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Learning a flexible neural energy function with a unique minimum
for globally stable and accurate demonstration learning
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Abstract—Learning a stable autonomous dynamic system
(ADS) encoding human motion rules has been shown as an
effective way for demonstration learning. However, the stability
guarantee may sacrifice the demonstration learning accuracy.
This article solves the issue by learning a stability certificate,
represented by a neural energy function, on the demonstra-
tion set. We propose a Polar-like space analysis approach to
derive parameter constraints to guarantee the unique-minimum
property of the neural energy function, which is essential for
it to be a cogent stability certificate. Then, the neural energy
function is learned to capture the demonstration preferences via
constrained optimization algorithms. With the learned neural
energy function, a globally asymptotically stable ADS with
predefined position constraint is further formulated. We also
quantitatively analyze the generalization ability of the learned
ADS by utilizing the substantial flexibility of the neural energy
function. The effectiveness of the proposed approach is validated
on the LASA data set and two representative robotic experiments.

Index Terms—Motion-skills transfer, demonstration learning,
autonomous dynamic system learning, Lyapunov function learn-
ing, optimization

NOMENCLATURE

x The robot position.
g(x) The stable ADS function expected to be learned.
o(x) The original ADS function.
u The corrected term in g(x).
V (x) The neural energy function.
D The demonstration set.
M The number of samples in the demonstration set D.
dx The dimension of the robot position.
f(x) The feature of the neural energy function.
dH The dimension of the feature f(x).
z(x) The manually designed encoder.
ak, bk The feature parameters of the neural energy function.
ω The weight parameter of the neural energy function.
r The length coordinate of a Polar-like space element.
θ The angle coordinate of a Polar-like space element.
h(θ) The direction vector of a Polar-like space element.
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VP (r, θ) The Polar-like space form of the neural energy
function.

fP (r, θ) The Polar-like space form of the neural energy
feature.

zP (r, θ) The Polar-like space form of the encoder.
R+ The set containing all non-negative real scalars.
R++ The set containing all positive real scalars.
Rn The set containing all real vectors with dimension n.
Rn×n+ The set containing all semi-positive definite real

matrices with size n× n.
Rn×n++ The set containing all positive definite real matrices

with size n× n.

I. INTRODUCTION

With the development of robotic technologies, robots have
been widely used in structured factory environments and other
unstructured environments such as homes, offices, hospitals,
etc. Learning human-like skills is essential for robots in both
structured and unstructured environments, such as human-like
polishing [1], assembly [2], collaboration [3], motion [4] and
physical interactions [5]–[7], etc. Learning from demonstration
(LfD) approaches provide effective ways to reliably transfer
human-like skills to robots.

This article focuses on motion-skills transfer, which is basic
but essential for robots. Learning a dynamic system (DS) [8]
that encodes human motion rules is an effective approach for
transferring motion skills. There are basically two types of
approaches for learning DS. The first type aims to learn a
non-autonomous DS (N-ADS) where the generated trajectory
is time-driven. Specifically, the output of the learned N-ADS
could be a position/velocity sequence indexed by time steps.
The second type learns autonomous DS (ADS), where the state
variation of the DS is determined by the current state instead
of the time step.

In principle, any regression algorithm can be used to estab-
lish an N-ADS by setting the time index and robot position
(velocity) as the input and output, respectively. Most N-ADS
learning approaches are conducted under a statistic framework
for naturally obtaining learning confidence. In [9]–[12], the
time step and demonstration position were assumed to satisfy a
Gaussian mixture model (GMM), and the posterior distribution
of the position given by the time index was computed by using
the Gaussian mixture regression (GMR) algorithm. However,
it had been shown in [13] that the generalization capacity of
N-ADS learned by the original GMM/GMR could be weak,
especially for new scenarios which have not appeared in
the demonstration set. In [13]–[15], task-parameterized GMM
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(TP-GMM) was presented to further enhance the general-
ization capacity by including task-related parameters in the
EM optimization procedure. In [16], a learning approach for
task parameters was presented to enhance the performance of
the TP-GMM. Other popular approaches for learning N-ADS
contain probabilistic movement primitives (ProMP) [17], [18]
and kernelized movement primitives (KMP) [19].

A major disadvantage of N-ADS is that it is ill-suited for
highly dynamic tasks since the motion generated by the N-
ADS does not get feedback from the environment [20]. Unlike
N-ADS, humans always determine their behaviors in real-time
according to the current environmental state, which is similar
to the ADS. Dynamic movement primitives (DMP) [21], [22]
might be one of the most popular approaches to learn an ADS.
The globally asymptotic stability of the ADS learned by the
DMP is ensured by its special structure, i.e., a combination
of a stable second-order ADS and a possibly unstable but
gradually decaying nonlinear ADS. In [23], [24], GMM/GMR
approaches were integrated into the DMP framework to en-
hance its learning performance for multiple-demonstration
tasks. Although the stability of the DMP could be ensured,
its special structure separates each motion dimension and thus
decreases the reproduction and generalization abilities [25].

Compared with utilizing the special structure, using a sta-
bility certificate for the stability ensurement is more preva-
lent for the ADS learning. A commonly used certificate is
called contraction metric [26], which measures the difference
between two trajectories starting from two nearby initial states.
A basic work for integrating the contraction theorem and the
stable ADS learning was presented in [27], where the ADS
was learned by a neural network such that the contraction
metric along the ADS is permanently decreasing. Work [28]
presented a non-parametric framework for contracting ADS
learning. However, simple forms of the contraction metrics
used in [27], [28] limit the reproduction accuracy for complex
demonstration trajectories. In [29]–[31], data-driven contrac-
tion metrics were integrated into the learning framework to
improve the reproduction accuracy of the learned ADS.

Another stability certificate is called Lyapunov function
(LF), which is a kind of positive-definite, continuously dif-
ferentiable energy function. Compared with the contraction
stability theorems, the Lyapunov stability theorems may at-
tract more attention in the control society since it is more
intuitive and developed [8]. It had been pointed out in [26],
[28], [29] that the contraction metric can be viewed as a
special Lyapunov function. One of the fundamental works for
combing Lyapunov theorems and ADS learning is called stable
estimator of dynamical systems (SEDS) [32], where a globally
asymptotically stable ADS represented by GMM/GMR was
learned under some quadratic-energy-function-related stability
constraints. In [33], the work in [32] was further extended
to the case with an unstatic goal position. [34] presented
LF constraints for a more general neural-parameterized ADS,
however, the resulted optimization problem is intractable,
and it was approximately solved with a constraints-sampling
approach. In [35], [36], this problem was solved by designing
a special neural network activation function.

However, similar to the problem faced in the contraction

metric, a quadratic energy function used in the previous
approaches limits the reproduction accuracy of the learned
ADS. Learning data-driven energy functions consistent with
the demonstration trajectories can dramatically improve the
reproduction accuracy. In [37], the weight matrix of the
quadratic energy function was optimized on the demonstration
set to increase the consistency between the energy function and
the demonstration set. In [38], a more flexible energy func-
tion called “weighted sum of asymmetric quadratic functions
(WSAQF)” was learned to further increase the consistency, and
the stable ADS was established by using the control Lyapunov
approach. In [39], a bridge between learning a stable ADS and
a special type of energy functions was built by presenting a
diffeomorphic transformation, which resulted in the τ -SEDS
algorithm. This approach further highlights the importance and
value of the energy function learning. In [40], a fast diffeomor-
phic matching (FDM) approach was presented to map the com-
plex ADS to a simple stable ADS, and a transformed energy
function was simultaneously generated. In [41], [42], a sum of
squares (SOS) energy function was presented, and it showed
a better performance compared with the WSAQF. Work [43]
designed a more general neural-parameterized energy function,
called neurally-imprinted Lyapunov candidates (NILC), to
capture the demonstration preferences, and both simulation
and experiment results validated the effectiveness of the NILC.
However, the positive-definite property of the NILC can only
be approximately ensured, and thus the stability of the resulted
ADS can not be ensured theoretically. In [44], a special neural-
parameterized energy function, referred to as the Lyapunov
neural network (LNN), was designed to ensure the positive-
definite property. In [45], the generalization error result of the
data-driven energy function was analyzed by making bounded
assumptions of the true ADS.

However, except for the WSAQF [38] and the energy func-
tion transformed by FDM [40], all of the above complex data-
driven energy functions may have multiple minima. Undesired
minima will introduce spurious attractors for the ADS. Specif-
ically, if an energy function with multiple minima is used as
the stability certificate, the trajectory generated by the learned
ADS can principally converge to an arbitrary minimum, which
may raise safety issues. It should be noted that for a data-
driven approach, the model flexibility always positively corre-
lates with the model complexity. Consequently, the WSAQF
[38] can not support the ADS to produce extremely complex
trajectories due to its quadratic-like form. Similarly, the FDM-
transformed energy function in [40] does not allow the ADS
to generate spiral trajectories due to the topological constraint.
It is well known that deep neural networks are very flexible.
However, ensuring the unique-minimum property for a general
neural network could be very difficult. In recent years, an
input-convex neural network (ICNN) [46] was presented to
solve the unique-minimum problem by ensuring that the
neural network is convex in the input. However, the convexity
constraint of the ICNN can severely limit its performance for
capturing complex demonstration preferences. Moreover, due
to the limited flexibility, both the WSAQF, FDM-transformed
energy function and ICNN can not capture the demonstration
preferences on a broad area, which corresponds to the more
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challenging generalization ability. These issues motivate the
main part of the work in this article, i.e., to learn a flexible
neural energy function with the unique-minimum property.

