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Abstract 

In practice, the required sample size for a two-arm randomised controlled trial cannot always be determined pre-study 

with great accuracy. This lack of accuracy has economic, ethical and scientific implications. The sample size for a pilot 

study is an important consideration in helping the decision making for the sample size of a follow-on trial. 

Consideration of under- and over-estimation of the sample size results in the idea of a Just-About-Right (JAR) sample 

size. For studies involving a minimally clinical important difference (MCID) we present the pilot sample sizes to meet 

investigator desired JAR considerations. 
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1. Introduction 

1.1 Incorrect Estimation of Sample Sizes 

A pilot study is a small-scale investigation designed to test the feasibility of methods and procedures for later use on a 

larger scale (Thabane et al, 2010). In clinical studies, a pilot randomised controlled trial (RCT) could be used to help in 

the planning of a proposed substantive RCT (power = 0.8) or definitive RCT (power >= 0.9). The pilot RCT provides a 

means to collect preliminary data on safety, is used to assess the recruitment rate and the degree of participant retention, 

provides data on willingness to be randomised, and crucially, to provide estimates of variation in outcomes measures to 

assist the decision-making process for the sample size of the follow-on trial (Lancaster et al, 2004, Ln 2005, Arnold et al, 

2009). This latter consideration begs the question, on how to determine the optimal RCT pilot sample size for any given 

context, with the aim of being able to estimate accurately the sample size requirements of the proposed follow-on RCT.   

One of the most common errors in any type of empirical scientific research is an insufficient sample size (Makin, 2019). 

Small sample sizes can lead to Type Two errors (false negatives) and in practice this is especially true when combined 

with moderately low or low effect sizes. Small sample sizes can leave a research community in some doubt as to 

whether effects are real. There is also the position that it is unethical to ask participants to commit to taking part in a 

study which is insufficiently powered to meet objectives (Altman 1980, Halpern et. al. 2002). In addition, any such 

study would be an uneconomic use of resources. On the contrary, having too large a sample size could also be 

problematic. A sample size might be considered too large if the same quality of conclusions could have been obtained 

with a much smaller sample size. If the sample size is too large, then this too may be considered an uneconomic use of 

resources and it may be deemed unethical to be randomly allocating any excess sample size to control or intervention 

irrespective of whether intervention confers a benefit or not. In summary, for any substantive or definitive trial, the 

sample size should be sufficient to achieve worthwhile results, but not so large as to involve unnecessary recruitment of 

participants. Guidance is needed to allow research teams, ethics committees, funding panels, data monitoring 

committees, and protocol reviewers to evaluate whether a study intends to recruit too many participants (overpowered) 

or too few participants (underpowered) and it is important to get a just-about-right (JAR) sample size which is not too 

small, not too large but just-about-right.   

A well conducted pilot study could be instrumental in helping to determine a JAR sample size for the follow-on study. 

Extant literature provides some rules-of-thumb for pilot sample size estimation. Julious (2005) noted that the marginal 

additional sample information content decreases with each unit increase in sample size and recommended a sample size of 

at least n = 12 per group.  Similarly, Birkett and Day (1994) suggest 20 per arm, Kieser and Wassmer (1996) suggest 

between 20 to 40 per arm be used when the main trial requires between 80 to 250, Teare et al, (2014) suggest ≥70, and 

Browne (1995) indicates that n = 30 per arm is commonplace practice. However, the prevailing sentiment is that a simple 

one-size-fits-all solution or one rule-of-thumb would be inadequate when context specific considerations apply. 
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In terms of context specific considerations, Browne (1995), considered determining sample size for a two-arm parallel 

RCT study when (a) a pilot study is used to collect preliminary data on outcome variation and (b) the minimum 

clinically important difference (MCID) is pre-specified and (c) the follow-on study is to be adequately powered to 

detect an effect and (d) an assumption of normally distributed outcome data can be made. For these situations, the 

required per arm sample size, 𝑛, is given by  

 
𝑛 =  

2(𝑍1− 𝛼/2 + 𝑍1− 𝛽)
2

 𝜎2

(𝜇1  − 𝜇2)2
 

(1) 

where 𝜇
1

−  𝜇
2
 is the true mean difference or MCID, 𝑍1− 𝛼 2⁄ , and 𝑍1− 𝛽  are standardised normal deviates for 

two-sided significance testing with nominal significance level 𝛼  and required power 1 −  𝛽  , and 𝜎2  is the 

population variance for the outcome measure assumed to be equal between arms. Although the MCID might be 

specified by hypothesis, the true population variance 𝜎2 would be unknown. The pilot study would provide a sample 

estimate for 𝜎2, but this sample estimate 𝑠2, would most likely underestimate the population variance 𝜎2, since 

(𝑚1 +  𝑚2 − 2) 𝑠2 𝜎2  ∽  𝜒
𝑚1+𝑚2−2
2⁄  where 𝑚1 and 𝑚2 denotes the sample sizes in the two arms of the pilot study. 

