), Ĝk) 6 J(Wk−1(no),Wk−1(ab), Ĝk−1).

Let Ĝk be fixed, then compute the weights. Clearly, the following
inequalities hold

wk(tnol)> wk−1(tnol), l = 1, · · · , q,
wk(tabo)6 wk−1(tabo), o = 1, · · · , s.

Since

[y(tnol)−φT(tnol)Ĝk]
2 6 [y(tabo)−φT(tabo)Ĝk−1]

2,

l = 1, · · · , q, o = 1, · · · , s.

It gives rise to

J(Wk(no),Wk(ab), Ĝk) 6 J(Wk−1(no),Wk−1(ab), Ĝk).

Therefore, we can obtain

J(Wk(no),Wk(ab), Ĝk) 6 J(Wk−1(no),Wk−1(ab), Ĝk−1),

which shows that the IRE-LS algorithm is convergent.
Since the cost function is convex, once the IRE-LS algorithm is

convergent, the weights of the abnormal data equal to zero. Then,
the estimates are formulated as follows

Ĝk = [

q∑
l=1

wk−1(nol)φ(nol)φ
T(nol)]

−1[

q∑
l=1

wk−1(nol)φ(nol)y(nol)].

The expectation of Ĝk is written by

E[Ĝk] = E
[
[

q∑
l=1

wk−1(nol)φ(nol)φ
T(nol)]

−1 ×

[

q∑
l=1

wk−1(nol)φ(nol)[φ
T(nol)G+ v(nol)]]

]
=E

[
[

q∑
l=1

wk−1(nol)φ(nol)φ
T(nol)]

−1 ×

[

q∑
l=1

wk−1(nol)φ(nol)φ
T(nol)G]

]
+E

[
[

q∑
l=1

wk−1(nol)φ(nol)φ
T(nol)]

−1 ×

[

q∑
l=1

wk−1(nol)φ(nol)v(nol)]
]

=G+ E
[
[

q∑
l=1

wk−1(nol)φ(nol)φ
T(nol)]

−1 ×

[

q∑
l=1

wk−1(nol)φ(nol)v(nol)]
]
.

Since v(nol) is a Gaussian white noise with zero mean, and is
independent of the information vector φ(nol), the above equation
can be simplified as

E[Ĝk] = G.
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The proof is completed. �
Remark 8: The IRE-LS algorithm should collect enough data to

obtain unbiased estimates, this is untrue in engineering practices.
Theorem 2: For the system with outliers proposed in (1), assume

that the number of the collected data sets is L, in which the number
of the normal data sets is q, and L

2
< q 6 L. The parameter

estimates are updated using Equations (14) and (17). Then, the IRE-
GD algorithm is convergent, and the estimates Ĝk are unbiased when
L → ∞.

Proof: Since the direction is a negative direction, and the step-size
λk satisfies

0 < λk <
2

λmax[
L∑

t=1

wk−1(t)φ(t)φT(t)]

,

we have

J(Wk−1(no),Wk−1(ab), Ĝk) 6 J(Wk−1(no),Wk−1(ab), Ĝk−1).

The same way as the IRE-LS algorithm, we can obtain

J(Wk(no),Wk(ab), Ĝk) 6 J(Wk−1(no),Wk−1(ab), Ĝk),

and

J(Wk(no),Wk(ab), Ĝk) 6 J(Wk−1(no),Wk−1(ab), Ĝk−1).

It demonstrates that the IRE-GD algorithm is convergent.
Once the weights of the abnormal data converge to zero, the

estimates using the IRE-GD algorithm are formulated as follows

Ĝk = Ĝk−1 + λkdk, (18)

dk =

q∑
l=1

wk−1(nol)φ(nol)[y(nol)−φT(nol)Ĝk−1], (19)

0< λk <
2

λmax[
q∑

l=1

wk−1(nol)φ(nol)φT(nol)]

. (20)

Subtracting the true value G on both sides of Equation (18) gives

G̃k = G̃k−1 + λk

q∑
l=1

wk−1(nol)φ(nol)[φ
T(nol)G+ v(nol)−

φT(nol)Ĝk−1]

= [I− λk

q∑
l=1

wk−1(nol)φ(nol)φ
T(nol)]G̃k−1 +

λk

q∑
l=1

wk−1(nol)φ(nol)v(nol),

where G̃k = Ĝk −G. According to Equation (20), we have

∥I− λk

q∑
l=1

wk−1(nol)φ(nol)φ
T(nol)∥ < 1.

For the reason that the noise v(nol) is Gaussian white with zero
mean, and is independent of φ(nol). It gives rise to

E[G̃k] = 0.