In this article, we present an approach to learn a glob-
ally asymptotically stable ADS in two steps. Firstly, we
learn a flexible neural energy function with unique-minimum,
positive-definite, and continuously differentiable properties to
serve as a stability certificate. Then, the stable ADS is learned
with the guidance of the neural energy function. The main
contributions of this article are listed as follows

1) A flexible neural energy function is designed to be the
stability certificate for the ADS to be learned. Specifically,
we present a Polar-like space analysis approach to derive
the neural-parameter constraints, which ensure the unique-
minimum, positive-definite, and continuously differentiable
properties of the neural energy function.

2) Two neural learning approaches are presented according
to whether the feature of the neural network is manually de-
signed. We show that the learning problem can be formulated
to a convex form when the feature is manually designed.

3) A globally asymptotically stable ADS learning approach
is presented based on the learned neural energy function.
Unlike existing ADS learning approaches, we show that the
learned ADS can handle position constraints due to the special
properties of the neural energy function.

4) We further quantitatively analyze the generalization abil-
ity of the learned ADS, i.e., the behaviors of the ADS in areas
away from the demonstration set. We show that due to the
strong flexibility of the neural energy function, the learned
ADS can behave reasonably in these unfamiliar areas.

Validations on the LASA data set and real robotic experi-
ments are conducted to show the effectiveness of the proposed
approach. We also provide a video for intuitive illustrations.
Moreover, the source code of the proposed approach is also
provided as supplementary material.

II. PROBLEM STATEMENT

In this work, we focus on learning robot goal-directed
motion skills. Goal-directed motions refer to motions with
static goal positions. Most robotic tasks can be formulated
as a goal-directed motion or a combination of different goal-
directed motions. For example, Fig. 1 shows that a robotic
picking and placing task can be completed by combining two
types of goal-directed motions distinguished by the red and
blue colors. This work aims to encode the goal-directed motion
as an ADS, denoted as ẋ = g(x) where x is the robot position.
After obtaining such an ADS, we can reproduce a trajectory
for any given initial position by integrating the velocity ẋ. To
be consistent with the goal-directed motion, we must ensure
that for any initial position, the trajectory reproduced by the
ADS ẋ = g(x) will always converge to the goal position x∗.
From a control perspective, it means that the ADS ẋ = g(x)
needs to be globally asymptotically stable.

For each goal-directed motion, we can collect a demon-
stration set D = {xt,n, ẋt,n}Tn,Nt=1,n=1, where xt,n is the robot
position at time step t of nth demonstration trajectory, N
is the number of the demonstration trajectories, and Tn is

Fig. 1. A picking and placing task which can be completed by combining
two goal-directed motions.
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Fig. 2. Original ADS learned on a 2-dimensional demonstration set.

the length of the nth demonstration trajectory. Using the
demonstration set D, it is easy to learn an original ADS (O-
ADS) ẋ = o(x) using any regression algorithm. However, the
learned O-ADS is always not globally asymptotically stable
(GAS). A 2-dimensional example is shown in Fig. 2, where
the demonstration set is represented by red circles, and blues
lines represent the reproduction trajectories. We can find that
when the initial position is away from the set D, there might
raise unexpected reproduction trajectories, such as trajectories
converging to a spurious attractor or even being divergent.
Moreover, even if the initial position is near the set D, we still
can not ensure that the reproduction trajectory will converge
to the goal position, although Fig. 2 gives a positive result.

In general, it is necessary to ensure the GAS property of
the learned ADS for the safety concern. There are basically
two approaches to learn a GAS ADS ẋ = g(x) utilizing the
Lyapunov stability theorems. The first one follows the control
Lyapunov approach to add a corrected term u into the O-ADS,
i.e., ẋ = g(x) = o(x) + u, and the corrected term u is online
computed by solving the convex optimization problem

min
u
uTu (1)

subject to (
∂V (x)

∂x

)T
(o(x) + u) ≤ −ρ(x), (2)

where V (x) and ρ(x) are positive definite functions. Actually,
the function V (x) is an energy function which is referred to
as the Lyapunov function, and the constraint (2) implies that
the energy along the ADS ẋ = g(x) always decreases. Hence,
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Fig. 3. Different energy function V (x)s and their corresponding reproduction
results. The left and right sub-figures respectively show the results of a simple
quadratic energy function and a complex data-driven energy function.

the trajectory generated by the ADS ẋ = g(x) will converge
to a minimum of the energy function V (x).

The second approach directly estimates a stable ADS ẋ =
g(x) without using the O-ADS, which can be formulated as
the following optimization problem

min
Θ

J(Θ) =

N∑
n=1

Tn∑
t=1

‖g(xt,n,Θ)− ẋt,n‖22 (3)

subject to(
∂V (x)

∂x

)T
g(x,Θ) ≤ −ρ(x), ∀x ∈ Rdx (4)

where Θ is the learnable parameter. Different from the opti-
mization problem described in (1) and (2), the optimization
problem described in (3) and (4) must be solved offline.
Since the form (4) contains infinite numbers of constraints,
the optimization problem described in (3) and (4) is generally
intractable. Existing works handled this issue by utilizing the
special structure of the ADS function g(x) to transform the
infinite constraints to finite Θ-related constraints. A representa-
tive approach is the SEDS presented in [32], where the special
structure of the GMM/GMR is utilized.

After checking the forms of these two approaches, we
can find that they both introduce an energy-function-related
constraint (2) or (4) to ensure the convergence property. These
constraints imply that the trajectory reproduced by the learned
ADS ẋ = g(x) must move from a high-energy-value area
to a low-energy-value area. Thus, different energy functions
V (x) will lead to totally different qualities of the learned
ADS, whether with respect to the reproduction accuracy or
the convergence property. A 2-dimensional example is shown
in Fig. 3, where the left sub-figure shows the reproduction
result when a quadratic energy function is used. As we can
see, the reproduction trajectory converges to the goal position
well. However, a large number of demonstration points violate
the energy-function-related constraint, which are highlighted
by the blue crosses. Thus, a low reproduction accuracy will
be finally obtained, which is reflected by the fact that the
shapes of the reproduction and demonstration trajectories are
totally different. The right sub-figure of the Fig. 3 shows
the reproduction result using a data-driven energy function.
We can see that the data-driven energy function can well
capture the preferences of the demonstrations, which raises a

high reproduction accuracy. However, if the data-driven energy
function has some local minima, some spurious attractors will
be introduced into the ADS since the trajectory can not leave
from these local minima due to the energy-function-related
constraint. An example is shown in the right sub-figure of the
Fig. 3, where a reproduction trajectory gets stuck in a local
minimum. Since we can not predict the positions of these local
minima, directly using a data-driven energy function could
raise safety problems in real robotic tasks.

From the above discussion, a natural way to ensure both
accuracy and GAS (convergence) properties of the learned
ADS is to learn a data-driven energy function V (x) with a
unique minimum located at the goal point. Let us imagine
that if we have obtained such an energy function V (x), we can
naturally solve the intractable optimization problem described
in (3) and (4) by setting g(x,Θ) = −∂V (x)

∂x . Thus, we state that
learning a data-driven energy function with a unique minimum
is the critical issue for both the two ADS learning approaches
mentioned previously.

However, it is not easy to design a structure for the energy
function V (x) if we want to simultaneously hold the unique-
minimum property and the flexibility property. An extreme
case is if the energy function structure is designed as a
quadratic function, i.e., V (x) = xTPx where P is a positive
definite matrix learned on the demonstration set, the unique-
minimum property can be easily ensured while the flexibility
will be severely weakened. In this case, the learned energy
function could not capture the demonstration preferences well,
especially when the demonstration trajectories are too complex
to be consistent with a quadratic function (see left sub-figure
of Fig. 3). Another extreme case is that the energy function
V (x) is directly represented by a deep neural network, which
has high flexibility but may have various unpredictable local
minima (see the right sub-figure of Fig. 3).

Compared with the flexibility, the unique-minimum property
of the energy function is obviously more important since it
is related to the convergence (safety) issue. Thus, one of
the main problems considered in this article is learning an
energy function V (x) with a unique minimum while increasing
its flexibility as much as possible. Specifically, we represent
the energy function V (x) as a neural network and derive
neural parameter constraints to ensure its unique-minimum
property. Another part of works in this article is to learn a
GAS ADS with the learned neural energy function as the
stability certificate. Different from existing works, utilizing
some special properties of the designed neural energy function,
we can add a position constraint to the learned ADS, which
might be valuable for some robotic tasks. Finally, we further
quantitatively analyze the generalization ability of the learned
ADS by utilizing the flexibility of the neural energy function.