It is well known that chi-square distributions are positively skewed, hence using 𝑠2 in place of 𝜎2 in the above 

formula would typically produce an estimated sample size lower than truly required. For this reason, Browne (1995) 

cautiously suggested estimating and replacing 𝜎2 in the sample size formula with the estimated 100(1 − 𝛾) per cent 

one-sided upper confidence limit (UCL) for 𝜎2. Specifically, the sample size per arm, for 1:1 randomisation under 

Browne’s suggested approach is given by  

 
𝑛̂ =  

2(𝑍1− 𝛼/2 +  𝑍1−𝛽)
2

𝑘𝑠2

(𝜇1 −  𝜇2)2
 

 

(2) 

where 𝑠2 is the sample pooled variance and 𝑘𝑠2 is the 100(1 − γ) percent one-sided upper confidence limit (UCL) 

for σ2. The quantity 100(1 − γ) is the “coverage” i.e., the percentage of times that the predicted sample size per arm, 

n̂, would exceed the true required sample size per arm n. From a practical perspective, Browne advocated a coverage of 

80% (0.8) or a coverage of 90% (0.9).  

1.2 Browne’s Method  

Simulation work conducted by Browne (1995) and Obodo et al, (2021) confirms that the approach considered by 

Browne has merit, achieving the required coverage of 0.8 or 0.9 as appropriate, for α = 0.01, α = 0.05, β =  0.2, β =
0.1, and for a range of effect sizes (small, medium, large) and for a range of pilot sample sizes between 5 and 100. 

However, Obodo et al, (2021) show that the procedure can produce underpowered studies, or frequently produce an 

intolerably large degree of excess, and that the extent of the problem depends on pilot sample size per arm (m), level 

of coverage (1 −  γ) but not on significance level α = 0.01, 0.05, nor on power 1 −  β = 0.8, 0.9, nor on MCID. 

Both coverage and pilot sample size are at the control of an investigator at the trial planning stage. We therefore sought 

to quantify the relationship between pilot sample size and JAR requirements for coverage of 0.8 and 0.9 separately.   

We operationalise an investigator chosen JAR interval to be [n −  λ1n, n +  λ2n ]  where λ1 , λ2  ∈  [0, 1] , are 

investigator chosen parameters to prevent the degree of underpowering (λ1) and degree of overpowering (λ2). We 

aim for trialists to be able to justify pilot sample size and to make a statement to the effect of “The proposed two group 

pilot study will have a sample size of m per arm. This sample size is chosen so that the resultant power calculations for a 

larger study will have 100(1 −  γ)% chance of exceeding the minimum required sample size and which in a two-sided 

test with significance level α will have 100(1 −  β)% power for detecting a difference between arms assuming a MCID 

of (μ
1

−  μ
2
). This proposed pilot sample size of m per arm will ensure that the estimated sample size will lie in the 

interval (1 −  λ1)n to (1 +  λ2)n, with probability π providing a safeguard for under- and over- powering." In this 

statement we consider α = 0.01, 0.05, power (1 −  β) = 0.8, 0.9, coverage (1 −  γ) = 0.8, 0.9, any value for MCID, 

lower bounds λ1 = 0.1, 0.2 and upper bounds λ2 = 0.1, 0.2, 0.3, 0.4 for any chosen level of π.  
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2. Monte Carlo Simulation Design 

The Monte Carlo simulations are informed by Browne (1995) and mimic the design given by Obodo et al, (2021). In 

brief, we consider the two-arm parallel RCT with 1:1 randomisation which is to be analysed using the independent 

samples t-test (equal variances assumed, two-sided, alpha = 0.05, 0.01). The true sample size for the RCT is calculated 

for desired power (0.8 or 0.9), for a specified MCID corresponding to a small, medium or large effect (0.1, 0.4, 0.75) 

assuming equal variances (𝜎2 = 1) under an assumption of normality.  

