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Abstract

In this paper, we present Knowledge4COVID-19, a framework that aims to

showcase the power of integrating disparate sources of knowledge to discover

adverse drug effects caused by drug-drug interactions among COVID-19 treat-

ments and pre-existing condition drugs. Initially, we focus on constructing

the Knowledge4COVID-19 knowledge graph (KG) from the declarative defi-

nition of mapping rules using the RDF Mapping Language. Since valuable

information about drug treatments, drug-drug interactions, and side effects is

present in textual descriptions in scientific databases (e.g., DrugBank) or in

scientific literature (e.g., the CORD-19, the Covid-19 Open Research Dataset),

the Knowledge4COVID-19 framework implements Natural Language Process-

ing. The Knowledge4COVID-19 framework extracts relevant entities and pred-

icates that enable the fine-grained description of COVID-19 treatments and
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the potential adverse events that may occur when these treatments are com-

bined with treatments of common comorbidities, e.g., hypertension, diabetes,

or asthma. Moreover, on top of the KG, several techniques for the discovery

and prediction of interactions and potential adverse effects of drugs have been

developed with the aim of suggesting more accurate treatments for treating the

virus. We provide services to traverse the KG and visualize the effects that a

group of drugs may have on a treatment outcome. Knowledge4COVID-19 was

part of the Pan-European hackathon#EUvsVirus in April 2020 and is publicly

available as a resource through a GitHub repository and a DOI.

Keywords: Knowledge Graphs, COVID-19, Drug-Drug Interactions
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1. Introduction

In early December 2019, an outbreak of a novel virus, the severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2) occurred in China, causing a

rapid spread of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 can

be transmitted during the asymptomatic phase of infection and poses a global5

health emergency because of the intricacy of tracing mild or presymptomatic

phases. The disease spectrum of SARS-CoV-2 infection varies in severity from

asymptomatic to mild respiratory tract infection and severe or fatal pneumonia.

The virus infection landscape poses serious challenges that have to be addressed

by the research community to come up with the tools that efficiently combat the10

pandemic. Specifically, the aggregation of heterogeneous data (e.g., publications

and open scientific databases) into a common knowledge base will enable the

development of data-driven tools. Moreover, data governance, interoperability

and data quality issues, and efficient query processing and data exploration are

relevant challenges that demanded to be solved efficiently. More importantly, it15

is crucial to explore the adverse effects of the treatments commonly prescribed

for pre-existing conditions and the potential treatments for COVID-19.

Our Resource: We address the problem of data integration and propose a re-
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source named Knowledge4COVID-19, which transforms COVID-19 and SARS-

CoV-2 related data into a KG. The Knowledge4COVID-19 resource is composed20

of a data ecosystem (DE) and the Knowledge4COVID-19 KG, both allow for

a unified view of the data sources in terms of the unified schema. The dif-

ferent components of the Knowledge4COVID-19 DE enable entity extraction

and linking, data curation, and the resolution of the heterogeneity conflicts

across the data sources. Moreover, they facilitate the integration of heteroge-25

neous data into a uniform view. Mapping rules expressed in the RDF mapping

language (RML) describe this correspondences [1]. In addition, knowledge ex-

traction methods make use of knowledge encoded in diverse sources for extract-

ing drug-drug interactions. These data sources include controlled vocabularies

(e.g., Unified Medical Language System-UMLS1), scientific publications (e.g.,30

CORD-192) and open scientific databases (e.g., DrugBank3). Machine learn-

ing methods are also employed to predict interactions between drugs. The

Knowledge4COVID-19 framework is publicly available as a resource in GitHub4

and Zenodo5. Additionally, diverse services are offered to access and explore the

KG (e.g., an API6 and a public SPARQL endpoint7). The detailed instructions35

to access are provided at the project repository8. The Knowledge4COVID-19

KG can be created locally following the guidelines9.

In summary, the scientific contributions of this work are as follows:

• A novel infrastructure to transform heterogeneous data sources into a

knowledge graph based on a unified schema. The implementation of this40

infrastructure provides a software pipeline that includes Named Entity

1https://www.nlm.nih.gov/research/umls/index.html
2https://www.semanticscholar.org/cord19
3https://go.DrugBank.com/
4https://github.com/SDM-TIB/Knowledge4COVID-19
5https://zenodo.org/record/4702125#.YH4ACu8zaV4
6https://github.com/SDM-TIB/Knowledge4COVID-19/tree/main/Exploration-API
7https://labs.tib.eu/sdm/covid19kg/sparql
8https://github.com/SDM-TIB/Knowledge4COVID-19/wiki
9https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/Running-Knowledge4COVID-19-KG-locally
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Recognition and Named Entity Linking methods, as well as novel map-

ping rules for aggregating various data retrieved under a unified KG. The

resulting KG can be traversed following referenceable resources or queried

using SPARQL endpoints or a federated query engine.45

• A publicly available KG resource related to COVID-19 integrating infor-

mation from Scientific Open Data and Publications. This is a product of

the aforementioned infrastructure and allows for exploring various sources

and data.

• A deductive system to discover drug-drug interactions in a COVID-1950

treatment. This system is built on top of fine-grained representation of

Pharmacokinetics drug-drug interactions extracted from scientific open

data sources (e.g., DrugBank).

• A machine learning-based drug-drug interaction prediction method, iden-

tifying non-documented interactions for treatments related to a specific55

disease. This produces the predicted COVID-19-related drug-drug inter-

actions that are included in the Knowledge4COVID-19 Data Ecosystem.

• An analysis of the effectiveness and toxicity of COVID-19 treatments,

providing drug-drug interactions deduced from the Knowledge4COVID-

19 KG and adverse effects of these interactions.60

This paper is structured in eight additional sections. Section 2 reports the world-

wide statistics that summarize the infection situation and present an overview

of the preliminaries. Section 3 defines Knowledge4COVID-19 as a data ecosys-

tem and Section 4 presents the process of knowledge graph creation from the

declarative definition using RML mapping rules. Section 5 describes the Web65

APIs that enable the traversal of the Knowledge4COVID-19 KG, and the re-

sults of the empirical evaluations are reported in Section 6. The state of the art

is summarized in Section 7 and Section 8 describes Knowledge4COVID-19 as a

resource. Finally, Section 9 wraps up and outlines future work.
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Figure 1: SARS-CoV-2 Infections. Comparison of the severity of infections in June 2020,

April 2021, and November 2021. Although the percentages of recovered cases increases sig-

nificantly, the percentage of new deaths still remains above 2%.
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2. Context and Preliminaries70

Figure 1 depicts world statistics available at Worldometer10; numbers of

infections by June 2020, April 2021, and November 2021 are summarized. In

all three snapshots, at least 98% of the active infections reported develop mild

symptoms, and at most 2% can be in serious or critical conditions. As can also

be observed in the latter, nearly 97% of the patients who have suffered from75

COVID-19 have been either categorized as those with mild conditions or have

already recovered.

Worldometers11 also reports weekly new cases concerning the last week of

November 2021. The perspective is different when analyzing these reports. The

number of infections has increased to 16% versus 12% of weekly recovered.80

Also, the number of new deaths increases by 8%. The high mortality rate and

new infections indicate the unexpected spreading of the virus, but still a lack

of knowledge on the infection behavior of populations. Despite the intensity

of statistical analyses and related research efforts dedicated to studying the

outcome of these infections in certain countries, COVID-19 progression is still85

unpredictable for most patients, while many times abrupt for the ones with a

severe or critical condition.

According to World Health Organization (WHO) statistics12 a broad spectrum

of demographic, clinical, and molecular conditions appear to affect the evolu-

tion of the disease. Although age and sex seem not to be associated with the90

infection rate, once infected, the mortality rate in men is much higher than in

women. Moreover, significant percentages of deaths represent patients above

certain ages, as could be expected. Lifestyle variables such as smoking habits

also play an essential role. Although regular smokers are significantly under-

represented among those requiring hospital treatment for the illness, smoking is95

associated with rapid progression and increased mortality rates. Another factor

10https://www.worldometers.info/coronavirus/
11Data from November 28th, 2021.
12https://globalhealth5050.org/covid19/age-and-sex-data/
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that seriously affects the fatality rate for COVID-19 seems to be comorbidities,

such as cardiovascular diseases, cancer, hypertension, etc. In particular, 80% of

deaths are related to patients with at least one comorbidity, while COVID-19

patients suffering a serious disease (e.g., cancer) seem to develop more rapid100

progression and appear an increased mortality rate, in contrast to those with

no pre-existing chronic medical conditions. Furthermore, the WHO guidelines13

urge clinicians for careful consideration of adverse effects of medications that

may be used in the context of COVID-19 and encourage medications that carry

the least risk possible of drug-drug interactions with other medicines that a pa-105

tient with specific comorbidities may be receiving. Researchers should address

this need by detecting the risk of documented or even unknown interactions

related to specific comorbidities and medications, though looking into big data

and identifying relevant patterns.

2.1. Basic Concepts110

Data Ecosystems Data ecosystems (DEs) are data-driven infrastructures

that allow different stakeholders to exchange data [2]. DEs are furnished with

various computational methods to solve interoperability and integrate data

while preserving data privacy, security, and sovereignty. DEs can be centralized,

and one single node maintains all the data sources shared by the providers. The115

node also hosts all the services implemented on top of the DE data sources.

Contrary, whenever data cannot be moved to a single node and data privacy

regulations hinder the materialized and complete data integration of the DE

data sources, DEs will be decentralized, i.e., they will be composed of several

nodes. Each DE node will be able to perform services and share data manage-120

ment and analytical results. Semantic data models or ontologies provide the

meaning of the data sources in a DE. Moreover, mapping rules relating to how

data sources are defined in terms of the semantic data models are included.

Knowledge Graphs (KG): Knowledge graphs [3] are data structures that

13https://www.who.int/publications-detail
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represent factual knowledge as entities and their relationships using a graph125

data model. Metadata is part of the KG, as well as taxonomies of entities,

relationships, and classes. A KG contributes to the development of a common

understanding of the meaning of entities in a domain and provides a formal

specification of the properties of these entities. A KG G can be defined as a

data integration system DISG = 〈O,S,M〉 where O corresponds to the unified130

schema, S is a set of data sources, and M corresponds to mapping assertions

defining concepts in O as conjunctive queries over sources in S. The instances

of G are the result of the execution of the M rules over the data sources in S.