III. LEARNING A NEURAL ENERGY FUNCTION WITH A
UNIQUE MINIMUM

Given a demonstration set D = {xt,n, ẋt,n}t=Tn,Nt=1,n=1, we
present the following neural energy function to capture demon-
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stration preferences

V (x) = V1(x)− V1(0) + V2(x)
V1(x) = ωT f(x)

f(x) =
[
f1(x), · · · , fk(x), · · · , fdH (x)

]T
fk(x) = %(aTk z(x) + bk)

z(x) =
[
‖x‖1+ε

2 ‖x‖ε2xT
]T

V2(x) = αxTx

, (5)

where V1(x) is represented by a learnable neural network with
weight parameter ω ∈ RdH and feature f(x) : Rdx → RdH .
The activation function %(s) is chosen to be the well known
“tanh” function, i.e., %(s) = es−e−s

es+e−s . Function z(x) : Rdx →
Rdx+1 is a manually designed encoder, ak ∈ Rdx+1 and
bk ∈ R are feature parameters, ε, α ∈ R++ are positive
scalars. Function V2(x) is used to ensure the radially un-
bounded property of the V (x).

In this section, we will introduce an approach to learn
the energy function V (x) such that V (x) only has a unique
minimum located at the origin.

A. Deriving Constraints for the Unique-Minimum Property

In this subsection, we will derive constraints for neural
parameters {ak, bk, ω}k=1,··· ,dH such that the energy function
V (x) does not have any minimum except for the origin.
Instead of deriving constraints in the Cartesian space, we focus
on a Polar-like space, which can simplify the deriving process.
We give the following proposition which enables us to convert
any Cartesian space vector into a Polar-like space vector.

Proposition 1. For any Cartesian space vector x ∈ Rdx , dx >
1, there must exist an angle vector θ ∈ Rdx−1 such that the
following equation holds

x = rh(θ), (6)

where r = ‖x‖2 is the length of x, and h(θ) ∈ Rdx is a
direction vector defined as

h(θ) =



∏dx−1
i=1 sinθi∏dx−1

i=2 sinθicosθ1∏dx−1
i=3 sinθicosθ2

...
sinθdx−1cosθdx−2

cosθdx−1


(7)

Proof. We will prove the result by the mathematical induction
approach. Firstly, it is obvious that the result is correct in the
case dx = 2. The resulted space (r, θ) is the well-known Polar-
coordinates space. Then, we assume that the result is further
correct for the case dx = k − 1, k > 3. What remains is to
show that the result also holds for the case dx = k. Since the
result is correct for the case dx = k − 1, we have

x1:(k−1) = rk−1hk−1(θ) = rk−1



∏k−2
i=1 sinθi∏k−2

i=2 sinθicosθ1∏k−2
i=3 sinθicosθ2

...
sinθk−2cosθk−3

cosθk−2


, (8)

where x1:(k−1) represents the vector constructed by the first
k − 1 components of x, and rk−1 = ‖x1:(k−1)‖2. Then, by
defining the kth component of x as

xk = rcosθk−1 (9)

we have

rk−1 =
√
r2 − x2

k = r
√

(sinθk−1)2 (10)

Note that there must exist a θk−1 ∈ [0, π] to make (9) hold,
thus we have

rk−1 = rsinθk−1 (11)

Substituting (11) into (8), and combining (9), we have

x = rh(θ) (12)

for the case dx = k, which completes the proof. �
Given the Proposition 1, we can state that a Cartesian

space vector x must have a corresponding Polar-like space
vector (r, θ). The conversion from the Cartesian space to the
Polar-like space actually decouples the length and direction
components of the Cartesian space vector x. Then, we can
rewrite the energy function V (x) in the Polar-like space as

VP (r, θ) = V1,P (r, θ)− V1,P (0, θ) + V2,P (r, θ)
V1,P (r, θ) = ωT fP (r, θ)

fP (r, θ) =
[
f1,P (r, θ), · · · , fk,P (r, θ), · · · , fdH ,P (r, θ)

]T
fk,P (r, θ) = %(aTk zP (r, θ) + bk)

zP (r, θ) = r1+ε
[
1 h(θ)T

]T
= r1+εzP (θ)

V2,P (r, θ) = αr2

,

(13)

where the subscript “P ” refers to the “Polar-like space”.

Proposition 2. The energy function V (x) satisfies the condi-
tion ∂V (x)

∂x 6= 0,∀x 6= 0 if its Polar-like space form VP (r, θ)

satisfies the condition ∂VP (r,θ)
∂r 6= 0,∀r 6= 0,∀θ.

Proof. By using the chain rule, we have
∂V (x)
∂x = ∂VP (r,θ)

∂r
∂r
∂x +

(
∂h(θ)
∂x

)T
∂VP (r,θ)
∂h(θ)

∂r
∂x = ∂‖x‖2

∂x = x
‖x‖2 = h(θ)

∂h(θ)
∂x = 1

‖x‖2 I −
xxT

‖x‖32

(14)

Note that if x 6= 0, we have

∂h(θ)

∂x

∂r

∂x
=

(
1

‖x‖2
I − xxT

‖x‖32

)
x

‖x‖2
= 0 (15)

Thus, vector ∂r
∂x is in the null space of the matrix ∂h(θ)

∂x for
any x 6= 0, which implies that ∂V (x)

∂x = 0 if and only if
∂VP (r,θ)

∂r
∂r
∂x = 0 and

(
∂h(θ)
∂x

)T
∂VP (r,θ)
∂h(θ) = 0.

Thus, if we can ensure that

∂VP (r, θ)

∂r

∂r

∂x
=
∂VP (r, θ)

∂r
h(θ) 6= 0 (16)

we can obtain ∂V (x)
∂x 6= 0. Since

‖ ∂r
∂x
‖2 = ‖h(θ)‖2 = 1,∀x 6= 0 (17)
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we can further state that ∂VP (r,θ)
∂r

∂r
∂x 6= 0 if and only if

∂VP (r,θ)
∂r 6= 0, ∀x 6= 0. Since the case ∀x 6= 0 is equal to

the case ∀r 6= 0,∀θ, the proof is completed. �
There is an intuitive explanation in the Cartesian space for

the result proposed in Proposition 2. The condition ∂VP (r,θ)
∂r 6=

0,∀r 6= 0,∀θ implies that the gradient along any ray from the
origin (exclude the origin since r 6= 0) will not vanish, which
raises the result ∂V (x)

∂x 6= 0, x 6= 0.
The Proposition 2 allows us to only consider the gradient

with respect to the length part r, which is simpler since
∂VP (r,θ)

∂r is just a scalar. In what follows, we can give the
kernel result of this work, i.e., deriving constraints of the
neural parameters to ensure that the energy function V (x) only
has a unique minimum located at the origin.

Proposition 3. The energy function V (x) represented by (5)
has a unique minimum value V (0) if neural parameters satisfy
the constraints

ak,1 > 0

a2
k,1 −

∑dx+1
i=2 a2

k,i > 0,∀k ∈ [1, · · · , dH ]

ωk > 0

, (18)

where ak,i is the ith component of the vector ak, and ωk is
the kth component of the vector ω.

Proof. From the result in Proposition 2 we know that if
∂VP (r,θ)

∂r 6= 0,∀r 6= 0,∀θ holds, we will have ∂V (x)
∂x 6= 0,∀x 6=

0. We can expand VP (r, θ) in (13) as

VP (r, θ) =

dH∑
k=1

ωkfk,P (r, θ) + αr2 − V1,P (0, θ) (19)

Then, we can compute the gradient ∂VP (r,θ)
∂r as follows ∂VP (r,θ)

∂r =
dH∑
k=1

ωk
∂fk,P (r,θ)

∂r + 2αr

∂fk,P (r,θ)
∂r = rε(1 + ε)(1− %2

k)aTk zP (θ)

, (20)

where %k is the abbreviation for the function %(aTk zP (r, θ) +

bk). Observing the form of ∂fk,P (r,θ)
∂r in (20) we can find that

if aTk zP (θ) > 0,∀θ holds, we will have ∂fk,P (r,θ)
∂r > 0 since

1−%2
k > 0 always holds due to the specific form of the “tanh”

activation function.
We then scale the term aTk zP (θ) as follows

aTk zP (θ) = ak,1 + aTk,2:h(θ) ≥ ak,1 − ‖ak,2:‖2, (21)

where we utilize the property ‖h(θ)‖2 = 1, and ak,2: ∈ Rdx
represents the vector constructed by the last dx components
of the vector ak. Thus, if the first and second constraints in
(18) hold, we have ∂fk,P (r,θ)

∂r > 0. Then, if ωk > 0, we can
state that

∂VP (r, θ)

∂r
> 0,∀r 6= 0,∀θ (22)

since α ∈ R++. Thus, V (x) does not have any minimum in
the area x 6= 0. Moreover, according to (20), we can easily
find that ∂VP (r,θ)

∂r |r=0 = 0,∀θ. Combining the fact that the
case r = 0,∀θ in the Polar-like space is same as the case
x 6= 0 in the Cartesian space, we can state that V (0) is the
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Fig. 4. 2-D examples for the NEUM satisfying constraints (18).

unique minimum value of the energy function V (x), which
completes the proof. �

To be an effective and smooth energy function, V (x) also
needs to be positive-definite and continuously differentiable.
Moreover, to be a proper guidance for learning a stable
ADS, the gradient of V (x) at the origin should vanish, i.e.,
∂V (x)
∂x |x=0 = 0. We show that if constraints (18) hold, these

properties can be ensured.