For pilot samples sizes (𝑚 = 5, 10, 30, 50, 100) the 80% and 90% upper one-sided confidence limit for the pooled 

sample variance is used in Browne’s formula. The percentage of times that the estimated sample size, 𝑛̂ is in the 

interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] is recorded for 𝜆1 = 0.1, 0.2, and 𝜆2 = 0.1, 0.2, 0.3, 0.4, 0.5. Table 1 summarises the 

factor levels for the 2 by 2 by 2 by 3 by 5 fully crossed design.  

Table 1. Parameter combinations 

FACTOR  Number of Levels LEVELS 

Power 2 0.8, 0.9 

Significance level 2 0.01, 0.05 

Coverage level 2 0.8, 0.9 

Effect size 3 0.10, 0.40, 0.75 

Pilot sample size  5 5, 10, 30, 50, 100 

Simulation was done using the R programming language with 100,000 replicates (as against Browne 1995 who used 

2,000 replicates) for each cell of the design to obtain more precise simulation values. 

3. Results 

Table 2 summarises the percentage of times the estimated sample size, 𝑛̂, for the follow-on study would be in the 

interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1 = 0.1, 0.2, 𝜆2 = 0.1, 0.2, 0.3 for 𝑚 = 5(5)100, and for coverage (1 −  𝛾) = 0.8, 

0.9. Simulation percentages are aggregated over significance level 𝛼 = 0.01, 0.05, over prior reasoned statistical power 

(1 −  𝛽) = 0.8, 0.9 and assumed effect size 𝜇1 − 𝜇2 = 0.1, 0.4, 0.75 as it is known that these factors do not affect the 

estimated sample size (Obodo et al, 2021).  

Inspection of Table 2 and Figure 1, clearly shows the percentage within any given interval monotonically increases with 

increasing pilot sample size for each of coverage = 0.8 and for coverage = 0.9. It is also clear that the percentage in any 

given interval is greater for coverage = 0.8 compared with coverage = 0.9 and this is only to be expected since, for any 

estimated sample size, the sample size for when coverage is 0.9 must be greater than the sample size when a tolerance 

for coverage is set to be equal to 0.8. Table 2 and Figure 1 show that the percentage of instances within an interval is 

particularly sensitive to the upper bound 𝜆2 which naturally follows from the positively skewed chi-square distribution 

used in the estimation process.   

 

Figure 1. Percentage of simulation instances 100𝜋̂ in the interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1 = 0.1, 0.2, 𝜆2 = 0.1, 0.2, 

0.3, for 𝑚 = 5(5)100, and for coverage (1 −  𝛾) = 0.8, 0.9  
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Table 2. Percentage of simulation instances 100𝜋̂ in the interval [𝑛 − 𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] for 𝜆1 = 0.1, 0.2, 𝜆2 = 0.1, 

0.2, 0.3, for 𝑚 = 5(5)100, and for coverage (1 −  𝛾) = 0.8, 0.9 

Coverage = 0.8 

 