RDF Mapping Language - RML: The RDF Mapping Language (RML) [1]

extends the W3C-standard mapping language R2RML to manage heterogeneous135

data sources represented in various formats, e.g., CSV, XML, JSON, and re-

lational tables. These rules, named RML triples maps, define the instances of

RDF classes and their properties in terms of a logical source. Attributes from

the logical data source of a triples map describe the resources of the correspond-

ing class. RML is an RDF triple-oriented mapping language, where a triples140

map comprises mapping assertions [4] that define the instances of a class (a.k.a.

subjectMap), and the property and object (a.k.a. predicateObjectMap) of the

RDF triples where these instances participate as a subject. RML triples maps

are expressed in RDF. This allows the exploration and tracing of the definition

of the process of KG creation.145

3. The Knowledge4COVID-19 Data Ecosystem

The Knowledge4COVID-19 framework is a data ecosystem [5]. A data

ecosystem is defined as a 4-tuple DE=〈Data Sources, Data Operators, Meta-

data, Mappings, Services〉[6]. Data sources represent the collections from where

data and knowledge are retrieved. Data operators correspond to functions used150

for data management (e.g., entity recognition and linking). The metadata com-

ponent facilitates the specification of the meaning of the data collected from the

data sources and the annotation with controlled vocabularies; it also comprises
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Figure 2: Knowledge4COVID-19 as a Data Ecosystem (DE). A Nested Data Ecosystem

comprising the Scientific Open Data and Publication DEs. Each DE processes comprises data

sources, metadata, and operators to annotate their respective data sources.

a unified schema that provides an integrated view of the data sources. The map-

pings align the data sources with the unified schema and describe their meaning.155

Lastly, services exploit the knowledge encoded in the metadata and data oper-

ators to satisfy user requirements. Services include federated query processing,

interactions between the drugs of a treatment, predicted drug interactions, or

mapping generation.

Figure 2 depicts the components of the Knowledge4COVID-19 DE; it com-160

prises two data ecosystems, one for scientific publications and another for open

scientific data. The scientific publication DE includes COVID-19 related liter-
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ature from PubMed14, bioRxiv15, medRxiv16, and PubMed Central (PMC)17.

Scientific open data DE collects data about COVID-19 drugs, their side effects,

and the adverse events generated by their interactions. The scientific open data165

DE integrates data extracted from textual descriptions from DrugBank3 and

SIDER18. This section describes these two DEs in detail, while Section 4 de-

scribes the pipeline that creates the Knowledge4COVID-19 knowledge graph

from the data and knowledge extracted from these two DEs.

3.1. The Scientific Open Data DE170

This data ecosystem makes available data and knowledge about drugs ex-

tracted from open data sources.

3.1.1. Data Sources

The Scientific Open Data DE integrates medical concepts extracted from

open scientific databases. Albeit structured, these datasets may comprise tex-175

tual attributes that encode relevant entities and relations. For example, the

drug-drug interaction between Metformin and Hydroxychloroquine is described

like “The therapeutic efficacy of Metformin can be increased when used in com-

bination with Hydroxychloroquine.”19. Additionally, the indication of Hydrox-

ychloroquine is presented like “Hydroxychloroquine is indicated for the pro-180

phylaxis of malaria where chloroquine resistance is not reported, treatment of

uncomplicated malaria (caused by P. falciparum, P. malariae, P. ovale, or P. vi-

vax), chronic discoid lupus erythematosus, systemic lupus erythematosus, acute

rheumatoid arthritis, and chronic rheumatoid arthritis.“20. These descriptions

encode relevant facts that can be read and understood by humans. However,185

further analysis is required to make them understandable by machines. This DE

14https://pubmed.ncbi.nlm.nih.gov/
15https://www.biorxiv.org/
16https://www.medrxiv.org/
17https://www.ncbi.nlm.nih.gov/pmc/
18http://sideeffects.embl.de/
19https://go.DrugBank.com/drugs/DB00331
20https://go.drugbank.com/drugs/DB01611
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makes used of data operators for named entity recognition to identify entities

that correspond to drug-related concepts. Table 1 describes the data collected

from DrugBank [7], SIDER [8], and UMLS [9].

DrugBank is a Web-accessible database containing information about drugs190

and their administration routes, mechanisms, proteins, and interactions. Drug-

drug interactions can be Pharmacodynamics and Pharmacokinetics. A pharma-

codynamic drug-drug interaction between drugs A and B indicates that both

drugs influence in their effects directly, e.g., “The risk or severity of QTc pro-

longation can be increased when Hydroxychloroquine is combined with Ace-195

tophenazine”. On the other hand, if drug A has a pharmacokinetic drug-

drug interaction with drug B, A alters the disposition (absorption, distribution,

elimination) of B, and ends up in the increase or the decrease of B plasma

drug concentrations. For example, Abatacept has a pharmacokinetic drug-drug

interaction with Hydroxychloroquine, because “The metabolism of Hydroxy-200

chloroquine can be increased when combined with Abatacept.”. The Scientific

Open Data DE has collected 769,352 and 503,700 Pharmacokinetic and Phar-

macodynamics DDIs, respectively. Moreover, 2,421 drug indications and 1,532

toxicities have been collected and processed from DrugBank. SIDER is also a

Web-accessible database that makes available mechanisms of actions of drugs205

and their possible adverse effects; 58,945 side effects are collected. UMLS is a

controlled vocabulary that comprises terminology, classification, and semantic

types and groups of biomedical concepts; 4,536,579 terms are collected together

with their definitions, and semantic types and groups. Lastly, following the

method proposed by Sridhar et al. [10], two data sources with pairs of drugs210

that shared at least one protein are computed. CRD are drugs from DrugBank

that target at least one protein of the family CYP, while the NCRD drugs also

target at least one protein, but it is not of the family CYP.

3.1.2. Data Operators

The data operators enable the recognition of entities corresponding to drugs,215

their side effects, and the adverse events caused by their interactions. FALCON

11



Table 1: Data sources for the Scientific Open Data DE

Data Source Data Type #Instances

DrugBank Pharmacokinetic DDIs 769,352

2022-01-04

Pharmacodynamics DDIs 503,700

Drug Indications 2,421

Drug Toxicities 1,533

SIDER 2021 Drug Side Effects 58,945

UMLS Nov 2021 Medical Concepts 4,864,162

CRD Pair of drugs that target a CYP protein [10] 345,116

NCRD Pair of drugs that target a No CYP protein [10] 5,513

[11] recognizes the words corresponding to the drugs that interact and the effect

and impact of these interactions. Additionally, the extracted words are linked

to terms in UMLS. As illustrated in Figure 3, “Metformin” and “Chloroquine”

correspond to the extracted entities from the short text collected from Drug-220

Bank. At the same time, “excretion rate” and “decrease” represent the effect

and impact of the interaction of “Metformin” and “Chloroquine”. The UMLS

identifiers C0025598 and C0020336 are linked to “Metformin” and “Hydroxy-

chloroquine”, while C2827741 and C0547047 are related to “excretion rate” and

“decrease”, respectively. FALCON also connects “Metformin” and “Chloro-225

quine” to their corresponding resources in DBpedia and Wikidata.

Figure 3: FALCON Recognizes Relevant Entities and Predicates. As a result, a Fine-Grained

Representation of Drug-Drug Interactions is part of the Knowledge4COVID-19 KG
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FALCON [12] is also used to extract the Drug-Drug Interactions (DDIs)

reported in DrugBank as short texts. We customize FALCON for analyzing

the DDI text. Since the DDI text is related to the medical domain, UMLS is

utilized as the background knowledge for FALCON. In this case, in addition to230

recognizing words that correspond to two drugs that interact, FALCON iden-

tifies the effect and impact of an interaction. FALCON resorts to the catalog

of rules for extracting the previously mentioned types of entities; additionally,

a background knowledge base is utilized to determine the semantic type of the

extracted entities. Since most of the descriptions of the interactions share sim-235

ilar patterns, i.e., the structure of the sentences is very repetitive, only a few

extra rules are required to be added to the catalog of rules. The rules were cre-

ated by replacing each drug mentioned with a variable (DrugX, DrugY). Out

of 1,273,052 drug-drug interactions collected from DrugBank, 320 patterns were

recognized; Table 2 shows a sample of the extracted patterns.240

Table 2: Overview of extracted DDI patterns. Drugs mentions are in bold. The effect is in

italics. The impact is underlined

DDI Patterns

DrugY may increase the anticoagulant activities of DrugX.

the risk or severity of bleeding and hemorrhage can be increased when DrugX is combined with DrugY.

the risk or severity of gastrointestinal bleeding can be increased when DrugX is combined with DrugY.

the risk or severity of bleeding can be increased when DrugY is combined with DrugX.

the metabolism of DrugY can be decreased when combined with DrugX.

DrugX may decrease the vasoconstricting activities of DrugY.

DrugX may decrease the excretion rate of DrugY which could result in a higher serum level.

DrugY may increase the constipating activities of DrugX.

the risk or severity of gastrointestinal bleeding and gastrointestinal ulceration can be increased when DrugX is combined with DrugY.

As a result of the knowledge extraction process executed by FALCON, the

Scientific Open Data DE makes available fine-grained representations of DDIs.

This representation enables the deduction of new drug-drug interactions imple-

mented as a service of this DE. Moreover, these descriptions are also used to

validate the prediction tasks implemented in the Scientific Publications DE.245
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Table 3: Summary of Datalog Predicates. Extensional predicates are ddi(A,E,I,B), mem-

ber(A,T), treatment(T), rule1(E,I), and rule2(E,I). Intensional predicates are ddi(A,E,I,B,T),

toxicity(A,increase,B,T), and effectiveness(A,decrease,B,T).

Predicate Explanation

ddi(A,E,I,B)

Pharmacokinetic drug-drug interaction between A and

B. Precipitant drug A generates effect E (e.g., absorp-

tion, excretion, metabolism, serum concentration) with

impact I (e.g., increase or decrease) in object drug B.

ddi(A,E,I,B,T)

Pharmacokinetic drug-drug interaction between A and

B in treatment T . Precipitant drug A generates effect

E (e.g., absorption, excretion, metabolism, serum con-

centration) with impact I (e.g., increase or decrease) in

object drug B.

rule1(E,I)
Combinations of effect E with impact I that alter the

toxicity of an object drug.

rule2(E,I)
Combinations of effect E with impact I that alter the

effectiveness of an object drug.

treatment(T) T is a medical treatment

member(A,T) A is a drug in the medical treatment T

toxicity(A,increase,B,T)
The precipitant drug A increases the toxicity of object

drug B in treatment T

effectiveness(A,decrease,B,T)
The precipitant drug A reduces the effectiveness of ob-

ject drug B in treatment T

3.1.3. Data Services

The Scientific Open Data DE implements a deductive system that enables

to deduce drug-drug interactions among a multi-drug treatment whose interac-

tions may reduce the effectiveness of the treatment or increase the number of

toxicities. The deductive system is defined in terms of Datalog rules; it exploits

the fine-grained representation of the DDIs interactions generated by FALCON.