Proposition 4. The energy function V (x) represented by (5)
is positive-definite, radially unbounded, continuously differen-
tiable, and has the property ∂V (x)

∂x |x=0 = 0 if constraints (18)
hold.

Proof. In the proof of Proposition 3, we have shown
that if constraints (18) hold, V (0) is the unique minimum
value, and ∂VP (r,θ)

∂r > 0,∀r 6= 0,∀θ holds. Thus, we have
V (x) > V (0) = 0 for ∀x 6= 0, i.e., the energy function V (x)
is positive-definite. Moreover, V (x) is also radially unbounded
due to the specific form of V2(x).

To show the differentiability of V (x), we can directly write
the gradient ∂V (x)

∂x as follows

∂V (x)
∂x = ∂V1(x)

∂x + 2αx

∂V1(x)
∂x =

(
∂z(x)
∂x

)T (
∂f(z)
∂z

)T
ω(

∂f(z)
∂z

)T
=
[
· · ·

(
1− %2

k

)
ak · · ·

]
, k ∈ [1, · · · , dH ](

∂z(x)
∂x

)T
=
[
(1 + ε)‖x‖ε2 x

‖x‖2 ε‖x‖ε2 xx
T

‖x‖22
+ ‖x‖ε2I

]
(23)

Observing the form of ∂z(x)
∂x in (23), it seems that ∂V (x)

∂x can
not be defined at x = 0 due to the term x

‖x‖2 . However, we can

find that ∂V (x)
∂x → 0 when x→ 0 due to the existence of the

positive scalar ε. Thus, we can manually set ∂V (x)
∂x |x=0 = 0

without leading any mistake. As a result, ∂V (x)
∂x is well defined

and continuous on Rdx . This completes the proof. �
Arrive here, we can name the energy function (5) satisfying

the constraints (18) as “NEUM”, which refers to a neural
energy function with the unique-minimum property.

In this subsection, we are committed to find a type of energy
function V (x) subject to the constraint ∂VP (r,θ)

∂r > 0 for ∀r 6=
0,∀θ, where VP (r, θ) is the Polar-like space representation
of V (x). There is an intuitive characteristic for such kind of
functions, that is these functions are monotonically increasing
along the rays emitted from the origin. Some 2-dimensional
examples are given in Fig. 4 where contours, red points, and



7

black arrows represent the energy function, demonstration set,
and rays, respectively. As we can see, the energy value always
increases along the rays. From the geometrical viewpoint,
any ray emitted from the origin always crosses from low-
energy contours to high-energy contours. Thus, we claim that
such type of energy functions is very flexible since we can
arbitrarily change the shapes of contours under the premise of
guaranteeing the geometrical constraint.

Another interesting point is that the well-known energy
functions WSAQF [38] and ICNN [46] also fall into the in-
vestigated energy function type, which could be easily proved.
However, both WSAQF and ICNN are special cases of the
investigated energy function type, i.e., WSAQF is a quadratic-
like function, and ICNN is a convex function. Differently,
the proposed NEUM is the general form of the investigated
energy function type since it has no other limitations except
for the constraint ∂VP (r,θ)

∂r > 0 for ∀r 6= 0,∀θ. Thus, the
proposed NEUM is more flexible than the WSAQF and ICNN.
This fact will also be validated on the LASA handwriting
data set. Moreover, one should also note that except for
increasing the neural network’s width dH , the flexibility of the
NEUM can also be enhanced by increasing the depth of the
neural network, and the corresponding parameter constraints to
ensure the property ∂VP (r,θ)

∂r > 0 for ∀r 6= 0,∀θ can be easily
derived by using a similar Polar-like space analysis approach.

B. Learning the Constrained Neural Energy Function

In this subsection, we develop two approaches to learn the
NEUM, i.e., the energy function represented by (5), which
satisfies the constraints derived in the Proposition 3. In the
first approach, the feature f(x) is manually designed to satisfy
the constraints (18). The learnable parameter only remains
the weight parameter ω. In this case, the learning problem
is convex by designing a proper objective function. In the
second approach, both feature parameters {ak, bk} and weight
parameter ω are learned by a constrained learning algorithm.
In this case, the learning problem is not convex, while the
feature f(x) can be automatically fit to the demonstration set.

The purpose is to make the NEUM V (x) be consistent with
the demonstration preferences, that is the demonstration tra-
jectories evolve from high-energy-value areas to low-energy-
value areas. Mathematically, this purpose can be described as(

∂V (xt,n,Θ)

∂xt,n

)T
ẋt,n < 0,∀(xt,n, ẋt,n) ∈ D (24)

where Θ is the learnable parameter of the NEUM. Note that in
this subsection we will use V (x,Θ) instead of V (x) to denote
the NEUM since Θ will be regarded as a variable.

1) The first learning approach: In this learning approach,
we fix the feature parameters {ak, bk} and only learn the
weight parameter ω. Thus, we have Θ = ω in this approach.
We first determine the objective function of the learning
problem. It seems natural to use jt,n defined as

jt,n(ω) =

(
∂V (xt,n, ω)

∂xt,n

)T
ẋt,n (25)
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Fig. 5. Activation functions for two learning approaches.

to evaluate the NEUM on a pair of data (xt,n, ẋt,n). However,
directly using jt,n(ω) as the evaluation function will intro-
duce some misunderstandings for the learning algorithm. For
example, the algorithm will try to decrease the norm of the
∂V (xt,n,ω)
∂xt,n

to reduce jt,n(ω), which is obviously meaningless
and may lead to a bad parameter ω.

We solve this issue by nesting an activation function on
jt,n(ω), which results the following novel evaluation function

jt,n(ω) = ζ(jt,n(ω)), (26)

where the activation function is defined as ζ(j) = log(eβj+1),
and β ∈ R++ is a tunable parameter. Fig. 5 (a) gives an
intuitive illustration for the activation function ζ(j) and its
tunable parameter β. The activation function ζ(j) with large
β implies that we do not consider the magnitude of jt,n(ω)
when it is negative.

By defining J(ω) =
∑
t,n
jt,n(ω), we formulate the learning

problem as follows
min
ω
J(ω) (27)

subject to

ε1 ≤ ωk ≤ ε2, ∀k ∈ [1, dH ] (28)

where ε1 and ε2 are any positive scalars, ωk is the kth

component of the weight parameter ω. We show that the above
learning problem is convex, which means that we can search
the optimal ω for the NEUM by using a convex optimization
algorithm.

Proposition 5. The learning problem described in (27) and
(28) is convex if energy function V (x) is represented by (5).

Proof. The optimization problem is convex if and only if both
the objective function (27) and constraint functions (28) are
convex in the parameter ω. The convexity of the constraint
functions (28) is obvious since they are linear with the
parameter ω. We then show that the objective function (27)
is also convex in the parameter ω.