𝑚 

𝜆1 0.1 

𝜆2 0.1 

𝜆1 0.1 

𝜆2 0.2 

𝜆1 0.1 

𝜆2 0.3 

𝜆1 0.2 

𝜆2 0.1 

𝜆1 0.2 

𝜆2 0.2 

𝜆1 0.2 

𝜆2 0.3 

5 11.1 16.5 22.0 15.8 20.9 24.9 

10 14.1 22.3 31.0 19.4 27.6 36.0 

15 16.9 27.7 39.2 22.4 33.7 45.7 

20 19.5 32.8 46.6 25.3 39.2 54.2 

25 22.1 37.7 53.3 28.0 44.3 61.5 

30 24.6 42.4 59.2 30.6 49.1 67.7 

35 27.1 46.8 64.4 33.1 53.5 72.9 

40 29.6 50.9 69.0 35.5 57.5 77.3 

50 34.4 58.4 76.5 40.1 64.6 83.9 

60 39.1 64.9 82.1 44.4 70.5 88.4 

70 43.5 70.4 86.2 48.4 75.4 91.6 

80 47.8 75.0 89.4 52.2 79.4 93.8 

90 51.8 78.9 91.7 55.7 82.7 95.4 

100 55.6 82.2 93.5 59.0 85.5 96.5 

Coverage = 0.9  

𝑚 𝜆1 0.1 

𝜆2 0.1 

𝜆1 0.1 

𝜆2 0.2 

𝜆1 0.1 

𝜆2 0.3 

𝜆1 0.2 

𝜆2 0.1 

𝜆1 0.2 

𝜆2 0.2 

𝜆1 0.2 

𝜆2 0.3 

5 6.6 10.1 13.6 9.0 12.5 15.7 

10 8.4 14.1 20.4 11.1 16.8 23.2 

15 10.1 17.9 27.2 13.0 20.9 30.4 

20 11.8 21.7 33.9 14.8 24.9 37.5 

26 13.5 25.5 40.4 17.0 28.8 44.1 

30 15.2 29.3 46.6 18.2 32.6 50.4 

35 16.9 33.1 52.4 20.0 36.4 56.1 

40 18.7 36.8 57.7 22.0 40.0 61.3 

50 22.2 44.0 66.9 25.0 47.0 70.0 

60 25.7 50.8 74.3 29.0 53.3 76.9 

70 29.3 57.0 80.0 31.4 59.1 82.2 

80 32.9 62.6 84.5 34.6 64.2 86.1 

90 36.5 67.5 87.9 37.8 68.8 89.2 

100 40.0 71.9 90.5 40.8 72.8 91.6 

The monotonic trends between 𝜋̂ and pilot per arm sample size 𝑚, for each interval  [𝑛 −  𝜆1𝑛, 𝑛 +  𝜆2𝑛 ] and 

each level of coverage has been modelled using linear regression with the functional form ln(𝜋̂) = 𝑏0 +  𝑏1√𝑚.  

Thus, for instance, when coverage = 0.8 and the interval 𝑛 ± 0.1𝑛 is considered then it is readily verified that 

ln(𝜋̂) = −2.745 + 0.297√𝑚  and that the overall goodness-of-fit, 100𝑅2 , is 96.3%. Table 3 provides the 

estimated intercepts, gradients and goodness of fit for 𝜆1= 0.1, 0.2; 𝜆2 = 0.1, 0.2, 0.3, 0.4 0.5 for coverage 0.8 and 

coverage 0.9. 
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Table 3. Regression equations of the form ln(𝜋) = 𝑏0 + 𝑏1√𝑚 giving estimated intercept (𝑏0), gradient (𝑏1), 

coefficient of determination (R-squared) for 𝜆1 = 0.1, 0.2, and 𝜆2 = 0.1, 0.2, 0.3, 0.4, 0.5   

Coverage = 0.8 

Lower Percentage 

(100 𝜆1) 

Upper Percentage 

(100 𝜆2)  

Intercept Gradient R- Squared 

10 10 -2.745 .297 .963 

10 20 -2.531 .406 .988 

10 30 -2.399 .506 .993 

10 40 -2.094 .543 .981 

10 50 -1.697 .527 .952 

20 10 -2.256 .262 .954 

20 20 -2.228 .400 .989 

20 30 -2.375 .569 .997 

20 40 -2.613 .759 .997 

20 50 -2.557 .853 .998 

Coverage = 0.9 

Lower Percentage 

(100 𝜆1) 

Upper Percentage 

(100 𝜆2) 

Intercept Gradient R- Squared 

10 10 -3.306 .290 .957 

10 20 -3.082 .402 .984 

10 30 -3.029 .528 .995 

10 40 -3.028 .656 .998 

10 50 -2.827 .712 .991 

20 10 -2.872 .250 .955 

20 20 -2.795 .378 .986 

20 30 -2.856 .524 .995 

20 40 -3.108 .716 .996 

20 50 -3.450 .919 .993 

 

For any level of coverage and any interval, any regression equation in Table 3 may be re-written in terms of pilot 

sample size i.e., 𝑚 = ([ln(𝜋̂) − 𝑏0]/ 𝑏1)^2. Solution of this will give an estimated pilot sample size per arm, 𝑚, 

for any required percentage for the given interval.   

Table 4 shows the pilot sample size per arm (𝑚) needed to have a required probability (𝜋) of being in a given 

interval [𝑛 −  𝜆1𝑛, 𝑛 +  𝜆2𝑛 ] for coverage of 0.8 or coverage 0.9.  Thus, for instance, if an investigator requires 

an 80% chance of not being underpowered for a definitive trial (coverage = 0.8) and requires a 70% chance 

(𝜋 = 0.7) of being within ± 10% of the true required sample size (𝜆1 = 0.1, 𝜆2 = 0.1) then a sample size per 

arm (𝑚) of 65 is needed for any given MCID.   
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Table 4.  Pilot sample size (𝑚) required for a required proportion (𝜋) to be in the interval [𝑛 −  𝜆1𝑛, 𝑛 + 𝜆2𝑛 ] 
for a given coverage. 