The execution of this deductive system is grounded on the results of deductive

databases [13] to compute the minimal model that includes the instances of

the deduced drug-drug interactions in a treatment. The minimal model corre-

sponds to the fixed-point of the assignments of the values of variables in the

14



deductive system rules. Since rules free of negations compose the deductive

system, the minimal model is computed in polynomial time in the size of the

number of treatments and drug-drug interactions generated by FALCON. The

approach proposed by Rivas and Vidal [14] is followed to implement this data

service. The extensional database corresponds to statements about interac-

tions between drugs extracted by FALCON. On the other hand, the intensional

database comprises a set of Horn clauses that define the conditions to be met

by the drugs whose interactions may reduce the effectiveness of a treatment or

increase the number of toxicities. This intensional database relies on the fact

that pharmacokinetic drug-drug interactions cause that the concentration of

one of the interacting drugs (a.k.a. object) is altered when it is combined with

the other drug (a.k.a. precipitant). Thus, the rate of absorption, distribution,

metabolism, or excretion of the object drug is affected. Whenever the object

drug absorption is decreased (resp. increased) the bioavailability of the drug

is also affected. Furthermore, any alteration in the metabolism or excretion

of the object drug has consequences on the therapeutic efficacy and toxicity

of the drug. The following Datalog rules state the effect of pharmacokinetic

DDIs. Considering the predicates in Table 3, the intensional database defines

the toxicity effects of drug-drug interactions in a treatment:

ddi(A,E, I,B), treatment(T ),member(A, T ),member(B, T )→

ddi(A,E, I,B, T ).

ddi(A,E, I,B, T ), rule1(E, I)→

toxicity(A, increase,B, T ).

toxicity(A, increase,B, T ), toxicity(B, increase, C, T )→

toxicity(A, increase, C, T ).

toxicity(A, increase,B, T ), ddi(B,E, I, C, T )→ ddi(A,E, I, C, T ).

15



The conditions to reduce effectiveness are defined as follows:

ddi(A,E, I,B, T ), rule2(E, I)→

effectiveness(A, decrease,B, T ).

effectiveness(A, decrease,B, T ), effectiveness(B, decrease, C, T )→

effectiveness(A, decrease, C, T ).

The extensional database includes the following ground predicates:

rule1(serum, increase).

rule1(metabolism, decrease).

rule1(absorption, increase).

rule1(excretion, decrease).

rule2(serum, decrease).

rule2(metabolism, increase).

rule2(absorption, decrease).

rule2(excretion, increase).

Additionally, a graph traversal method is implemented to compute the drugs

that affect the most the effectiveness or toxicity of a treatment drug. The

implemented method creates a directed graph from drug-drug interactions with

the extensional facts and deduced of the Datalog rules. The direction of an250

edge from node A to B denotes that A is the precipitant and B is the object

of the interaction. Drugs that affect the most the effectiveness or toxicity of a

treatment drug are defined in terms of the middle-vertices in the wedges [14],

or paths with two directed edges [15], in the directed graph that represents the

drug-drug interactions among the drugs of a treatment. The middle-vertex of a255

wedge is both the object drug of one interaction, and the precipitant drug of the

other interaction. Thus, drugs that correspond to middle-vertices of N wedges

in a treatment T , correspond to drugs that cause 2 ∗ N different drug-drug

interactions in that treatment.
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Figure 4: COVID-19 treatment. Example of deducing DDIs and computing wedges. The

red arrows represent the DDIs deduced, and the red node represents the drug with the higher

absolute frequency of being the wedges middle-vertex.

Figure 4 depicts an exemplar treatment composed of five drugs. DDIs are260

represented by the predicates summarized in Table 3. By evaluating the Dat-

alog program, a new DDI is deduced and represented in red. This evaluation

deduces that doxycycline decreases the metabolism of montelukast in the treat-

ment T1 and that doxycycline increases toxicity of montelukast. For the sake

of simplicity, a single deduced DDI is depicted, even if the Datalog program265

deduces five new DDIs. Computing the absolute frequency of a drug being the

wedges middle-vertex identifies the drugs that affect the most the effectiveness

or toxicity of drug treatment. In this case, azithromycin is the drug with the

higher absolute frequency of being the middle-vertex of the wedges in the graph

(i.e., absolute frequency of three); it is followed by montelukast with a value of270

two and lovastatin with a value of one. Note that after removing azithromycin

from the treatment, there is only one DDI between montelukast and lovastatin,

i.e., 83.3% of the DDIs are eliminated.

In Subsection 6.3, we compare the drug-drug interactions deduced by the

previously described deduction system and existing tools that discover drug-275

drug interactions in a treatment. The results of this evaluation suggest that

middle-vertices, with high frequency in the directed graph of a therapy, corre-

spond to the drugs that produce more toxicities. Therefore, identifying frequent

middle-vertices in the directed graph that models a treatment provides a com-
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putational method for discovering toxic medications in treatment.280

3.2. The Scientific Publications DE

The Data Ecosystem of Scientific Publications comprises the components

extracting relevant medical concepts from scientific publications.

3.2.1. Data Sources

The Scientific Publications DE collects data from the following data sources:285

CORD-19 [16], PubMed 21, and PubMed Central (PMC)22, enriched with in-

formation from certain ontologies. CORD-19 is a collection of scientific papers

about COVID-19 and related coronavirus; the version by 2021-03-01 includes

460,772 publications. PubMed is Web-accessible engine to primary access sci-

entific publications from the MEDLINE database. The Scientific Publications290

DE has and harvested articles from PubMed and PubMed Central (PMC) until

April 2022, including the MeSH topic ’covid-19’. Table 4 describes the full list

of data sources and ontologies used by the Scientific Publications DE.

Table 4: The full list of data sources and ontologies used for the Scientific Publications DE

Sources #publications Ontologies #annotations

PubMed 106,150 MeSH 1,356,578

PMC 26,105 Gene Ontology 125,629

CORD-19 460,772 Disease Ontology 5,129

3.2.2. Data Operators

The natural language processing (NLP) tools MetaMap23 and SemRep24
295

are utilized to recognize drugs and diseases from the titles and abstracts of the

integrated articles25, and also from the full texts of articles that are available

21https://pubmed.ncbi.nlm.nih.gov/
22https://www.ncbi.nlm.nih.gov/pmc/
23https://metamap.nlm.nih.gov/
24https://semrep.nlm.nih.gov/
25https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/CORD-19-Publication-Processing
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in PMC. The Unified Medical Language System (UMLS) is used to describe

the extracted medical entities using a controlled vocabulary of medical terms.

Moreover, the Medical Subject Headings (MeSH) thesaurus, along with some300

Open Biological and Biomedical Ontology (OBO) Foundry ontologies, are also

harvested in order to retrieve topic annotations and hypernymic relations of

drugs and diseases.

In total, 542,672 publications are annotated with semantics relations from

UMLS26 (e.g., ASSOCIATED WITH, TREATS, CAUSES), adverse events305

(e.g., Dyspnea increase, Confusion increase), disorders (e.g., Colorectal can-

cer, Bladder cancer), phenotypes (e.g., Allergic Reaction, Hemorrhage), and

drugs (e.g., Becaplermin, Naloxone). Furthermore, metadata of the processed

publications (e.g., title, authors, publication date, journal name, and citation

number) describes the main attributes of the scientific publications.310

3.2.3. Data Services

Despite the wide adoption of MetaMap and SemRep tools, their effectiveness

is far from perfect [17]. Thus, triples resulting from applying those NLP tools on

publications tend to be the noisiest part of the knowledge graph. To overcome

this quality challenge, we need to apply some kind of error detection mechanism315

for the Scientific Publications Graph refinement [18, 19]. In our case, we have

experimented with various approaches, such as graph embeddings [20], path

ranking solutions (PaTyBRED) [21], and a hybrid approach called PRGE (Path

Ranking Guided Embeddings) [22]. PRGE method uses the PaTyBRED path

ranking technique, in order to produce confidence scores for all the triples of a320

graph. It then uses those scores in order to guide the TransE embedding method

focusing on the probably correct triples, during the graph embedding creation.

This is realised by incorporating triple confidence scores in the embedding Loss

function, guiding thus the training procedure to put less emphasis on noisy

triples. The selected approach results in a final confidence score for each triple325

26https://www.nlm.nih.gov/research/umls/META3_current_relations.html
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of the graph in the range of [0-1]. Deciding a cut-off confidence threshold below

which all triples will be considered as erroneous provides a trade-off between

quality and the amount of data that will be produced. In our case, we selected

a median threshold of 0.5, in order to keep the majority of the graph triples.

Applying this method to the Scientific Publications DE Graph resulted into a330

40% of the total triples identified as possibly erroneous.

Scientific Publications DE analysis: As a next step, we apply a predictive

analysis on the Scientific Publications DE, in order to identify previously un-

known adverse effects of drug combinations, in the form of drug-drug interaction

relations. For this purpose, a machine learning method that exploits patterns335

unveiled from contextual information of the Scientific Publications DE to predict

potential drug-drug interactions is implemented. This method is based on the

analysis of the Scientific Publications Graph [23] that results from the natural

language processing and semantic indexing of biomedical publications and open

resources, as described above. The Scientific Publications Graph constitutes340

an integral part of the Knowledge4COVID-19 KG, representing the structured

information extracted from relevant publications in the form of triples. Drugs in-

cluded in DrugBank are also considered a part of this graph, relating these with

specific targets, diseases, and other biomedical entities identified in literature

text, through a set of semantic relations from the UMLS Semantic Network26.345

Prediction of new DDIs: The problem of predicting new drug-drug in-

teractions is addressed as a binary classification problem for interacting/non-

interacting drug pairs in the Scientific Publications Graph. The result of this

classification provides a set of drug pairs with no previously known interaction,

marked as False Positives, that our classifier identifies as interacting with a cer-350

tain confidence score. These predictions can provide an indication of potential

interactions with pharmaceutical experts that have not been previously docu-

mented. To this end, the aforementioned machine learning technique focuses

on analyzing the undirected semantic paths connecting different pairs of drugs

in the Scientific Publications Graph. This method is called Drug-Drug Interac-355

tion prediction on a Biomedical Literature Knowledge Graph (DDI-BLKG) [24].
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Each one of these paths includes a sequence of semantic relations of length n

that are aggregated into feature vectors representing the frequency of each rela-

tion in a specific position (1, n). As an example, if Hydroxychloroquine and the

Diabetes-related Enalapril both interact with the target Angiotensin-converting360

enzyme, this provides the undirected path and the respective feature vector

(Figure 5).