We can expand j(ω) as

j(ω) =

(
ωT

∂f(z)

∂z

∂z(x)

∂x
+ 2αxT

)
ẋ (29)

which is obviously affine in ω, and hence convex in ω.
Moreover, the activation function ζ(j) is convex and mono-
tonically increasing in j, we can then claim that j = ζ(j) is
convex in ω according to the composition rule for preserving
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convexity [48]. Furthermore, the objective function J(ω) is a
non-negative weighted sum of j, thus J(ω) is also convex in
ω, which completes the proof. �

2) The second learning approach: In this learning ap-
proach, both feature parameters {ak, bk} and weight parameter
ω will be learned. Thus, we have the learnable parameter
Θ = {ak, bk, ω}k=[1,··· ,dH ]. Similar with the process in
the first learning approach, we first determine the objective
function of the learning problem. Since in this approach the
learning problem will not be convex, we have more choices
for the objective function. Actually, what we truly care is the
angle between the vectors ∂V (x,Θ)

∂x and ẋ, and thus we design
j in this learning approach as follows

jt,n(Θ) =
ẋT

∂V (xt,n,Θ)
∂xt,n

‖ẋ‖2‖∂V (xt,n,Θ)
∂xt,n

‖2
(30)

This design eliminates the misunderstanding mentioned in
the first learning approach since ∂V (xt,n,Θ)

∂xt,n
is normalized in

j. Moreover, we can also nest an activation function on j
like what we do in the first learning approach to trade off
the accuracy and generalization ability of the NEUM, which
results the following evaluation function

jt,n(Θ) = ζ(jt,n(Θ)), (31)

where in this approach the activation function is defined as
ζ(j) = tanh(βj) = eβj−e−βj

eβj+e−βj
, and β ∈ R++ is a tunable

parameter.
Fig. 5 (b) gives an intuitive illustration for the activation

function and its parameter β. The larger the β is, the more we
care about the sign of j, which corresponds to the accuracy
property. On the other hand, if β is small, the algorithm will
additionally focus on the angle between the energy function
gradient ∂V (x,Θ)

∂x and the velocity ẋ, which relates to the
generalization ability of the NEUM. Some 2-dimensional
examples illustrating this point is shown in Fig. 6, where
red points and contours represent the demonstration set and
the learned NEUM, respectively. As we can see, when β
takes a large value, i.e., β = 10.0 in Fig. 6 (a), the energy
function NEUM only considers the accuracy property, that
is the demonstration trajectories always evolve from high-
energy-value areas to low-energy-value areas. When β takes
a small value as in Fig. 6 (c), the learned NEUM additionally
aligns its gradient with the demonstration velocities, which
encodes the motion preferences in a broader area compared
with the large β case. However, we should also note that when
the demonstration trajectories are very complex, enhancing the
generalization ability may sacrifice the accuracy property.

By defining J(Θ) =
∑
t,n
jt,n(Θ) +L2‖Θ‖22, where L2‖Θ‖22

is the L2 regularization term, we formulate the learning
problem as follows

min
Θ

J(Θ) (32)

subject to
ak,1 > 0,∀k ∈ [1, · · · , dH ]

a2
k,1 −

∑dx+1
i=2 a2

k,i > 0,∀k ∈ [1, · · · , dH ]

ω � 0

(33)
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IV. LEARNING A GLOBALLY ASYMPTOTICALLY STABLE
ADS WITH PREDEFINED POSITION CONSTRAINT

In this section, we first learn an original ADS ẋ = o(x)
with a desired equilibrium point, i.e., o(0) = 0, using a
modified Gaussian process regression (GPR) algorithm [47].
Then, we introduce an approach to formulate a GAS ADS
by combining the original ADS and the NEUM learned in
the previous section. Except from considering the global
stability, we further show that we can add a predefined position
constraint to the learned ADS, which may be valuable for some
robotic tasks. Moreover, we analyze the generalization ability
of the learned ADS in areas away from the demonstration area
by utilizing the flexibility of the NEUM.

A. Learning GPR-based Original ADS with a Desired Equi-
librium Point

Given the demonstration set D = {xt,n, ẋt,n}t=Tn,Nt=1,n=1 with
size M =

∑N
n=1 Tn, we assume that the observations ẋt,n are

generated from a disturbed ADS as follows:

ẋt,n = gT (x) + φt,n, (34)

where ẋ = gT (x) is the true ADS assumed to generate the
set, and φ ∈ Rdx is the noise signal satisfying the Gaussian
distribution N (0, σ2

noI) with variance σ2
noI . Gaussian process

regression (GPR) algorithm is utilized to estimate this true
ADS. Since GPR algorithm can only handle one-dimensional
fitting problem, we use dx GPR systems to estimate the
whole true ADS ẋ = gT (x), and the ith, i = 1, · · · , dx,
system is denoted as ẋi = gT,i(x). The GPR algorithm
assumes that the function gT,i(x) follows a GP process as
gT,i(x) ∼ GP(mi(x), ki(x, x

′)) where mi(x) and ki(x, x
′)

are mean and kernel functions, respectively. In this article,
they are defined as{

mi(x) = 0
ki(x, x

′) = σ2
ker,iexp

(
− 1

2 (x− x′)TΣ−1
i (x− x′)

) ,

(35)

where σ2
ker,i and Σi ∈ Rdx×dx++ are hyper-parameters which

could be learned by maximizing the log-likelihood on the
demonstration set D [47]. Given a query input x∗, the output
ẋ∗i = gT,i(x

∗) and outputs in the demonstration set D are
assumed to follow a multi-variate Gaussian distribution[

ẋ∗i
~̇xi

]
∼ N

([
m∗i
~mi

]
,

[
ki(x

∗, x∗) ~kTi (x∗)
~ki(x

∗) Ki + σ2
noI

])
, (36)
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where m∗i = mi(x
∗), ~̇xi ∈ RM is a vector constructed by

stacking ith component of demonstration outputs, ~ki(x∗) ∈
RM is a vector of which the jth component is ki(x∗, xj) and
xj is the jth input of the demonstration set, ~mi ∈ RM is a vec-
tor of which the jth component is mi(xj), and Ki ∈ RM×M+ is
a semi-positive-definite matrix with Ki,ab = ki(xa, xb). Then,
the posterior distribution pi(ẋ∗i |x∗, D) will follow a Gaussian
distribution N (µi(x

∗), σpos,i(x
∗)2) where{

µi(x
∗) = mi(x

∗) + ~kTi (x∗)(Ki + σ2
noI)−1(~̇xi − ~mi)

σpos,i(x
∗)2 = ki(x

∗, x∗)− ~kTi (x∗)(Ki + σ2
noI)−1~kTi (x∗)

(37)

The estimation of the true ADS can be set as ẋ = µ(x) =[
µ1(x), · · · , µdx(x)

]T
, which can be used as the original

ADS. However, we can not ensure that the learned original
ADS will have a desired equilibrium point. This issue can be
solved by introducing a determined input-output pair (0, 0)
into the demonstration set, and we denote the novel demon-
stration set as D. We can then rewrite (36) asẋ∗i~̇xi

0

 ∼ N

m∗i~mi

0

 ,
ki(x∗, x∗) ~kTi (x∗) ki(x

∗, 0)
~ki(x

∗) Ki + σ2
noI

~ki(0)

ki(0, x
∗) ~kTi (0) ki(0, 0)


 ,

(38)
and compute the novel mean function of the posterior as

µ′i(x
∗) = mi(x

∗) + ~k′Ti (x∗)K ′−1
i (~̇x′i − ~m′i), (39)

where 
~k′Ti (x∗) =

[
~kTi (x∗) ki(x

∗, 0)
]

K ′i =

[
Ki + σ2

noI
~ki(0)

~kTi (0) ki(0, 0)

]
~̇x′Ti =

[
~̇xTi 0

]
, ~m′Ti =

[
~mT
i 0

] (40)

We can then formulate the original ADS as ẋ = o(x) =[
µ′1(x), · · · , µ′dx(x)

]T
. We will show that the original ADS

has the desired equilibrium point, i.e., o(0) = 0.

Proposition 6. The ADS ẋ = o(x) =
[
µ′1(x), · · · , µ′dx(x)

]T
,

where µ′i(x) follows the form (39), satisfies o(0) = 0 if the
mean and kernel functions of the GPR are designed as (35).

Proof. We first show that the matrix K ′i in (39) is invertible if
kernel function is designed as (35). For any vector s ∈ RM+1,
we have

sTK ′is ≥ σ2
no‖s1:M‖22 ≥ 0, (41)

where s1:M is the vector constructed by the first M compo-
nents of s. The first inequation is obtained form the positive-
ness of the kernel function. We then show that the above two
equations can not simultaneously hold if s 6= 0. The second
equation holds implies that s1:M = 0. If s 6= 0, we must have
sM+1 6= 0. However, in this case the first equation can not
hold since s2

M+1ki(0, 0) > 0 if kernel function is designed
as (35). Thus, we claim that if kernel function is designed as
(35), K ′i must be invertible.

Then, if K ′i is invertible, we can obtain{
det|K ′i| = det|Ki + σ2

noI|δ 6= 0

δ = ki(0, 0)− ~ki(0)T (Ki + σ2
noI)−1~ki(0)

(42)
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Fig. 7. A 1-D example for GPR prediction with the determined point (0, 0).

Thus we have δ 6= 0 since det|Ki + σ2
noI| > 0 according to

the positiveness property of the kernel function (35). Then, we
can analytically compute K ′−1

i as

K ′−1
i =

[
K11 K12

K21 K22

]
K11 = (Ki + σ2

noI)−1
(
I + 1

δ
~ki(0)~kTi (0)(Ki + σ2

noI)−1
)

K12 = − 1
δ (Ki + σ2

noI)−1~ki(0)

K21 = − 1
δ
~kTi (0)(Ki + σ2

noI)−1

K22 = 1
δ

(43)

Thus, µ′i(0) can be computed as

µ′i(0) = mi(0) +
(
~kTi (0)K11 + ki(0, 0)K21

)
(~̇xi − ~mi)

= ~kTi (0)(Ki + σ2
noI)−1︸ ︷︷ ︸

τ

+
1

δ
(~kTi (0)(Ki + σ2

noI)−1~ki(0)− ki(0, 0))︸ ︷︷ ︸
−δ

τ

= τ − τ = 0,
(44)

where the second equation is obtained by substituting (43) into
(39) and using the condition mi(x) = 0. �

Moreover, it could also be shown that the novel posterior
variance function σ′2pos,i(0) = 0, which shows the predic-
tion determination. A 1-dimensional example for intuitive
illustration is shown in Fig. 7, where blue crosses and red
points represent the demonstration set and the determined
point (0, 0), respectively. Red and blue lines represent the
GPR prediction results with and without the determined point,
respectively. Shadow areas correspond to the 95% prediction
confidence interval. As we can see, after adding the determined
point, the GPR prediction result will cross it with the 100%
probability.