Therefore, the estimates are unbiased. �
Remark 9: The IRE-LS algorithm performs a matrix inverse

calculation in each iteration, while the IRE-GD algorithm should
compute the eigenvalues of an information matrix. If the considered
model has a high-order, both the methods have heavy computational
efforts. The multi-direction method proposed in [33] can be used to
reduce the computational efforts.

Remark 10: Since the weights of the models which are contami-
nated by outliers become smaller and smaller, the IRE-LS and IRE-
GD algorithms proposed in this paper can alleviate the bad effect
caused by the outliers. Thus, they can obtain unbiased estimates.

B. The number of the normal data
The number of the normal data plays an important role in the

IRE algorithm convergence analyzing. Assume that the number of
the normal data sets is q.

Case 1: L
2
< q 6 L

In this case, the normal data play a more important role in
estimating the parameters than the abnormal data, and the estimates
asymptotically converge to the true values with increased numbers of
k and q. In addition, the larger the number q is, the faster convergence
rates the algorithms will have.

Case 2: q < L
2

When q < L
2

, the IRE algorithm may be divergent. To deal with
this problem, the EM or VB method proposed in [10], [25] is a good
alternative.

Case 3: q = L
2

If the outlier is another kind of noise, the considered model can be
regarded as a switching model which is constituted of two submodels:
one is a normal model which is contaminated by a Gaussian white
noise, and the other is an abnormal model whose noise is outlier.
Then, the IRE algorithm is unavailable because these two kinds of
models have the same number of data; On the other hand, if there
are several kinds of outliers, and the number of the data for each
abnormal model is less than L

2
. In this case, the IRE algorithm is

efficient.

V. EXAMPLES

For simplicity, in what follows, τk = ∥Ĝk − G∥/∥G∥ means
the parameter estimation error in iteration k; σk = ∥wk − w∥/∥w∥
denotes the weight estimation error in iteration k.

A. Example 1
Consider the following model,

y(t) = g1u(t− 1) + g2u(t− 2) + · · ·+ g8u(t− 8) + v(t),

G= [g1, g2, g3, g4, g5, g6, g7, g8]
T = [2,−3, 2, 1, 1.5, 3, 0.8,−0.4]T,

where u(t) ∼ N(0, 1). We collect 1000 sets of data, where the
noise sequence from t = 1 : 500 and 601 : 1000 satisfies v(t) ∼
N(0, 0.12), while the other data from t = 501 : 600 are contaminated
by outliers (10% percentage of data are contaminated by outliers).

Apply the traditional LS , GD, IRE-LS, and IRE-GD (p = 1.2)
algorithms for the model. For fair comparison, the initial param-
eters θ0 = 1/106 keep unchanging for all the algorithms (1 =
[1, 1, 1, 1, 1, 1, 1, 1]T. The estimation errors τk versus k are shown in
Fig. 1. The parameter estimates and the estimation errors are shown
in Table I. To show the stability of the four algorithms, the boxplot
of parameter estimates of different iterations are shown in Fig. 2 (the
means and the outliers of the estimates of the 8 parameter elements).

In addition, use the IRE-LS and IRE-GD (p = 1.2) algorithms for
the model: (1) the data from 601 : 1000 are contaminated by outliers
(40% percentage of data are contaminated by outliers); (2) the data
from 701 : 1000 are contaminated by outliers (30% percentage of
data are contaminated by outliers). The estimation errors are shown
in Fig. 3. The weight estimates are shown in Fig. 4 (30% percentage
of data are contaminated by outliers). To show the tracking ability
of the algorithm, assume that the true weights of the submodel from
t = 1 : 600 are equal to 1 (not contaminated by outliers), while the
others are equal to zero (contaminated by outliers). Assign a threshold
ξ = 0.0008, if the weight estimate is larger than ξ, let it be equal
to 1; otherwise, let it be equal to 0. The weight estimation errors σk

versus k are shown in Fig. 5.
Based on this example, we can obtain:
1) the estimates of the IRE based methods are more accurate

than the estimates of the traditional GD and LS algorithms,
as shown in Fig. 1 and Table I;

2) the more data are contaminated by outliers, the slower conver-
gence rates the algorithms will have, as shown in Fig. 3;
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TABLE I
PARAMETER ESTIMATES AND ESTIMATION ERRORS

k g1 g2 g3 g4 g5 g6 g7 g8 τ (%)

30 1.91612 -2.42922 1.81939 0.83119 1.37610 2.94540 0.79785 -0.19097 12.31815
60 1.91612 -2.42922 1.81939 0.83119 1.37610 2.94540 0.79785 -0.19097 12.31815