Figure 5: An example of (a) a semantic path between drugs Hydroxychloroquine and Enalapril,

(b) transformation into a feature vector.

Let D be the number of relevant drugs examined, where relevance is determined

by the existence of such drugs in COVID-19-related publications. Aggregating

all possible paths between pairs of drug nodes, we generate a big dataset of365

(D − 1)! feature rows that denote relations’ frequency in specific positions, as

illustrated above. Each feature row is of size (n x r), where r denotes the number

of different relation types. In our case, the maximum path length is set to 3

(n = 3), as this has provided the best trade-off between data size and accuracy.

Also, 35 unique relation types are used from the UMLS Semantic Network370

(r = 35). Therefore. (3 x 35) features are calculated for every pair and are used

to train a Random Forest classifier that can effectively discriminate between

two classes: interacting and non-interacting pairs, based on the respective label

extracted from a gold dataset.

To generate the final set of predictions, the Random Forest classifier is375

trained using all COVID-19 related pairs (where at least one of the two drugs is
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mentioned in Drugbank as COVID-19 experimental treatments27), denoted as

positives in DrugBank. Testing the classifier for all possible remaining COVID-

19-related drug pairs, which are not known to be interacting, produces 8,925

unknown drug-drug interaction predictions in total, with a certain confidence380

score within a range of [0,1]. The critical threshold of this score is considered

to be 0.5, meaning that drug pairs with a score < 0.5 are less likely to be inter-

acting, while pairs with a score > 0.5 represent the most possible interactions.

4. The Knowledge4COVID-19 Knowledge Graph

This section the Knowledge4COVID-19 DE in terms of the pipeline for385

the creation of Knowledge4COVID-19 knowledge graph (KG), the linking to

existing KGs (e.g., DBpedia and Wikidata), and the techniques of feder-

ated query processing implemented on top of Knowledge4COVID-19 KG. The

Knowledge4COVID-19 DE relies on annotations from UMLS, DBpedia, and

Wikidata to solve entity alignment. The execution of 221 RML mapping asser-390

tions –manually defined by two knowledge engineers and curated by two more–

transforms the structured representation of the data sources, annotations, and

alignments into the Knowledge4COVID-19 KG.

Figure 6 depicts the steps of the KG creation process. Steps 1 and 2 are

done at the Scientific Open Data and Publications DEs, while steps 3 and 4395

are conducted at the level of Knowledge4COVID-19 DE (Figure 2) to create

the Knowledge4COVID-19 KG. First, data is ingested and described in terms

of metadata (step 1), e.g., title and abstract of the publications and drug-drug

interactions. Knowledge extraction methods recognize biomedical entities from

textual data and link them to UMLS, and resources in DBpedia, Wikidata,400

Uniprot, and DrugBank. A total of 12,223,409 UMLS annotations have been

extracted by FALCON. These annotations are used for solving entity alignment

and semantic data integration of biomedical entities in the Knowledge4COVID-

27https://go.drugbank.com/covid-19#drugs
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19 KG (e.g., drugs, phenotypes, side effects, and adverse events). Moreover,

there are 3,739,445 links to DBpedia, 3,476,435 links to Wikidata, 5,248 links405

to the Uniprot RDF KG, and 3,427 links to DrugBank.

The shared data sources are mapped to the Knowledge4COVID-19 unified

schema. SDM-RDFizer [25] transforms these shared data into an RDF graph

by executing the RML mapping rules. SDM-RDFizer implements optimized

data structures exploited during the execution of RML mapping rules to speed410

up the KG creation process [25]. The Knowledge4COVID-19 KG is published

following the Linked Data principles. A linked data interface using Pubby28

is provided; thus, all the URIs can be dereferenced. Additionally, a SPARQL

endpoint allows for querying processing on top of the Knowledge4COVID-19

KG. In contrast, the federated query engine, DeTrusty [26], evaluates SPARQL415

queries over the federation of the Knowledge4COVID-19 KG, DBpedia, Wiki-

data, and UniProt RDF. Additionally, various API REST services are offered

to traverse the Knowledge4COVID-19 KG, and analyze drug-drug interactions

and side effects (step 4).

4.1. The Knowledge4COVID-19 Unified Schema420

The Knowledge4COVID-19 unified schema comprises concepts that provide

abstract representations of the entities present in the data sources. Each generic

concept of a type or category is defined as a Class in OWL. These concepts rep-

resent annotations from controlled vocabularies, drugs, COVID-19 treatments

and drugs, disorders, phenotypes, adverse events, enzymes, targets, side effects,425

scientific publications, and interactions between drugs, drugs and side effects,

and drugs and their targets. The current version of the unified schema is com-

posed of 67 classes, 37 object properties, 49 datatype properties, and eight

annotation properties. Figure 7 shows examples of classes and properties of the

Knowledge4COVID-19 unified schema. The inner circle in the Figure 7 displays430

17 classes of the unified schema; each class is shown in a different color. The

28https://github.com/cygri/pubby
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Figure 6: The Knowledge4COVID-19 KG Pipeline. Steps followed during the transfor-

mation of heterogeneous data into the Knowledge4COVID-19 KG. UMLS annotations provide

the basis for entity alignment and data integration.

outer circle, however, illustrates examples of the properties categorized by the

classes. Each group of properties shown in the same color as one class repre-

sents all the properties whose domains are the same class; on average, a class has

3.7 properties. Following the Global as View (GAV) modeling approach [27],435

we define the classes in the unified schema such that they involve all the con-

cepts represented in data sources and recognized by a domain expert. Similarly,

the properties are defined considering the domain-specific relations between the
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Figure 7: The Unified Schema. Classes and properties.

concepts residing in different data sources.

In defining the unified schema concepts, we exploit two available unified440

schemas corresponding to two different biomedical knowledge graphs: iASiS29

and BigMedilytics30. Additionally, the Knowledge4COVID-19 unified schema

concepts (i.e., classes and properties) are related via the owl:equivalentClass

and owl:equivalentProperty predicates to concepts in DBpedia, Wikidata,

29http://ontology.tib.eu/iasis/
30http://ontology.tib.eu/bigmedilytics/
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Figure 8: The Knowledge4COVID-19 unified schema. VoCol Visualization of the

classes, and data and object properties.

Uniprot, the Open Biological and Biomedical Ontology, the Semanticscience445

Integrated Ontology, and Dublin Core. In total, 17 concepts are mapped to at

least one concept in these ontologies.

The unified schema is publicly available as a VoCol repository supported by

TIB 31. VoCol [28] provides a loose coupling of components for validation, query-

ing, analytics, visualization, and documentation on top of a standard Git repos-450

itory. VoCol also provides an interface for specifying queries against the unified

schema and ontology management features that enable the visualization and

exploration of the ontology. Finally, the documentation describing each class

and property metadata can be consulted, as well as a basic analysis describing

the number of classes and properties that comprise the unified schema. Fig-455

ure 8a depicts the Knowledge4COVID-19 unified schema visualized by VoCol.

The metadata describing each of the depicted concepts can be accessed at VoCol

32. Figure 8b presents the description of the class covid-19:CovidTreatment,

which groups of COVID-19 drugs and the drugs of common comorbidities.

31http://ontology.tib.eu/K4COVID-19/
32http://ontology.tib.eu/K4COVID-19/documentation
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4.2. Mapping the Data Sources into the Unified Schema460

Classes and properties in the unified schema are defined in terms of the at-

tributes in the data sources using RML triples maps. The Knowledge4COVID-

19 KG is defined using 57 RML triples maps that comprise 223 map-

ping assertions (i.e., subject or object Map). Figure 9 presents the num-

ber of mapping assertions of the RML triples maps that define each of465

the unified schema classes and their properties. For example, the class

COVID-19:DrugDrugInteractionPrediction is defined using 22 mapping as-

sertions, and COVID-19:Publication is the class with the greater number of

properties and is defined by 33 mapping assertions. A SPARQL endpoint with

the unified schema and the triples maps is publicly available33.470

Figure 10 presents a SPARQL query that collects the information about the

mapping rules that define the class COVID-19:Publication. The results of this

query evaluation include the data source from where the data is collected and

33https://labs.tib.eu/sdm/covid19kg-mappings/sparql

Figure 9: Mapping Assertions in RML Triples Maps. Number of Mapping Assertions

(i.e., subject and object maps) per classes.
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PREFIX r r : <http ://www. w3 . org /ns/ r2rml#>

PREFIX rml : <http :// semweb . mmlab . be/ns/rml#>

PREFIX COVID−19: <http :// r e s ea r ch . t i b . eu/ covid −19/vocab/>

SELECT DISTINCT ?mappingRule ? l o g i c a l S o u r c e ? p r e d i c a t e ? sourceAt t r ibute

WHERE {

?mappingRule rml : l o g i c a l S o u r c e ? l s .

? l s rml : source ? l o g i c a l S o u r c e .

?mappingRule r r : subjectMap ? su b j e c t .

? su b j e c t r r : c l a s s COVID−19: Pub l i ca t i on .

OPTIONAL { ?mappingRule r r : predicateObjectMap ?pObjectMap .

?pObjectMap r r : p r e d i c a t e ? p r e d i c a t e .

?pObjectMap r r : objectMap ? objectMap .

? objectMap ?mode ? sourceAt t r ibute }}

Figure 10: SPARQL Query to retrieve the RML rules that define COVID-19:Publication

per the class predicate, the attribute(s) of the corresponding data source used

to populate the predicate.475

4.3. The Knowledge4COVID-19 KG in Numbers

The current version of the Knowledge4COVID-19 KG comprises 80,570,440

RDF triples. Figure 11 depicts the number of resources per class in the

Knowledge4COVID-19 KG. As observed, covid-19:Annotation comprises

4,536,579 resources, 542,672 resources in covid-19:Publication, 503,700 for480

covid-19:PharmacokyneticDrugDrugInteraction. The Knowledge4COVID-

19 KG includes 87 COVID-19 drugs; 68 drugs are from DrugBank34 and the

rest have been extracted from the Mayo Clinical website 35. Additionally, the

Knowledge4COVID-19 KG integrates 216 COVID-19 treatments that comprise

COVID-19 drugs and drugs for the most common comorbidities that impact485

on the survival of COVID-19 patients [29]: hypertension, depressive syndrome

34https://go.drugbank.com/covid-19
35https://www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/

coronavirus-drugs/faq-20485627
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Figure 11: Knowledge4COVID-19 KG. Number of Resources per classes; 4,864,162 anno-

tations encode the meaning of 542,672 scientific publications and open data.

anxiety, obesity, cardiopathy, diabetes mellitus, hepatitis disease, chronic ob-

structive pulmonary disease, renal disease, asthma, dyslipidemia hypercholes-

terolemia, neurodegenerative disorder, gastrointestinal disease, vascular disease,

benign prostatic hyperplasia, and obstructive sleep apnea. There are 923 de-490

duced DDIs (a.k.a. DeducedDDIs). In average, each COVID-19 treatment has

10.63 drugs, 1.58 COVID-19 drugs, and 9.11 comorbidity drugs. Additionally,

COVID-19 treatments have in average two comorbidities and 121.43 Deduced-

DDIs; the same DDI can produce different effects, and they are counted as

different DDIs. Moreover, the Knowledge4COVID-19 KG integrates 345,116495

CRD and 5,513 NCRD pairs of drugs, and 124,537 instances of predicted DDIs

(i.e., instances of the class covid-19:DrugDrugPrediction). Specifically, 8,925

of the predicted DDIs are generated by the DDI-BLKG method, 5,907 have a

score equal or greater than 0.5 (a.k.a. DDI-BLKG-0.5). The rest of the DDIs
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are discovered by state-of-the-art methods; they are included in the KG to pro-500

vide a baseline for future benchmarking. These DDIs are predicted from the

DDIs extracted from DrugBank, and are as follows: i) TransE [30] 28,752 DDIs

generated by TransE. ii) RESCAL [31] 28,752 DDIs generated by RESCAL.

iii) HolE [32] 28,752 DDIs generated by HolE. iv) DistMult [33] 28,752 DDIs

generated by DistMult.505

5. Exploring the Knowledge4COVID-19 KG

This section describes the services implemented to facilitate the traversal

and data retrieval on top of the Knowledge4COVID-19 KG.