B. Learning a Globally Asymptotically Stable ADS with Pre-
defined Position Constraint

In this subsection, we introduce an approach to formulate a
GAS ADS with a predefined position constraint by combining
the original ADS and the energy function NEUM. The GAS
ADS ẋ = g(x) can be obtained by introducing a correct term
u into the original ADS as

g(x) = o(x) + u, (45)
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where u can be obtained by online solving the following
quadratic programming (QP) problem

min
u
uTu (46)

subject to{
(a). (o(x) + u)T ∂V (x)

∂x 6 −ρ(x)
(b). (o(x) + u)TPx ≤ 0, xTPx = r2

thres

, (47)

where V (x) is the NEUM learned in Section III, ρ(x) is
any positive-definite function, P is a positive-definite or
semi-positive-definite matrix, rthres ∈ R+ is a non-negative
scalar. The constraint (47.a) is used to ensure the globally
asymptotic stability. The left part of constraint (47.b) is the
time derivative of the term 1

2x
TPx, and thus it is a posi-

tion constraint for the ADS. Specifically, when the condition
xTPx = r2

thres is activated, constraint (47.b) will force a
contraction velocity. As a result, when x falls into the region
Rcons =

{
xTPx 6 r2

thres

}
, it will never leave from Rcons.

We then show that if the constraints (18) hold, the feasibility
of the optimization problem described in (46) and (47) can be
ensured for ∀x ∈ Rdx .

Proposition 7. The optimization problem described in (46)
and (47) is feasible for ∀x ∈ Rdx if constraints (18) hold.

Proof. We first consider the case x = 0. If constraints (18)
hold, we have results ∂V (x)

∂x = 0 and o(x) = 0 from the
Proposition 4 and Proposition 6, respectively. Thus, u = 0 is
the optimal solution for the optimization problem described in
(46) and (47).

We then consider the case x 6= 0. We show that there always
exists a solution for the inequality system constructed by (47.a)
and (47.b). Constraints (47.a) and (47.b) actually determine
two half-spaces, and the only case at which these two half-
spaces might have an empty intersection set is ∂V (x)

∂x = −Px.
However, it should be noted that

xT
∂V (x)

∂x
= xT

(
∂VP (r, θ)

∂r

∂r

∂x
+

(
∂h(θ)

∂x

)T
∂VP (r, θ)

∂h(θ)

)

=
∂VP (r, θ)

∂r
xT

∂r

∂x
=
∂VP (r, θ)

∂r
‖x‖2,

(48)

where the second equation is obtained by using the fact that x
is in the null space of the matrix ∂h(θ)

∂x . If the constraints (18)
hold, we can get ∂VP (r,θ)

∂r > 0, which has been proved in the
Proposition 3. Thus, we have xT ∂V (x)

∂x > 0 for ∀x 6= 0. On
the other hand, since P is at least semi-positive-definite, we
get −xTPx ≤ 0 for ∀x 6= 0. Thus, we have ∂V (x)

∂x 6= −Px
for ∀x 6= 0. This completes the proof. �

In what follows, we can give the following theorem.

Theorem 1. The ADS (45) is globally asymptotically stable,
and has a region of attraction R =

{
xTPx 6 r2

thres

}
if the

following conditions hold.
(i) The input u is obtained by online solving the optimization

problem described in (46) and (47).
(ii) Energy function V (x) is represented by (5), and its

parameters satisfy the constraints (18).
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Fig. 8. An intuitive 2-D example for illustrate the generalization ability of
the proposed approach. (a). The velocity norm generated by the original ADS.
(b). NEUM with β = 1.0.

Proof. The result is obvious based on the Proposition 7. �

Remark 1. It should be noted that if we only consider the
stability property, i.e., only constraint (47.a) is considered, we
can directly give the analytical form of the input u as

u = −
ReLu

(
o(x)T ∂V (x)

∂x + ρ(x)
)

∥∥∥∂V (x)
∂x

∥∥∥2

2

∂V (x)

∂x
, (49)

where the activation function ReLu(s) has the form

ReLu(s) =

{
s, s > 0

0, else
(50)

Remark 2. In real applications, the reproduction of the ADS is
always achieved in a discrete manner, and thus the condition
xTPx = r2

thres in the constraint (47.b) may not be easily
activated. Thus, we soften it as (1− η)r2

thres <= xTPx <=
(1 + η)r2

thres in real scenarios.

C. Generalization Ability Analysis

Besides ensuring global stability, we further want to enhance
the generalization ability of the learned ADS ẋ = g(x). Differ-
ent from the reproduction accuracy property, the generalization
ability is reflected in areas away from the demonstration set.
Let us first recall a special property of the GPR with the
Gaussian kernel (35), i.e., the posterior mean function µi(x∗)
of the GPR will approach to 0 when the query input x∗ is
away from the data set. An intuitive 2-dimensional example
is shown in Fig. 8 (a), where the lighter color indicates the
smaller velocity generated by the original ADS. It shows that
the area away from the demonstration set could correspond to
an extremely low-velocity norm.

Thus, when we consider the generalization ability, we can
assume that the output of o(x) is 0. Then, the stable ADS
can be approximated as ẋ = g(x) ≈ u, and the optimization
problem to compute u will be

min
u
uTu (51)

subject to

uT
∂V (x)

∂x
6 −ρ(x) (52)

Note that the position constraint (47.b) will not be considered
in this case since the position constraint will not be activated
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Fig. 9. The learned NEUM and reproduction results for the LASA handwriting data set [49]. The left block shows the NEUM learning results for the LASA
data set, where red point and blue crosses represent the demonstration points those satisfy and violate the NEUM, respectively. The right block shows the
reproduction results which are represented by the black lines.

when x is far away from the demonstration set. Thus, we can
directly compute the optimal u as

u∗ = − ρ(x)∥∥∥∂V (x)
∂x

∥∥∥2

2

∂V (x)

∂x
(53)

As a result, in areas away form the demonstration set, we have

ẋ = g(x) ≈ − ρ(x)∥∥∥∂V (x)
∂x

∥∥∥2

2

∂V (x)

∂x
(54)

Thus, the velocity generated by the ADS will be approx-
imately proportional to the negative gradient of the energy
function NEUM. As discussed in Section III B, when we
choose a small β for the activation function ζ(j) in the
second learning approach, the NEUM gradient can capture the
demonstration preferences in broad areas, which is reflected
by the Fig. 6 (b) and Fig. 8 (b). Furthermore, if we design
function ρ(x) as

ρ(x) =

∥∥∥∥∂V (x)

∂x

∥∥∥∥
2

v(x), (55)

where v(x) is a manually designed function, the influence of
the amplitude part of the NEUM gradient will be eliminated,
which results the following approximated ADS

ẋ = g(x) ≈ −v(x)
∂V (x)
∂x

‖∂V (x)
∂x ‖2

(56)

The form of (56) implies that in areas away from the demon-
stration set, the direction of the velocity generated by the ADS
will approximately same with the negative gradient of the
NEUM, and the amplitude of the velocity will be a designable
function v(x).

V. VALIDATIONS ON THE LASA DATA SET

In this section, we validate the effectiveness of the proposed
approach on the LASA handwriting data set [49], and the
second NEUM learning approach is used. The data set contains
various demonstration cases which raise different difficul-
ties for the demonstration learning. For the most complex
cases with names as “BendedLine”, “DoubleBnededLine”,
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Fig. 10. The quantitative comparison results between the proposed energy function NEUM, WSAQF [38], NILC [43], FDM [40] and ICNN [46] for the six
most challenging cases in the LASA handwriting data set using metrics E1 and E2. The upper and bottom figures shows the comparison results with respect
to the metrics E1 and E2 along with one standard deviation, respectively. Hyper-parameter settings for the compared approaches are determined according
to their article descriptions.

“JShape 2”, “Leaf 1”, “Leaf 2” and “Snake”, the hyper-
parameters for the NEUM are set as dH = 10 and β = 1.0. For
the remaining cases, we set dH = 2 and β = 1.0. Functions
ρ(x) in (47) is given by ρ(x) =

∥∥∥∂V (x)
∂x

∥∥∥
2
v(x)

v(x) = vM
γ

(
1− exp

{
− 1

2x2
M
xTx

}) , (57)

where xM and vM are the maximum position and velocity
norms in the demonstration set D, respectively. γ ∈ R++ is a
tunable parameter to determine the convergence rate.