LS 90 1.91612 -2.42922 1.81939 0.83119 1.37610 2.94540 0.79785 -0.19097 12.31815
120 1.91612 -2.42922 1.81939 0.83119 1.37610 2.94540 0.79785 -0.19097 12.31815
150 1.91612 -2.42922 1.81939 0.83119 1.37610 2.94540 0.79785 -0.19097 12.31815

30 1.69562 -1.44599 1.55921 0.84896 1.15562 2.36507 0.73064 0.15782 34.43099
60 1.87523 -2.13386 1.74584 0.83660 1.28801 2.77920 0.75134 -0.07615 18.76374

GD 90 1.91112 -2.33946 1.79822 0.83270 1.34298 2.89692 0.77631 -0.15283 14.24583
120 1.91676 -2.40165 1.81317 0.83156 1.36409 2.93099 0.78918 -0.17822 12.90908
150 1.91695 -2.42067 1.81752 0.83126 1.37185 2.94103 0.79460 -0.18669 12.50256

30 1.99186 -2.98206 1.98528 0.98034 1.51099 3.00173 0.80380 -0.39295 0.62645
60 1.99464 -2.99252 1.98611 0.98612 1.50897 2.99936 0.80625 -0.39262 0.46321

IRE-LS 90 1.99462 -2.99293 1.98663 0.98646 1.50936 2.99912 0.80587 -0.39303 0.45147
120 1.99462 -2.99294 1.98664 0.98646 1.50936 2.99912 0.80587 -0.39303 0.45130
150 1.99460 -2.99304 1.98673 0.98656 1.50942 2.99908 0.80582 -0.39311 0.44877

30 1.82633 -2.01520 1.70540 0.87703 1.24623 2.62316 0.73372 -0.00879 22.08552
60 1.95190 -2.60010 1.86532 0.90217 1.39404 2.91932 0.77360 -0.23730 8.84030

IRE-GD 90 1.96697 -2.73024 1.90342 0.91356 1.44149 2.97400 0.79206 -0.29718 5.92230
120 1.96781 -2.76003 1.91332 0.91729 1.45508 2.98494 0.79800 -0.31361 5.24575
150 1.96746 -2.76669 1.91579 0.91836 1.45869 2.98730 0.79962 -0.31807 5.08909

True Values 2.00000 -3.00000 2.00000 1.00000 1.50000 3.00000 0.80000 -0.40000
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Fig. 1. Parameter estimation errors τ versus k
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Fig. 2. Parameter estimates using the four algorithms for 150 iterations

3) the LS algorithms (traditional LS and IRE-LS algorithms) are
more stable than the GD algorithms (traditional GD and IRE-
GD algorithms), this can be shown in Fig. 2;

4) the IRE-LS algorithm has more accurate weight estimates than
those of the IRE-GD algorithm, this can be shown in Figs. 4
and 5.
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Fig. 3. Parameter estimation errors τ versus k
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Fig. 4. Weight estimates

B. Example 2

In this example, we use the same model as in Example 1. However,
the normal data and the abnormal data have the same number: (1)
there is only one kind of outlier, e.g., q = L

2
for normal data, and

s = L
2

for abnormal data; (2) there are several kinds of outliers, e.g.,

q = L
2

for normal data, and si <
L
2
,

m∑
i=2

si =
L
2
, i = 2, · · · ,m for

abnormal data.
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Fig. 5. Weight estimation errors σ versus k

Use the IRE-LS and IRE-GD (p = 1.5) algorithms to identify the
model. The estimation errors are depicted in Fig. 6.
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Fig. 6. Parameter estimation errors τ versus k

This example verifies the results of Case 3 in Section IV. B.

C. Example 3
A continuous stirred tank heater (CSTH) is taken as an example

in this subsection [22]. Its structure is shown in Fig. 7. The steam
valve position is u(t). A temperature sensor located at the bottom of
tank can collect the temperature of the water in the outflow pipe and
transmit them over a communication network to the control center.
Due to the complexity of the network, the outputs (temperature) y(t)
in the control center usually encounter noises, and some are even
contaminated by outliers. The CSTH model can be written by

y(t) = 0.06012u(t− 3) + 0.05390u(t− 4) + 0.04832u(t− 5) +

0.04332u(t− 6) + v(t).

In simulation, we collect L = 820 sets of data. The input satisfies
u(t) ∼ N(0, 1). The noise v(t) from t = 1 : 500 and t = 601 : 750
is a Gaussian white noise satisfies v(t) ∼ N(0, 0.12). The output data
at other sampling instants are y(501 : 600) = (rand(100, 1)) × 10
and y(751 : 820) = (rand(70, 1)) × 10. The simulation data are
shown in Fig. 8.