5.1. Relevant Adverse Effects Detected on Knowledge4COVID-19

Figure 12: The adverse effects generated as the result of the interactions among COVID-19

drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments for Asthma. Relations

retrieved from the Knowledge4COVID-19 KG

This service aims at providing the support for analyzing relevant adverse510

effects that may be produced as a result of interactions among drugs to treat
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COVID-19 and conditions. As a proof of concept, we illustrate the results of

the analysis of the most common commorbidities, i.e., hypertension, asthma,

and diabetes. These comorbidities are linked to the ACE-2 receptor expression

and may facilitate the entry of the virus into the host cells as a consequence515

of releasing the proprotein convertase. More importantly, this effect may fire

a ”vicious infectious circle” which may result in the increase of morbidity and

mortality [34]. Nevertheless, a more detailed analysis of the impact of the com-

bination of drugs can be executed on the public available Jupyter Notebook36.

Exemplar drug-drug interactions represented in the Knowledge4COVID-19 KG520

can also be visualized37.

Figure 13: The adverse effects generated as the result of the interactions among COVID-19

drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments for Type 2 Diabetes.

Relations retrieved from the Knowledge4COVID-19 KG

Figure 12, Figure 13, and Figure 14 depict adverse effects that can be trig-

gered in COVID-19 patients who receive treatments for hypertension, asthma,

or diabetes. Each plot reports a labelled directed graph, nodes represent drugs

and an edge between two drugs, represent an interaction. The label of an edge,525

36https://colab.research.google.com/drive/146-oQTxDpZQoOifKY6iafaEwuupH7q3t?

usp=sharing
37https://youtu.be/7YsTYJzRfR0
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denoted by the line color and the figure legend, indicate the type of side effect.

Figure 14: The adverse effects generated as the result of the interactions among COVID-

19 drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments for Hypertension.

Relations retrieved from the Knowledge4COVID-19 KG

Figure 12 presents 14 types of drug-drug interactions that may occur among

the COVID-19 drugs Hydroxychloriquine, Zinc, and Chloroquine, and asthma

drugs. The pharmacokinetic drug-drug interactions between a pair of drugs A

and B indicate that A impacts B’s absorption, metabolism, excretion when both530

drugs are administrated together. As a result, A may reduce the effectiveness or

increase toxicities. The rest of the interactions are pharmacodynamic, i.e., their

pharmacological outcome may be affected. Six out of the 14 reported drug-drug

interactions are pharmacokinetic. Chloroquine may reduce the metabolism of

Zafirlukast, Mometasone, and Fluticasone; it can also decrease the excretion535

rate of Levosalbutamol. Hydroxychloriquine also impacts the metabolism of

Theophylline. Furthermore, the serum concentration of Chloroquine may be

increased with asthma drugs by Methylprednisolone, Prednisone, and Budes-

onide. Thus, the effectiveness of the treatment was negatively affected. Four

drugs may increase the severity of the side effects of Hydroxychloriquine. At the540

pharmacodynamic level, it can be observed that Montelukast and Chloroquine

may increase the risk of myopathy, and Salmeterol and Hydroxychloriquine may

32



increase the risk of QT prolongation. Since the risk of cardiac events during QT

syndrome is high, these results suggest that the combinations of the treatments

need to be administrated with great precaution. Similarly, Figure 13 reveals a545

more significant number of interactions among the drugs Hydroxychloriquine,

Zinc, and Chloroquine and the drugs typically prescribed to Type 2 diabetes

patients. All the drugs affect the efficacy of Hydroxychloriquine and the combi-

nation of Rosiglitazone in treatments with Insulin Determir or Insulin Glargine.

Additionally, the therapeutic efficacy of Rosiglitazone can be increased when550

used in combination with Hydroxychloroquine, and Chloroquine may reduce

the effectiveness of Metformin. They should be administrated with precaution

because their therapeutic efficacy may be reduced. Drug interactions of hy-

pertension treatments based on drugs Angiotensin converting enzyme, with the

drugs Hydroxychloriquine and Zinc are reported in Figure 14. As reported, the555

combination of these drugs may cause pharmacodynamic interactions that can

critically affect the function of nerve and muscle cells, including those in the

heart. The above results suggest that COVID-19 patients receiving treatments

for pre-existing conditions need to be carefully treated.

5.2. Web APIs to traverse the Knowledge4COVID-19 KG560

The Knowledge4COVID-19 KG can be explored by executing SPARQL

queries against the public SPARQL endpoint7. Additionally, specific Web Ap-

plication Programming Interfaces (APIs)6 allow for the execution of specific

requests. They include i) the Publications related to drugs; ii) the Drug-Drug

Interactions between two or several drugs; iii) the Predicted Drug-Drug Inter-565

actions between two or several drugs. The source code and the description of

how to use the API is available on our GitHub repository6. The Web APIs were

executed 20 times, and the average execution time is reported.

Publications related to drugs retrieves the scientific publications annotated

with UMLS Concept Unique Identifiers (aka CUIs) of the input drugs.570

Input: CUI ids for one or several drugs.

Output: All the properties of the publications annotated with input drugs.
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Pre-conditions: Publications are correctly annotated with CUIs.

Post-conditions: Returned publications have mentions of the input drugs with

respect to the CUI annotations in the abstract or title.575

Average response time: 50 ms.

Example SPARQL Query: Subsection Appendix A.1.

Drug-Drug Interactions (DDI) retrieves the DDI of the input drugs.

Input: Drug CUIs and a variable “target” to indicate the output mode.

Output: Drug-Drug Interactions related to the input drugs with all the prop-580

erties defined in the KG. Interactions of the related drugs are returned as an

output. Each interaction includes the effector drug, the affected drug, the effect,

and the impact of the effect. If the variable target=DDI, then return the DDI

of each input drug individually. If target=drug-drug interactions, then return

the DDI of all the possible pairs of the input drugs.585

Pre-conditions: Drugs have interactions in the KG; these interactions are ex-

tracted from DrugBank or the literature.

Post-conditions: Returned interactions are related to the drugs in the input.

Average response time: 62 ms.

Example SPARQL Query: subsubsection Appendix A.2.1 and subsubsec-590

tion Appendix A.2.2.

Predicted Drug-Drug Interactions retrieves predicted DDI of input drugs.

Input: Drug CUI and a variable “target” to indicate the output mode.

Output: Predicted Drug-Drug Interactions related to the input drugs with all

the properties defined in the KG. Predicted interactions of the related drugs595

are returned as an output. Each interaction consists of the effector drug, the

affected drug, a confidence score of the interaction, and the provenance. If

target=DDIP, then the API returns the predicted DDI of each drug individ-

ually. If target=DDIPS, then the API returns the predicted DDI of all the

possible pairs of the input drugs.600

Pre-conditions: Drugs have predicted interactions in the KG.

Post-conditions: Returned predicted interactions have a confidence score greater

than zero wrt the CUI of the drugs in the input.
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PREFIX dbp : <http :// dbpedia . org / property/>

PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>

PREFIX k4covid : <http :// r e s ea r ch . t i b . eu/ covid −19/vocab/>

PREFIX k4covide : <http :// r e s ea r ch . t i b . eu/ covid −19/ e n t i t y/>

SELECT DISTINCT ∗ WHERE {

SERVICE <https : // l ab s . t i b . eu/sdm/ covid19kg / sparq l> {

? treatment k4covid : hasCovidDrug ? covidDrug .

FILTER( ? comorbidity=k4covide : Asthma )

? treatment k4covid : hasComorbidity ? comorbidity .

? treatment k4covid : hasComorbidityDrug ? comorbidityDrug .

? comorbidityDrug k4covid : hasCUIAnnotation ?CUIComorbidityDrug .

?CUIComorbidityDrug owl : sameAs ? sameAsComorbidityDrug .

? covidDrug k4covid : hasCUIAnnotation ?CUICovidDrug .

?CUICovidDrug owl : sameAs ?sameAsCovidDrug .

}

SERVICE <https : // dbpedia . org / sparq l> {

?sameAsCovidDrug dbp : e x c r e t i o n ? e x c r e t a t i o n .

?sameAsCovidDrug dbp : metabolism ? metabolism .

?sameAsCovidDrug dbp : routesOfAdmin i s t rat ion ? route s .

}

}

Figure 15: Example of a Federated Query

Average response time: 58 ms.

Example SPARQL Query: subsubsection Appendix A.3.1 and subsubsec-605

tion Appendix A.3.2.

5.3. Federated Query Processing on top of the Knowledge4COVID-19 KG

DeTrusty [26] is a federated query engine for RDF sources. Hence, it allows

querying the Knowledge4COVID-19 KG in conjunction with external sources

like DBpedia, Wikidata, and Uniprot38. This in turn is only possible because610

38https://labs.tib.eu/sdm/k4covid-query-engine/sparql

35

https://labs.tib.eu/sdm/k4covid-query-engine/sparql


entities in the Knowledge4COVID-19 KG are linked to those datasets. Figure 15

shows an example of a federated query; providing information about treatments

that involve drugs for COVID-19 and Asthma. DeTrusty contacts both KGs to

retrieve the complete answer to the query. The Knowledge4COVID-19 KG de-

livers data about the treatments fulfilling the conditions; including owl:sameAs615

links for both drugs. DeTrusty also contacts DBpedia to get additional infor-

mation about the COVID-19 drugs, e.g., the route of administration. DeTrusty

decomposes the SPARQL query into star-shaped sub-queries around the sub-

jects [35], i.e., each triple of a sub-query has the same variable or constant in

the subject position. For source selection in the presence of a SPARQL query620

without the SERVICE clause, DeTrusty uses a semantic source description with

information about the classes and their predicates, like MULDER [36].