Learning results for the NEUM and the corresponding ADS
reproduction results are shown in Fig. 9, where the left and
right blocks show the NEUM learning results and ADS repro-
duction results, respectively. The red points and blue crosses
represent the demonstration points satisfying and violating the
energy-function-related constraint, respectively. Large black
points and crosses are used to respectively indicate the initial
and goal positions. In this part, the position constraint is not
used for the accurate reproduction consideration, that is, rthres
in (47.b) is set as 0. We use the “trust-constr” optimization
algorithm for NEUM learning based on the “scipy.minimize”
package with python. The QP problem described in (46) and
(47) is solved using the “cvxopt” package.

Let us first observe the NEUM learning results. As expected,
the learned NEUMs for all demonstration cases satisfy the
unique-minimum property. More specifically, they satisfy the
geometrical constraint mentioned in the subsection III A, i.e.,
the energy function value monotonically increases along any
rays emitted from the origin. Moreover, we can find that
the learned NEUMs can accurately capture the demonstration
preferences for all demonstration cases, even though we set

β = 1.0 to highlight the importance of the generalization
ability. These results validate that the NEUM structure is very
flexible, which allows the NEUM to simultaneously consider
the accuracy and generalization properties for most cases.

To give more intuitive comparisons between the NEUM and
other existing data-driven energy functions, we propose the
following two metrics

E1 = 1 + 1
T

T∑
t=0

jt(Θ)

E2 = 1 + 1
T

T∑
t=0

jt(Θ)

, (58)

where T is the length for a demonstration trajectory, jt(Θ)
and jt(Θ) are defined as (30) and (31), respectively. We set
β = 10.0 for jt(Θ), and thus E1 is used to measure the
accuracy of an energy function, and E2 additionally measures
the generalization ability, i.e., the alignment between the
energy function gradient and the demonstration velocity. The
comparison results on the six most complex cases are shown in
Fig. 10, where the upper and bottom figures respectively show
the comparison results with respect to the metrics E1 and E2.
Hyper-parameter settings for the compared data-driven energy
functions are determined according to their article descriptions.
As we can see, the proposed NEUM outperforms all of the
existing data-driven energy functions, either with respect to
the metric E1 or E2. Moreover, we want to highlight that
compared with another two neural energy functions NILC
and ICNN, the NEUM proposed in this work is much more
lightweight. Specifically, as guided by [43] and [46], the NILC
and ICNN are respectively designed as a three-layer neural
network with 100 hidden-layer units, and a four-layer neural
network with 100 units for each hidden layer. Comparatively,
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Fig. 11. Learning results of the proposed energy function NEUM, WSAQF [38], NILC [43], FDM [40] and ICNN [46] for the six most challenging cases
in the LASA handwriting data set.

TABLE I
QUANTITATIVE COMPARISONS BETWEEN THE PROPOSED APPROACH (PA), CLF-DM [38], τ -SEDS [39] AND CDSP [31] FOR THE SIX MOST

CHALLENGING CASES IN THE LASA HANDWRITING DATA SET USING METRICS SEA AND DTWD.

Cases SEA, (standard deviation) DTWD, (standard deviation)
PA CLF-DM τ -SEDS CDSP PA CLF-DM τ -SEDS CDSP

BendedLine 81.2, (58.4) 76.5, (62.1) 164.6, (124.8) 416.7, (90.8) 79.2, (21.5) 77.5, (22.4) 89.3, (18.1) 331.1, (55.1)
DoubleBendedLine 59.4, (21.9) 60.7, (23.1) 177.9, (77.9) 591.1, (43.4) 57.4, (5.0) 58.4, (5.3) 104.9, (35.8) 451.3, (50.2)

JShape 2 119.7, (67.5) 119.7, (67.5) 109.3, (44.0) 294.8, (91.3) 146.6, (32.7) 146.6, (32.7) 137.6, (32.2) 222.2, (36.1)
Leaf 1 88.8, (44.9) 209.4, (69.6) 324.4, (92.4) 385.0, (64.8) 80.4, (21.4) 137.0, (50.4) 202.8, (61.2) 303.0, (69.2)
Leaf 2 86.9, (32.3) 86.9, (32.3) 241.8, (29.9) 354.3, (32.6) 102.8, (9.7) 102.8, (9.7) 180.1, (16.1) 247.1, (13.0)
Snake 95.0, (45.9) 222.1, (51.4) 275.5, (68.4) 262.6, (27.0) 85.2, (15.1) 138.6, (26.9) 175.0, (50.7) 169.8, (21.9)

the neural network in NEUM is just three-layer with 10
hidden-layer units. Thus, we conclude that the NEUM is the
most flexible in these existing data-driven energy functions.

Detailed learning results for these data-driven energy func-
tions are shown in Fig. 11, where red points and blue crosses
represent demonstration points that satisfy and violate the
energy function, respectively. Obviously, we can find that the
NEUM is more consistent with these demonstration cases
compared with other data-driven energy functions. Moreover,
compared with WSAQF and ICNN which simultaneously have
the theoretically unique-minimum guarantee and considerable
consistence performance, the NEUM is more flexible, which
is reflected by the diversity of contour shapes and the size of
the area affected by demonstrations.

Remark 3. Note that for conducting fair comparisons, we use
same objective functions for the NEUM, WSAQF, NILC and
ICNN to generate Fig. 10 and Fig. 11. The energy function
labeled as FDM is obtained by the fast diffeomorphic matching
as mentioned by [40].

We then compare the proposed demonstration learning
approach based on the NEUM with other existing approaches,
using the metrics swept error area (SEA) [38] and dynamic
time warping distance (DTWD). Note that the DTWD only
measures the dissimilarity between the spatial shapes of the
demonstration and reproduction trajectories, while the SEA
penalizes both spatial and temporal dissimilarities [30]. The
comparison results are concluded in the Table I, where ap-
proaches CLF-DM [38], τ -SEDS [39], and CDSP [31] are
compared with the proposed approach (PA). To conduct fair
comparisons, the optimization algorithms for the CLF-DM,

τ -SEDS and CDSP are both chosen as the “trust-constr”
algorithm wrapped in the “scipy.minimize” package. Hyper-
parameters for these approaches are determined by trial and
errors. Moreover, we chose β = 10 for the WSAQF learning in
the CLF-DM approach to highlight the reproduction accuracy.

As we can see in the Table I, The proposed approach
achieves the best result in almost every case, whether with
respect to the SEA or DTWD. For cases “BendedLine”,
“DoubleBendedLine”, “JShape 2” and “Leaf 2”, the perfor-
mances of the proposed approach are similar with these of
the CLF-DM since in these cases, energy functions NEUM
and WSAQF are both consistent with the demonstration tra-
jectories. Especially, the metrics of the proposed approach
and CLF-DM are even the same for cases “JShape 2” and
“Leaf 2” since the original ADS needn’t to be corrected
under the energy functions NEUM and WSAQF. However,
we should note that in the CLF-DM approach, the β is set
as 10 to highlight the accuracy property. Comparatively, the
β for NEUM is still set as 1.0 to simultaneously consider
the accuracy and generalization ability. We also provide the
detailed learning results for these demonstration approaches in
Fig. 12. It should be noted that the learning results for these
compared approaches might be slightly different from their
original articles due to the different optimization algorithms
and initial (hyper) parameter settings.

We then validate the position-constraint ability of the pro-
posed approach. The learning results of the proposed approach
with the position constraint are shown in Fig. 13, where the
position constraint for each case is represented by the gray
ellipse. The soften parameter η mentioned in Remark 2 is set
as 0.05. As what we expect, once the reproduction trajectory
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Fig. 12. Learning results of the Proposed approach (PA), CLF-DM [38], τ -SEDS [39], and CDSP [31] for the six most challenging cases in the LASA
handwriting data set.

Fig. 13. Learning results of the proposed demonstration learning approach
with the position constraint.

Fig. 14. Results of the generalization ability investigation of the proposed
demonstration learning approach.

enters the ellipse, it will never be able to leave the ellipse due
to the position constraint (47.b).

We also investigate the generalization ability of the proposed
approach, and the results are shown in Fig. 14, where the
deeper background color indicates the larger velocity gener-
ated by the original ADS. In this investigation, the position
constraint is not considered, and function ρ(x) is given by{

ρ(x) =
∥∥∥∂V (x)

∂x

∥∥∥
2
v(x)

v(x) = 5
(59)

As we can see, in areas away from the demonstration set, the
velocity generated by the original ADS will approach zero.
According to the analysis in Section IV C, the generated
trajectory will evolve along with the negative gradient of
the NEUM with velocity v(x). Since the parameter β in the
objective function (31) is set as 1.0, the gradient of NEUM can
capture the demonstration preferences in a broad area, which
results the strong generalization ability.