 

𝜋 

𝜆1 0.1 

𝜆2 0.1 

𝜆1 0.1 

𝜆2 0.2 

𝜆1 0.1 

𝜆2 0.3 

𝜆1 0.2 

𝜆2 0.1 

𝜆1 0.2 

𝜆2 0.2 

𝜆1 0.2 

𝜆2 0.3 

Coverage = 0.8 

0.50 48 20 11 36 15    9 

0.55 52 23 13 40 17   10 

0.60 56 25 14 44 18  11  

0.65 61 27 15 49 20   12 

0.70 65 29 16 53 21   13 

0.75 68 31 17 56 23   13 

0.80 72 32 18 60 25   14 

0.90 79 36 21 67 28   16 

Coverage = 0.9  

0.50 81 35 20 76 31 17 

0.55 87 38 21 83 34 18 

0.60 93 41 23 89 37 20 

0.65 98 43 24 95 39     22 

0.70 103 46 26 101 42 22 

0.75 108 48 27 107 43 24 

0.80 113 50 28 112 46 25 

0.90 121 54 31 122  51  27 

 

4. Discussion and Conclusion 

Pilot studies are conducted for a variety of reasons. One such reason is to help determine variation in outcome 

measures to help plan the required sample size for a large-scale substantive or definitive follow-on study. The 

preceding sections consider the situation where the MCID can be pre-specified for a scale outcome variable and an 

assumption of normality is reasonable.  

Sample size may be calculated if parameters are either known or can be reasonably estimated. For instance, in a 

two-arm study, if for example MCID = 0.2, variance = 1, alpha = 0.05, beta = 0.10, then the required sample size 

may be verified to n = 526 per arm (complete data set after any missing data). In practice the variation of the 

outcome measure may not be known but may be estimated by collecting pilot data. In these regards, Browne’s 

method, may be used to estimate a required sample size with either 80% or 90% coverage i.e. the estimated sample 

size has an 80% or 90% chance of exceeding the required minimum sample size. A problem with this approach is 

the chance of underestimating the required sample size, or in having an estimated sample size which far exceeds 

the required sample size (see Obodo et al, 2021). We considered a strategy to curb these excesses so that estimated 

sample sizes would be “not too small” and “not too large” in comparison to the true required but unknown sample 

size, by considering a just-about-right (JAR) sample size. The chosen coverage (say 80% or 90%) is not dependent 

on pilot sample size. However, with a given level of coverage a researcher may wish to ensure that the probability 

of the margin of error attached to any estimate is pre-specified to be within an interval around the true required 

sample size e.g. 70% chance of being within 10% of the required sample size. By inspection of Table 4, if 80% 

coverage is required with a 70% chance of being within +/- 10% of true sample size, then the pilot study would 

require at least m = 65 per arm. The protocol may then contain a summary “The proposed two group pilot study 

will have a sample size of 65 per arm. This sample size is chosen so that the resultant power calculations for sample 

size in a larger study will have an 80% chance of exceeding the minimum required sample size and which in a 

two-sided test with significance level α will have 100(1 −  β)% power for detecting an effect assuming an MCID 

of (μ
1

−  μ
2
). This proposed pilot sample size of 65 per arm will ensure that the estimated sample size will have a 70% 

chance of being in an interval of +/- 10% of the true required sample size providing a safeguard over under- and over- 
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powering."  

The pilot sample sizes given in this article (Table 4) is predicated on an MCID. If the true effect size exceeds the 

MCID then the follow-on study is likely to be overpowered to detect a difference (the lesser of the two possible 

errors). If the true effect is smaller than the MCID then any effect smaller than the MCID is not of clinical interest 

and may go undetected.  

The pilot sample sizes given in this article are based on assumptions of normality and equal variance. In these 

regards, the practical utility of the pilot sample size recommendations needs further investigation for variance 

heterogeneity and non-normal distributions including binary outcomes. In a similar way, other simulations may 

consider the two arm pre- post- RCT design with repeated measures ANCOVA as the analysis strategy. As such the 

given pilot sample sizes are restricted to the stated assumptions with a direct parametric comparison between the 

two groups. 
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