6. Evaluation of Knowledge4COVID-19

In this section, we report on the evaluation of the quality of the integrated

data and the patterns discovered by exploiting the knowledge encoded in the625

Knowledge4COVID-19 KG. We aim to answer the following research questions:

Q1) What is the accuracy of the named entity recognition (NER) and named

entity linking (NEL) performed over data from DrugBank to extract drug-drug

interactions and the effects of these interactions? Q2) What is the accuracy

of the prediction methods that enhance the knowledge about drug-drug inter-630

actions? Q3) What is the quality of the knowledge discovery methods imple-

mented on top the Knowledge4COVID-19 KG to uncover drug-drug interactions

among the multi-drug COVID-19 treatments?

6.1. Effectiveness of NER and NEL methods

Data about drug-drug interactions is collected from DrugBank release 2022-635

01-04 with 1,273,052 entries composed of pairs of drugs and the textual descrip-

tion of the effects of each interaction. In order to evaluate the performance

of FALCON in this use case, 1,198 DDI descriptions were manually annotated

36



by twelve annotators; annotations correspond to CUIs from UMLS and consti-

tute the gold standard of the evaluation. For example, for the DDI description:640

“The serum concentration of Lepirudin can be decreased when it is combined

with Tipranavir”; Lepirudin and Tipranavir correspond to the extracted entities

from the above record, while decrease and serum concentration represent, re-

spectively, the effect and impact of the interaction of Tipranavir with Lepirudin.

One of the annotators was a senior researcher, two were experts in the biomed-645

ical domain, and the rest were Computer Science PhD students. Disagreements

among the annotators were solved by majority voting. A 2-fold cross-validation

was followed. The evaluation indicates a precision of 98%. The 2% where

FALCON failed to extract and link the terms correctly, are interactions which

contain more than one interaction in the same sentence, where FALCON was650

only considering one interaction (Table 2 last pattern). All the drug-drug inter-

actions, that followed this pattern, were corrected manually before integrating

them into the Knowledge4COVID-19 KG.

6.2. Effectiveness of the predictive tasks for DDI identification

As explained, DrugBank presents an adequate source for retrieving poten-655

tial adverse effects of treatments received by COVID-19 patients in combination

with other medications, explicitly providing the interactions of each drug with

other drugs in a structured way. However, many drug interactions observed in

everyday practice are not currently recorded in medical databases like DrugBank

that are continuously evolving and extended with new drugs and relevant in-660

formation39. Thus, a Knowledge Graph completion challenge arises, for adding

new drug-drug interaction links in the Knowledge4COVID-19 KG.

The effectiveness of the Random Forest classifier presented previously in

Subsection 3.2, for predicting new interactions is assessed following a 10-fold

cross-validation (cv) procedure, and DrugBank v5.0.3 is our gold dataset for665

drug-drug interactions. Existing techniques for knowledge graph embeddings

39https://go.DrugBank.com/release_notes
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available in the TorchKGE 40 library (i.e., TransE, RESCAL, HolE, and Dist-

Mult) are used as baselines. Each model is trained for a maximum of 100 epochs

while early stopping was used, utilizing 10% of the data for validation. For each

model, 100-sized embeddings were used, since an increase of the embedding size670

did not provide better results. The performance of the predictive models is mea-

sured using the area under the receiver-operating characteristic (ROC-AUC), as

well as the macro-average of Precision, Recall and F1-score for the positive class.

Figure 16 suggests that our approach (DDI-BLKG) outperforms all mainstream

embedding-based methods tested. DDI-BLKG can exploit knowledge encoded675

in the fine-grained representation of the publications in the Knowledge Graph.

As a result, the DDI-BLKG prediction accuracy is enhanced compared to the

baseline methods.

Moreover, Figure 17 reports on the overlap between the DDIs deduced on680

the drugs of the COVID-19 treatments (a.k.a. DeducedDDIs), DDI-BLKG,

DDI-BLKG-0.5 (DDI-BLKG with a prediction score equal or greater than 0.5),

CRD, and NCRD. It is essential to highlight that CRD and NCRD are computed

from the whole DrugBank dataset of drugs, while DDI-BLKG and DeducedDDIs

are limited to COVID-19 drugs. The percentages of overlap of DeducedDDIs,685

DDI-BLKG, and DDI-BLKG-0.5 with CRD are 24.70%, 17.51%, and 22.60 %.

Thus, both methods (i.e., the deductive system and DDI-BLKG) can identify

DDIs between drugs mediated by the CYP enzyme family, i.e., CRD pairs of

drugs. CYP enzymes play an important role in catalyzing the metabolism of

pharmaceuticals and their inhibition or induction causes clinically significant690

pharmacokinetic drug-drug interactions [37]. Thus, these results suggest that

even though these methods do not exploit any information about the drug’s

target enzymes, they can identify a good proportion of DDIs that are part of

the CRD group.

40https://torchkge.readthedocs.io
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Figure 16: Results of the 10-fold cross validation, comparing the current DDI prediction

approach (DDI-BLKG) with various graph embedding methods. Only the TransE approach

outperforms our approach in ROC-AUC and Precision, while in terms of the F1 score, DDI-

BLKG outperforms all embeddings by far.

6.3. Impact on the Effectiveness and Toxicity of COVID-19 Treatments695

The Knowledge4COVID-19 KG is a unique source of knowledge to iden-

tify patterns in the integrated networks of interactions, biomedical entities,

and publications, e.g. adverse events generated by combining COVID-19 drugs

and drugs prescribed for pre-existing conditions. Note that existing tools (e.g.,

COVID-19 Drug Interactions for University of Liverpool41) only identify pair-700

wise interactions. In this section, we evaluate the drug-drug interactions that

can be deduced over the Knowledge4COVID-19 KG and the effects of these

interactions. We consider five COVID-19 treatments and the effects of includ-

ing in these treatments drugs for comorbidities. The treatment for COVID-19

41https://www.covid19-druginteractions.org/
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Figure 17: Venn Diagram. It depicts the overlap among five sets of DDIs. 345,116 CRD

pairs of drugs targeting at least one protein of the family CYP. 5,513 NCRD are pairs of

drugs targeting a No CYP protein. 8,925 DDI-BLKG are DDIs predicted by the DDI-BLKG

method, while 5,907 DDI-BLKG-05 represents the subset of DDIs in DDI-BLKG with score

equal or greater than 0.5. 923 DeducedDDIs generated by the deductive system.

used in these five cases is recommended by the official guidelines42. The con-705

comitant drugs used in the first treatment T1 are for the comorbidities asthma,

high cholesterol, and pneumonia and for the second treatment T2 are diabetes,

hypertension, and pneumonia. The comorbidities in the third treatment T3 are

diabetes, high cholesterol, hypertension. The comorbidities in the fourth treat-

ment T4 are asthma and hypertension, and for the fifth treatment, T5 are renal710

diseases, obesity, and hypertension.

Table 5 shows the percentage of DDIs deduced (D) and wedge absolute

frequency (F ) for each middle-vertex by the method [14] in existing treatments.

42https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/

chloroquine-or-hydroxychloroquine-and-or-azithromycin/

40

https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/chloroquine-or-hydroxychloroquine-and-or-azithromycin/
https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/chloroquine-or-hydroxychloroquine-and-or-azithromycin/


The middle-vertex of a wedge is highly important because the middle-vertex715

is both the object drug for one interaction and the precipitant drug for an-

other interaction. Thus, drugs that correspond to the middle-vertex of wedges,

represent drugs whose presence in the treatment may negatively impact ef-

fectiveness and toxicity. We can observe in Table 5 that over 15% of new

DDIs are deduced in all the treatments. Table 5 shows the DDI-Reduction720

percentage for the drugs with higher wedge absolute frequency (F) for each

treatment. The DDI-Reduction percentage was evaluated in four interaction

checker tools on May 2nd, 2022, Liverpool COVID-19 Interactions43, WebMD44,

Medscape45, and Drugbank46. The validation was done on the versions of Liver-

pool COVID-19 Interactions and Drugbank which correspond to 2022-04-13 and725

2022-01-04, respectively. DDI-Reduction percentage is measured, and it indi-

cates how many DDIs are avoided in a treatment when the middle-vertex drug is

withdrawn. The evaluation suggests that withdrawing the middle-vertex with

higher absolute frequency reduces most interactions. Thus, wedges and their

middle-vertex represent DDIs that affect treatment effectiveness and toxicities.730

When more than one drug contains the higher wedge absolute frequency (F)

in treatment, the clinicians have to decide which drug is withdrawn. The first

COVID-19 treatment reported contains concomitant drugs for the comorbidities

of asthma, high cholesterol, and pneumonia. The method proposed by [14] indi-

cates Azithromycin as the drug with the highest absolute frequency of being the735

wedges middle-vertex. Therefore, it represents the DDIs that affect treatment

effectiveness and toxicities, and withdrawing it reduces most interactions.

43https://www.covid19-druginteractions.org/checker
44https://www.webmd.com/interaction-checker/default.htm
45https://reference.medscape.com/drug-interactionchecker
46https://go.drugbank.com/drug-interaction-checker
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Table 5: Five COVID-19 Treatments. Frequency distribution of wedges with knowledge

capture. Treatments are evaluated in four interaction checker tools: COVID-19, WebMD,

Medscape, and DrugBank (May 2nd, 2022). For each tool, it is shown the DDI-Reduction

percentage that indicates how many DDIs are avoided in a treatment when the middle-vertex

drug is removed. The DDI-reduction percentage is a higher-is-better metric. Middle-vertex

drugs reduce DDIs, suggesting, thus, wedges and their middle vertices are part of DDIs that

affect treatment effectiveness and toxicities. Best values in bold.