We finally investigate the influence of the demonstration
trajectory number. Fig. 15 (a) and Fig. 15 (b) show the
influence to the NEUM learning, where Fig. 15 (a) shows
the comparison results for one-shot learning (only using the

Fig. 15. Results of the proposed approach with different demonstration
trajectory numbers. (a). Comparative results between the one-shot NEUM
learning and full NEUM learning with respect to the metric E2. (b). Detailed
one-shot NEUM learning result. (c) Comparative results between the one-
shot ADS learning and full ADS learning with respect to the metric SEA.
(d) Detailed Reproduction results of the one-shot ADS learning and full ADS
learning.

sixth demonstration trajectory “T6”) and full learning (all
demonstration trajectories are sued) with respect to the metric
E2. As we can see, the NEUMs from one-shot learning and
full learning obtain similar scores with respect to the metric
E2, which is caused by the strong generalization ability of the
NEUM, and the fact that all demonstration trajectories follow
similar patterns. Detailed one-shot NEUM learning result is
shown in Fig. 15 (b), where red circles and blue crosses
represent the demonstration points satisfying and violating the
NEUM, respectively. As we can see intuitively, the NEUM
from one-shot learning can still capture the overall demon-
stration preferences in a broad area.

Fig. 15 (c) and Fig. 15 (d) show the influence of the
demonstration trajectory number to the ADS learning. In Fig.
15 (c), we conduct the ADS learning approach for each
demonstration trajectory, and compare these learning results
with the full learning result. An interesting point is that, for
each demonstration trajectory, the one-shot learning result is
better than the full learning result. This phenomenon is caused
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by the fact that using multiple demonstration trajectories
will raise disturbances when learning the original ADS. An
example is shown in Fig. 15 (d), where the ADS is learned via
the sixth demonstration trajectory “T6” (represented by blue
solid circles). As we can see, the one-shot learning is more
accurate compared with the full learning when reproducing the
trajectory “T6”. The reason is that a neighbour demonstration
trajectory “T5” dominates the full-learning ADS when repro-
ducing the trajectory “T6”. However, we should also note that
when using one demonstration trajectory, the generalization
ability could be limited due to the less-knowledgeable original
ADS, which is also reflected in Fig. 15 (d) when we want to
reproduce the innermost trajectory “T1”. In this case, the full-
learning ADS obviously gets the better reproduction result.
Thus, as a conclusion, using fewer demonstration trajectories
may improve the reproduction accuracy due to the reduced
disturbances. However, the lack of demonstration trajectories
will limit the generalization ability of the ADS, although this
could be relieved in areas where the NEUM can well capture
the demonstration preferences, see Fig. 14.

VI. VALIDATIONS VIA ROBOTIC EXPERIMENTS

In this section, we validate the proposed approach via
robotic experiments. The first experiment is a robotic assembly
task shown in Fig. 16. A human tutor first demonstrates the
assembly process, and then the robot will mimic the human
tutor to complete the task.

In this experiment, the parameter settings for NEUM learn-
ing are given as β = 1.0, dH = 10 and L2 = 10−6,
function ρ(x) is same as (57). It should be noted that although
the proposed approach need to online solve the optimization
problem described in (46) and (47), the real-time property
could be ensured due to the succinct QP formulation. As a
result, the sampling period is set as 5ms in the experiment.

Experiment results are shown in Fig. 17, where we validate
the proposed approach in various cases, including task repro-
duction, task generalization with and without disturbances.
Fig. 17 (a) and Fig. 17 (b) show the demonstration set
and some isosurfaces of the learned energy function NEUM,
respectively. Since the β is set as 1.0 here, the NEUM tries
to align its gradient with the demonstration trajectories, which
finally results a smooth and generalizable energy function. It
should be noted that the learning of NEUM always gets better
results in the higher-dimensional cases since the constraints
(18) could be less restrictive. As a result, the metrics E1 and
E2 in this experiment are 4.185×10−8 and 0.029, respectively,
which are far smaller than these values in the Fig. 10.

Fig. 17 (c) shows the task reproduction results. In these
cases, the initial positions are same as these in the demonstra-
tion processes. As we can see, the reproduction trajectories
represented by blue solid lines are almost coincident with the
demonstration trajectories, which implies that the proposed
approach has high reproduction accuracy.

Fig. 17 (d), Fig. 17 (e), and Fig. 17 (f) show the different
generalization cases of the proposed approach. In Fig. 17
(d), the reproduction trajectories’ initial positions are different
from those of the demonstration set. As we can see, all

reproduction trajectories can converge to the goal position.
Moreover, these reproduction trajectories also inherit the
demonstration characteristic that the last motions should only
occur in the x3 dimension. This characteristic is essential to
ensure the successful completion of the assembly task. In Fig.
17 (e), the goal positions of the reproduction trajectories are
modified to be different from those of the demonstration set.
Similar to the case in Fig. 17 (d), the reproduction trajectories
converge to their goal positions, and simultaneously inherit the
vertical motion characteristic at their last motion stages. In Fig.
17 (f), we further investigate the robustness of the proposed
approach for spatial disturbances. In this case, a human will
apply disturbed forces on the robot during robot motions. The
disturbed trajectories are represented by the black dashed lines.
To allow human interference, the compliant low-level tracking
controller presented in our previous work [50] is used. We can
find in Fig. 17 (f) that although the robot will deviate from
the desired path under the disturbed forces, it could recover as
soon as possible due to its strong generalization ability. Finally,
the reproduction trajectories converge to the goal position with
the inherited motion characteristic.

We also investigate the position-constraint ability of the
proposed approach in the assembly task. The position con-
straint is represented by the cylinder in Fig. 17 (g). Specif-
ically, the position-constraint parameters are set as P =
diag(1.0, 1.0, 0.0), rthres = 0.1m and η = 0.1. As we can
see, the demonstration trajectories pass through the cylinder,
thus violating the position constraint (47.b). Without the
position constraint, the corresponding reproduction trajectory
(represented by the blue dashed line) will also pass through
the cylinder. However, when we add the position constraint,
the reproduction trajectory (represented by the blue solid
line) will not leave the cylinder once it enters the cylinder,
which validates the position-constraint ability of the proposed
approach.

The second experiment is a robotic ultrasound scanning
task shown in Fig. 18. Different from the robotic assembly
task, here we conduct the proposed demonstration learning
algorithm in the robot joint space, which has the dimension 7.
All of the parameter settings of the robotic ultrasound scanning
task are same as these of the robotic assembly experiment.

Experiment results are shown in Fig. 19, where the first to
seventh sub-figures show the demonstration and reproduction
trajectories in each robot joint. As we can see, all of the
reproduction trajectories can converge to their goal positions.
Moreover, although the demonstration set is very sparse in
the 7-dimensional space, the reproduction trajectories can still
inherit the demonstration preferences well. For example, for
the second and sixth joints, where initial positions are near
the demonstration set, the reproduction trajectories almost
coincide with the demonstration trajectories. For the fifth
joint, although some initial positions are away from the
demonstration set, the reproduction trajectories can still inherit
the demonstration characteristic, i.e., firstly holding and then
evolving to the goal position.

We also validate the effectiveness of the NEUM learning.
Since we can not plot the NEUM in the high-dimensional
case, we instead show the metric E2 for each demonstration
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Fig. 16. The robotic assembly experiment.
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Fig. 17. Experiment results for the robotic assembly task. (a). The demonstration set. (b). Isosurfaces of the learned NEUM. (c). Task reproduction results
with the same initial positions as these of the demonstrations. (d). Task generalization with different initial positions from these of the demonstrations. (e).
Task generalization with different goal positions from these of the demonstrations. (f) Task generalization under disturbances. (g) Task reproduction with the
position constraint.
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Fig. 18. The robotic ultrasound scanning experiment.
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Fig. 19. Experiment results for the robotic ultrasound scanning task.
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trajectory. The result is shown in the last sub-figure of Fig.
19, where we can find that E2 takes a very small value for
each demonstration trajectory. Thus, we can imagine that the
learned NEUM is well consistent with the demonstration set.
As a result, this experiment validates the effectiveness of the
proposed approach for high-dimensional learning cases.

VII. CONCLUSION

In this article, we focused on learning an ADS for globally
stable and accurate demonstration learning. Specifically, we
designed a flexible neural energy function, called NEUM, with
the unique-minimum, positive-definite, and continuously dif-
ferentiable properties. Then, the NEUM is used as the stability
certificate for the ADS learning. The kernel contribution is that
we proposed a Polar-like space analysis approach to derive
neural-parameter constraints to ensure the NEUM’s unique-
minimum, positive-definite, and continuously differentiable
properties. We also provided a NEUM learning approach
to conveniently consider the accuracy-generalization trade-
off. With the NEUM, the learned ADS can handle position
constraints, which might be valuable for some robotic tasks.
We further quantitatively analyzed the generalization ability of
the ADS by utilizing the flexibility of the NEUM. Finally, we
validated the effectiveness of the proposed approach on the
LASA data set, and two representative robotic experiments.
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