TABLE II
OPERATING CONDITIONS

Variable Value
Level 12mA (20.48cm)
Cold valve 12.96mA (9.0383× 10−5 m3/s)
Steam valve 12.57mA

Temperature 10.5mA (42.52◦C)

The parameter estimation errors using the IRE-LS and IRE-GD
(p = 1.8) algorithms are depicted in Fig. 9. The weight estimates are
shown in Fig. 10. Use the true parameters to recover the true outputs

 !"#!$%&'$!()!*)+$
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Fig. 7. CSTH system
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Fig. 8. Simulation data

(t = 500 : 600), and the estimated parameters (IRE-LS) to compute
the predicted outputs (t = 500 : 600). These two kinds of outputs
are shown in Fig. 11.

Using the Monte Carlo method for the CSTH system (50 sets of
noises), the estimation errors are shown in Fig. 12.

In addition, assume that the output data from 501 : 600 and
751 : 820 are y(501 : 600) = (rand(100, 1)) × 15 and y(751 :
820) = 0. The simulation data are shown in Fig. 13. The parameter
estimation errors using the IRE-LS and IRE-GD (p = 1.8) algorithms
are depicted in Fig. 14. Use the true parameters to recover the true
outputs (t = 500 : 600), and the estimated parameters (IRE-LS) to
compute the predicted outputs (t = 500 : 600). These two kinds of
outputs are shown in Fig. 15.
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Fig. 9. Parameter estimation errors τ versus k

From this example, we have the following findings: (1) both the
IRE-GD and IRE-LS algorithms are convergent, as shown in Fig.
9; (2) the weight estimates show that both the two algorithms can
exactly catch the outlier/fault dynamics, this is demonstrated in Fig.
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Fig. 10. Weight estimates
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Fig. 13. Simulation data

10; (3) using the parameter estimates to predict the outputs, which
can recover the true outputs during the outlier/fault instants, see Fig.
11; (4) compared with the IRE-GD algorithm, the IRE-LS algorithm
is more robust to the noises, as shown in Fig. 12; (5) if the number
of the abnormal data is much smaller than that of the normal data,
the IRE algorithms are always effective.
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Fig. 14. Parameter estimation errors τ versus k
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Fig. 15. True and predicted outputs

D. Example 4
Consider the following nonlinear model

y(t) = g1u
2(t− 1) + g2u(t− 1)u(t− 2) + g3u(t− 2)u(t− 3) +

g4u
2(t− 4),

G= [g1, g2, g3, g4]
T = [1.2, 0.86,−0.64, 1.12]T,

where u(t) ∼ N(0, 1). We collect 1000 sets of data, and the noise
sequence from t = 1 : 800 satisfies v(t) ∼ N(0, 0.12), while the
other data from t = 801 : 1000 are contaminated by outliers.

Use the IRE-LS and IRE-GD algorithms for this model (p = 1.3).
The parameter estimation errors are shown in Fig. 16.
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Fig. 16. Parameter estimation errors τ versus k

This example shows that the IRE-LS and IRE-GD algorithms are
both effective for nonlinear models with outliers.

E. Example 5
A dryer system is considered in this subsection, where u(t) is

the capacity of the dryer, and y(t) is the outlet temperature of the
dryer. The sampling period ∆t = 0.08 sec. Using the command ’load
dryer2’ in Matlab, we can generate 1000 sets of input-output data.
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When t = 1 : 800, the data are contaminated by a Gaussian white
noise, and the noise satisfies v(t) ∼ N(0, 0.01); when t = 801 :
1000, the data are contaminated by outliers. The simulation data are
shown in Fig. 17.

Apply the IRE-LS and IRE-GD algorithms to identify the model
(p = 1.2), and then predict the outputs t = 801 : 1000. The predicted
outputs and the true outputs are shown in Fig. 18.
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This example shows that the IRE-LS and IRE-GD algorithms are
both effective for the dryer system.

VI. CONCLUSIONS

In this paper, we propose two iterative reweighted algorithms for
systems contaminated by outliers. These two algorithms interactively
update the parameter estimates and weight estimates, and take several
advantages over the traditional identification algorithms:

1) compared with the GD and LS algorithms, the proposed algo-
rithms proposed in this paper can obtain unbiased parameter
estimates;

2) compared with the EM and VB algorithms, the proposed
algorithms do not require any prior knowledge of the outliers,
thus can be widely used in engineering practices;

3) the proposed algorithms can exactly catch the dynamics of the
model by observing the weight estimates, thus can be extended
to fault diagnosis and fault detection.

Therefore, the proposed algorithms are powerful and flexible tools
for engineering and applied problems.

It is noteworthy that although the proposed algorithms have these
advantages, there still remain some challenging and interesting topics.
For example, how to choose the optimal p when computing the
weights? and can the algorithms be applied to systems in which most
of the data are contaminated by outliers?
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