T Knowledge Capture D DDI-Reduction Percentage

Middle-Vertex F COVID-19 WebMD Medscape Drugbank

T1 Azithromycin 9 45.45 100.0 100.0 100.0 42.9

Montelukast 4

Lovastatin 4

Hydroxychloroquine 0

Doxycycline 0

T2 Ciprofloxacin 12 52.17 33.3 75.0 75.0 44.4

Metoprolol 12 33.3 25.0 25.0 33.3

Hydroxychloroquine 9

Azithromycin 9

Linagliptin 7

T3 Hydroxychloroquine 5 33.33 100.0 25.0 25.0 60.0

Glyburide 5 0.0 50.0 50.0 60.0

Simvastatin 3

Azithromycin 3

Ramipril 0

T4 Propranolol 8 15.38 100.0 50.0 50.0 60.0

Hydroxychloroquine 5

Azithromycin 5

Theophylline 4

Ramipril 1

T5 Timolol 11 38.89 50.0 50.0 50.0 44.4

Cyclophosphamide 11 0.0 0.0 0.0 44.4

Azithromycin 7

Hydroxychloroquine 7

Bupropion 6
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7. Related Work

Data Ecosystems and Spaces The International Data Space (IDS) [38] exem-

plifies DEs where various W3C standards, technologies, and governance models740

allow for the description of the data sources to secure and standardize data

exchange and integration. Data ecosystems provide reference architectures that

comprise components to enable the description of the data sources to be ex-

changed and mappings between data sources with integrated views or unified

schemas. Specifically, the networks of knowledge-driven data ecosystems (by745

Geisler and Vidal, et al. [6]) enable the nested definition of data ecosystems in

terms of other data ecosystems whose connections induce a network. Metadata

of each data ecosystem is described using controlled vocabularies and domain

ontologies. Additionally, services are part of data ecosystems and can exploit

metadata to enhance interoperability, traceability, data quality assessment, and750

integrity constraint validation. The Knowledge4COVID-19 data ecosystem im-

plements the reference architecture proposed by Geisler and Vidal, et al. [6];

it comprises the data ecosystem for Scientific Open Data and Scientific Pub-

lications. Mappings between data sources and the unified schema are defined

using RML, and the execution of these mappings results in the materialized755

Knowledge4COVID-19 KG. Services for knowledge extraction and prediction

are implemented at each data ecosystem. A deductive system, developed on

top of the Knowledge4COVID-19 KG, facilitates discovering new drug-drug in-

teractions and their effects on treatment toxicities and effectiveness.

Knowledge Graphs have gained momentum as data structures able to model760

the convergence of data and knowledge as factual statements [39]. Despite be-

ing coined by the research community for several decades, KGs are playing an

increasingly relevant role in scientific and industrial areas [40]. The research

community has actively contributed to the problem of automatic knowledge

graph creation. As a result, declarative specification of a KG creation pro-765

cess [25, 41, 42], techniques for semantic data integration [43, 44], and virtual-

ization of KGs [45, 46] enable to merge data silos and provide an integrated
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view of data and metadata. Existing KG construction methods vary from

crowdsourced (e.g., Wikidata [47]), extraction from existing knowledge bases

(e.g., DBpedia [48] and YAGO [49]), and automatic generation (e.g., Knowl-770

edgeVault [50] and AI-KG [51]). Moreover, KG refinement includes methods for

predicting relations, completing type assertions, and finding erroneous relations,

external links, and values [52]. The creation process of Knowledge4COVID-19

KG is declarative using RML mapping rules, facilitating, thus, extensibility,

modularity, and reusability of the KG creation process.775

Knowledge Graphs and COVID-19: Several authors have proposed us-

ing knowledge graphs to make available expressive sources of data and knowl-

edge about COVID-19. Specifically, several knowledge bases have been de-

veloped to provide an integrated view of COVID-19-related data. Exemplar

approaches include COVID-19 Knowledge Graph47, Drugs4Covid [53]. Simi-780

larly, Knowledge4COVID-19 integrates CORD-19 scientific publications, but in

addition, it models a fine-grained representation of drug-drug interactions and

their adverse effects in the treatments of comorbidities. Additionally, Queralt-

Rosinach et al. [54] present a knowledge graph that integrates clinical data

collected in the context of the BEAT-COVID project 48. These approaches785

put in perspective the protagonist role of knowledge graphs in understanding

COVID-19. Similarly, Knowledge4COVID-19 aims to provide a resource that

clinicians and patients can explore to understand the effects of interactions in

a COVID-19. Thus, given the impact that pre-existing conditions seem to have

on the outcome of a SARS-CoV-2 infection, Knowledge4COVID-19 represents a790

resource that can be linked to existing COVID-19 knowledge graphs to empower

their analytical capacity.

Chatterjee et al. [55] present an exploratory review of recent works con-

structing knowledge graphs from different sources. For instance, Wang et al. [56]

47https://covidgraph.org/
48https://www.izi.fraunhofer.de/en/about-us/united-against-corona/beat-covid.

html
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have produced a literature knowledge graph construction and drug repurposing795

approach, also working on the fine-grained text entity extraction, while more

recently authors in [57] also construct a knowledge graph from scientific litera-

ture, focusing on cause-and-effect relations. Knowledge4COVID-19 follows the

best practices of FAIR [58] and Linked Data principles49, and makes available

a KG that integrates COVID-19 related data from various sources. UMLS is800

used to annotate biomedical entities; links to KGs (e.g., DBpedia and Wikidata)

enhance interoperability.

Reese et al. [59] describe a knowledge graph for COVID-19 where biomedical

concepts and publications are represented at symbolic and subsymbolic levels.

Complementary, Knowledge4COVID-19 provides a fine-grained representation805

of biomedical concepts and publications. Well-known tools like MetaMap and

SemRep are used to extract relevant biomedical entities and relations from sci-

entific publications. At the same time, drug indications, side effects, and adverse

events of drug-drug interactions are recognized by FALCON2.0. The extracted

entities are linked to equivalent resources in existing KGs (i.e., DBpedia, Wiki-810

data, DrugBank, and Uniprot) and annotated using UMLS terms and relations;

networks of drug-drug, drug-target, and drug-side effect interactions predicted

using diverse methods are also merged. This makes the Knowledge4COVID-19

KG a complementary source of knowledge that can be connected to existing

COVID-19 KGs (e.g., the one implemented by Reese et al.) using the linking815

techniques implemented by FALCON2.0.

8. Knowledge4COVID-19 as a Resource

8.1. Discussion of the Knowledge4COVID-19 Framework

This section describes our resources and discusses our contributions:

The Knowledge4COVID-19 DE integrates data sources from the Scientific820

Open Data and Publications DEs. The pipeline for KG creation and manage-

49https://www.w3.org/TR/ld-bp/
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ment is available as a Docker container. It includes the Knowledge4COVID-19

unified schema, the RML triple maps, and the data sources processed by the

NLP tools implemented by Scientific Open Data and Publications DEs. In addi-

tion, to create the Knowledge4COVID-19 KG, the pipeline uploads the KG to a825

Virtuoso endpoint and makes each resource available in the Knowledge4COVID-

19 KG, following the Link Data principles. Moreover, the required configura-

tions of the federated query engine DeTrusty are generated. DeTrusty is also

available via its HTTP API like a regular SPARQL endpoint.

The Knowledge4COVID-19 KG comprises COVID-19 related data about830

drugs, DDIs (predicted and known), scientific publications, drugs’ side effects,

and interactions with targets. The KG can be explored through three APIs, a

SPARQL endpoint, and a federated query engine.

DDI Prediction Methods employ machine learning techniques to identify

previously unknown potential COVID-19 related drug-drug interactions with835

a certain confidence score. Predicted DDIs are not documented in open drug

databases, such as Drugbank, and clinicians can use them as an indication of

possible toxicities, during the treatment of a patient suffering from COVID-19.

Benchmarks of DDIs include known, deduced, and predicted DDIs. The

known DDIs are extracted from DrugBank, while CRD, NCRD, and Deduced-840

DDIs are deduced. Finally, a set of DDIs predicted by state-of-the-art machine

learning methods is also part of the Knowledge4COVID-19 KG. These DDIs

can be used to reproduce our reported results or for future comparisons.

8.2. The Knowledge4COVID-19 Resource Characteristics

Novelty: Knowledge4COVID-19 introduces a novel infrastructure to transform845

heterogeneous data sources into a KG. The mappings among the data sources

and the unified schema are defined as RML mapping assertions. Moreover, the

methods implemented in SDM-RDFizer allow for the efficient execution of the

KG creation process. The Knowledge4COVID-19 KG occupies 13 GB and is

created from 2.8 GB of raw data. Knowledge4COVID-19 KG executes 57 RML850

triples maps (comprising 223 mapping assertions) over the raw data in 82 min-
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utes 55 seconds. Additionally, novel prediction methods are utilized to predict

interactions between drugs. We hope that these results encourage the commu-

nity to create declarative pipelines for KG creation that are able to scale up to

the avalanche of data expected in the next years.855

Availability: Knowledge4COVID-19 is released publicly by the Scientific Data

Management (SDM) group at TIB, Hannover. TIB is one of the largest libraries

for science and technology in the world. Following its policy of engaging open

access to scientific artifacts, it will support Knowledge4COVID-19 as a source of

knowledge for SARS-CoV-2 and other viruses. The Knowledge4COVID-19 DE860

is open source, written in Python 3, and uses RML; it is available under the

Apache License 2.0 license in an open GitHub repository4. It will be regularly

updated with new data sources, triples maps, and APIs for exploration. More

importantly, respecting open science good practices, Knowledge4COVID-19 is

registered at Zenodo. Thus, users can use and cite a specific version, ensuring865

reproducibility and traceability of any experimental evaluation.

Utility: A docker image of Knowledge4COVID-19 is available at50; it en-

ables accessing the KG locally. The GitHub repository of the resource pro-

vides a detailed explanation of how to run the Docker container. From 24 to 26

April 2020, Knowledge4COVID-19 participated in the Pan-European hackathon870

#EUvsVirus51 organized with the aim of connecting experts, investors, and

civilian organizations to devise together innovative solutions to the coronavirus

outbreak52.

Predicted Impact: Open pharmaceutical databases such as Drugbank or

drugs.com are periodically updated, manually adding drug-drug interactions,875

since new unknown DDIs are frequently reported by clinicians and health insti-

tutions. Our methods can potentially deduce or predict such interactions for new

or experimental drugs by analyzing contextual information in biomedical publi-

50https://github.com/SDM-TIB/Knowledge4COVID-19/wiki/Running-Knowledge4COVID-19-KG-locally
51https://www.euvsvirus.org/
52https://devpost.com/software/COVID-19-kg
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cations before being observed in practice and documented. This could support

treatment decision-making, avoiding unnecessary side effects of drug combina-880

tions. Moreover, given the number of scientific publications and open data about

drugs, disorders, and adverse events integrated into the Knowledge4COVID-19

KG, we are optimistic that it will be the starting point of future developments

and benchmarking in the Semantic Web community. Lastly, the pipeline for KG

management is domain agnostic, but there are still many opportunities to make885

it fully transparent. We hope this paper encourages the community to develop

traceable and interpretable methods for transparent KG management.

Adoption and Reusability: We are reusing the same DE and core concepts

of the unified schema and mapping rules in projects like EU H2020 projects

like iASiS53, BigMedilytics - lung cancer pilot54, and P4-LUCAT55. As in890

Knowlege4COVID-19, the generated KGs include fine-grained representations

of publications, and biomedical entities (e.g., drugs, side effects, targets, and in-

teractions); the mapping rules that defined these core concepts have been reused

with minor changes. This opens the spectrum of possibilities of reusability and

adoption, and puts in perspective the relevance of DEs where KG creation is895

defined declaratively through mapping rules.

9. Conclusions and Future Work

This paper addresses the problem of providing an integrated view of het-

erogeneous sources of COVID-19 data. Following the reference architecture of

networks of knowledge-driven data ecosystem (by Geisler and Vidal et al. [6]),900

we presented the Knowledge4COVID-19 framework as a data ecosystem (DE)

where mappings among data sources and a unified schema are described in terms

of RML. The Knowledge4COVID-19 DE uses the SDM-RDFizer to execute the

RML mappings and create the Knowledge4COVID-19 KG. Tasks of Natural

53http://project-iasis.eu/
54https://www.bigmedilytics.eu/
55https://p4-lucat.eu/
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Language Processing enable recognizing relevant entities and predicates in the905

text describing drug-drug interactions and side effects. Additionally, a deduc-

tive system and KG predictive models allow the discovery and prediction of

patterns to explain the impact of drug-drug interactions on treatment effective-

ness and toxicity. As a result, the Knowledge4COVID-19 KG comprises factual

statements about drugs, adverse events, and drug-drug interactions harvested910

from COVID-19 data sources and scientific publications.

A repertoire of Web APIs over the Knowledge4COVID-19 KG is made avail-

able. They enable exploring entities through their connections and discover-

ing associations to enhance understanding of a SARS-CoV-2 infection and its

progression. Thus, Knowledge4COVID-19 broadens the portfolio of semantic915

web technologies and provides the basis for developing interpretable analyti-

cal methods. In the future, we plan to connect the Knowledge4COVID-19 KG

to other KGs that maintain COVID-19 related data. Additionally, we would

like to extend the KG clinical data about COVID-19 patients and empower

Knowledge4COVID-19 DE with the capacity of detecting patterns that can ex-920

plain the correlation between survival, drug interactions, and adverse events.
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Appendix A. KG Exploration API queries

All the following queries are available on our GitHub repository.56

Appendix A.1. Publications related to drugs

PREFIX k4covid : <http :// r e s ea r ch . t i b . eu/ covid −19/vocab/>1130

PREFIX k4covide : <http :// r e s ea r ch . t i b . eu/ covid −19/ e n t i t y/>

SELECT DISTINCT ?pub ? year ? j o u r n a l ? t i t l e ? u r l ? drug ? drugLabel where {

? drug a k4covid : Drug .

? drug k4covid : hasCUIAnnotation ?drugCUI .

F i l t e r (? drugCUI in ( k4covide : C0031623 ,1135

k4covide : C0751995 ,

k4covide : C0030106 ) )

?drugCUI k4covid : annLabel ? drugLabel .

?ann a k4covid : ConceptAnnotation .

?ann k4covid : hasSemanticAnnotation ?semAnn .1140

?semAnn k4covid : hasCUIAnnotation ?drugCUI .

?ann k4covid : annotates ?pub .

?pub <http :// pur l . org /dc/ terms / t i t l e > ? t i t l e .

?pub k4covid : year ? year .

?pub k4covid : j o u r n a l ? j o u r n a l .1145

?pub k4covid : ex te rna lL ink ? u r l .

}

56https://github.com/SDM-TIB/Knowledge4COVID-19/blob/main/Exploration-API/

SPARQL/README.md

57
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Appendix A.2. Drug-Drug Interactions (DDI)

Appendix A.2.1. Get Interactions of a Drug

PREFIX k4covid : <http :// r e s ea r ch . t i b . eu/ covid −19/vocab/>1150

PREFIX k4covide : <http :// r e s ea r ch . t i b . eu/ covid −19/ e n t i t y/>

SELECT DISTINCT ? e f f e c to rDrugLabe l ? a f f ectdDrugLabe l ? e f f e c t AS ? e f f e c t L a b e l

? impactLabel WHERE {

? i n t e r a c t i o n k4covid : prec ip i tantDrug ? ef fectorDrugCUI .

? i n t e r a c t i o n k4covid : objectDrug ? affectdDrugCUI .1155

? ef fectorDrugCUI k4covid : annLabel ? e f f e c to rDrugLabe l .

? affectdDrugCUI k4covid : annLabel ? a f f ectdDrugLabe l .

? i n t e r a c t i o n k4covid : e f f e c t ? e f f ec tCUI .

? e f f ec tCUI k4covid : annLabel ? e f f e c t .

? i n t e r a c t i o n k4covid : impact ? impactLabel .1160

FILTER(? affectdDrugCUI in ( k4covide : C0000970 ) )}

Appendix A.2.2. Get all the interaction among the provided Drugs

PREFIX k4covid : <http :// r e s ea r ch . t i b . eu/ covid −19/vocab/>

PREFIX k4covide : <http :// r e s ea r ch . t i b . eu/ covid −19/ e n t i t y/>

SELECT ∗ {1165

{SELECT DISTINCT ? e f f e c to rDrugLabe l ? a f f ectdDrugLabe l ? e f f e c t AS ? e f f e c t L a b e l ? impactLabel

WHERE {

? i n t e r a c t i o n k4covid : prec ip i tantDrug k4covide : C0000970 .

? i n t e r a c t i o n k4covid : objectDrug k4covide : C0028978 .

k4covide : C0000970 k4covid : annLabel ? e f f e c to rDrugLabe l .1170

k4covide : C0028978 k4covid : annLabel ? a f f ectdDrugLabe l .

? i n t e r a c t i o n k4covid : e f f e c t ? e f f ec tCUI .

? e f f ec tCUI k4covid : annLabel ? e f f e c t .

? i n t e r a c t i o n k4covid : impact ? impactLabel .

}} UNION1175

{SELECT DISTINCT ? e f f e c to rDrugLabe l ? a f f ectdDrugLabe l ? e f f e c t AS ? e f f e c t L a b e l ? impactLabel

WHERE {

? i n t e r a c t i o n k4covid : prec ip i tantDrug k4covide : C0028978 .

? i n t e r a c t i o n k4covid : objectDrug k4covide : C0000970 .

k4covide : C0028978 k4covid : annLabel ? e f f e c to rDrugLabe l .1180

k4covide : C0000970 k4covid : annLabel ? a f f ectdDrugLabe l .

? i n t e r a c t i o n k4covid : e f f e c t ? e f f ec tCUI .

? e f f ec tCUI k4covid : annLabel ? e f f e c t .
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? i n t e r a c t i o n k4covid : impact ? impactLabel .

}}}1185

Appendix A.3. Predicted Drug-Drug Interactions

Appendix A.3.1. Get the predicted interactions of a Drug

PREFIX k4covid : <http :// r e s ea r ch . t i b . eu/ covid −19/vocab/>

PREFIX k4covide : <http :// r e s ea r ch . t i b . eu/ covid −19/ e n t i t y/>

SELECT DISTINCT ? e f f e c to rDrugLabe l ? a f f ectdDrugLabe l ? con f idence ? provenance WHERE {1190

? i n t e r a c t i o n a k4covid : DrugDrugPrediction .

? i n t e r a c t i o n k4covid : has Interact ingDrug ? e f f e c t o rDrug .

? i n t e r a c t i o n k4covid : has Interact ingDrug ? a f f ec tedDrug .

FILTER (? e f f e c t o rDrug != ? a f f ec tedDrug )

? a f f ec tedDrug k4covid : hasCUIAnnotation ? affectdDrugCUI .1195

? e f f e c t o rDrug k4covid : hasCUIAnnotation ? ef fectorDrugCUI .

? ef fectorDrugCUI k4covid : annLabel ? e f f e c to rDrugLabe l .

? affectdDrugCUI k4covid : annLabel ? a f f ectdDrugLabe l .

? i n t e r a c t i o n k4covid : con f idence ? con f idence .

? i n t e r a c t i o n k4covid : predict ionMethod ? provenance .1200

FILTER(? affectdDrugCUI in ( k4covide : C0000970 ) )}

Appendix A.3.2. Get all the interaction among the provided Drugs

PREFIX k4covid : <http :// r e s ea r ch . t i b . eu/ covid −19/vocab/>

PREFIX k4covide : <http :// r e s ea r ch . t i b . eu/ covid −19/ e n t i t y/>

SELECT ∗ {1205

{SELECT DISTINCT ? e f f e c to rDrugLabe l ? a f f ectdDrugLabe l ? con f idence ? provenance

WHERE {

? i n t e r a c t i o n k4covid : has Interact ingDrug ? e f f e c t o rDrug .

? i n t e r a c t i o n k4covid : has Interact ingDrug ? a f f ec tedDrug .

FILTER (? e f f e c t o rDrug != ? a f f ec tedDrug )1210

? e f f e c t o rDrug k4covid : hasCUIAnnotation k4covide : C0995188 .

? a f f ec tedDrug k4covid : hasCUIAnnotation k4covide : C0765273 .

k4covide : C0000970 k4covid : ann labe l ? e f f e c to rDrugLabe l .

k4covide : C0009214 k4covid : ann labe l ? a f f ectdDrugLabe l .

? i n t e r a c t i o n k4covid : con f idence ? con f idence .1215

? i n t e r a c t i o n k4covid : predict ionMethod ? provenance .

}} UNION
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{SELECT DISTINCT ? e f f e c to rDrugLabe l ? a f f ectdDrugLabe l ? con f idence ? provenance

WHERE {

? i n t e r a c t i o n k4covid : has Interact ingDrug ? e f f e c t o rDrug .1220

? i n t e r a c t i o n k4covid : has Interact ingDrug ? a f f ec tedDrug .

FILTER (? e f f e c t o rDrug != ? a f f ec tedDrug )

? e f f e c t o rDrug k4covid : hasCUIAnnotation k4covide : C0765273 .

? a f f ec tedDrug k4covid : hasCUIAnnotation k4covide : C0995188 .

k4covide : C0009214 k4covid : annLabel ? e f f e c to rDrugLabe l .1225

k4covide : C0000970 k4covid : annLabel ? a f f ectdDrugLabe l .

? i n t e r a c t i o n k4covid : con f idence ? con f idence .

? i n t e r a c t i o n k4covid : predict ionMethod ? provenance .

}}}
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