
Formulating Update Messages

Jon. Hallett�
Abstract

This paper presents a method with which we can gen-
erate update messages for use with Smalltalk’s depend-
ency mechanism. The basic idea is that any messages
which cause an object to change are forwarded to the
object’s dependants. The method is perfectly general
and future-proofs objects against changes in their de-
pendants.

Keywords: Dependencies, Object-Oriented Pro-
gramming, Smalltalk, Update Messages

1 Introduction

Smalltalk [1] provides a number of features that help
us structure our programs. One of the most interesting
of these features is the dependency mechanism, which
invites us to structure our programs in terms of objects
that depend on one another’s state. Using these de-
pendencies, we can write programs in which objects
react to the state changes of other objects.

This kind of program structure is useful in a vari-
ety of contexts, but it is especially useful in programs
that have a graphical user interface. Smalltalk’s own
user interface, with its model-view-controller (MVC)
[2] architecture, is held together by dependencies. MVC
uses dependencies to ensure that the graphics on screen
present an up-to-date view of the objects they depict.

In Smalltalk, the implementation of the dependency
mechanism is very simple: each object maintains a list
of its dependants and, when it changes, it sends a mes-
sage to every object in its list.

Despite this simplicity there are some subtleties to
consider. In particular, the exact form of the message
an object sends to its dependants is left open. There
are no conventions for this, so when programmers use
dependencies, they must decide, for each object indi-
vidually, what it needs to send to its dependants. This
is not always easy; it can be difficult for the program-
mer to tell what the dependants need to know in order
to react appropriately. It is certainly impossible for the�Department of Electronics and Computer Science, Uni-
versity of Southampton, Southampton, SO17 1BJ, UK, e-mail:
j.hallett@ecs.soton.ac.uk

programmer to predict what future dependants, added
as a system grows, will need to know.

To help programmers decide what messages objects
should send to their dependants, this paper presents
a method for formulating update messages for a given
object. Essentially the trick is to forward to the depend-
ants the message that caused the object they depend on
to change. This method is surprisingly flexible, and
perfectly general. It also has other benefits: for ex-
ample, it makes it easier for us to work out where
a given update message has come from, a significant
problem in large programs.

The rest of the paper is divided into four sections:
Section 2 describes Smalltalk’s dependency mechan-
ism; Section 3 presents the method for formulating up-
date messages; Section 4 discusses the generality of the
method; and Section 5 presents the conclusions.

2 Smalltalk’s Dependency Mechan-

ism

Smalltalk’s dependency mechanism is implemen-
ted by three messages: addDependent:, remove-
Dependent: and broadcast:. All three messages
are defined in the root class, Object, and are inherited
by all other classes.

These three messages are not the only ones provided
by the dependency mechanism: there are others, two of
which (changed: and update:) are discussed below.
The essence of dependencies, though, is implemented
by the messages addDependent:, removeDepend-
ent: and broadcast:, so our discussion will focus
on them.

Let us start by examining addDependent: and re-
moveDependent:. These two messages make and
break dependencies between objects. Dependencies
between objects are stored explicitly: conceptually,
though not in fact, every object in Smalltalk contains
a list of its dependants. The contents of this list are
controlled by addDependent: and removeDepend-
ent:. When sent to a object, addDependent: adds
its argument to the object’s list of dependants. Simil-
arly, removeDependent: removes its argument from
a object’s list of dependants.



At this point it is appropriate to introduce a new
piece of terminology. Although we have a word for de-
scribing objects that depend on other objects—they are
dependants—we do not have a word for objects that are
depended upon. In the rest of this paper such objects
will be referred to as models.

While addDependent: and removeDependent:
control how objects depend on one another, the real
work of dependencies is done by broadcast:. It is
using broadcast: that models notify their depend-
ants that they have changed state. When a model fin-
ishes executing a method that might have caused it to
change state, the programmer will arrange for it to send
itself a broadcast: with, as the argument, a message
selector.

When a model receives a broadcast: message, it
sends every object in its list of dependants a unary mes-
sage. The precise unary message sent is determined
by broadcast:’s argument, which must be a unary
message selector symbol. This message sent to the de-
pendants is known as an update message, and the form
of these update messages is the central concern of this
paper.

Actually, broadcast: is only one of a family
of messages. The others are of the form broad-
cast:with:, broadcast:with:with:, etc. These
messages are just like broadcast: except that, in-
stead sending a unary message to each dependant, they
send a keyword message with one or more actual ar-
guments. These more general forms are used more
often than simple broadcast:. For example, most
objects that use dependencies choose to broadcast up-
date: and one argument to their dependants, using
broadcast:with:. In fact, this is done so often that
class Object provides a method, changed:, as a short-
hand for a broadcast:with:. The implementation
of changed: is:

changed: anObject
self broadcast: #update:

with: anObject.

But, whether programmers choose to use broad-
cast: or to use changed:, Smalltalk gives no guid-
ance as to the contents of their arguments. These argu-
ments are actually very important: dependants rely on
these arguments as their only clue to how their mod-
els have changed. How dependants behave on finding
that their model has changed is often governed entirely
by the contents of these arguments.

Traditionally, programmers decide what information
a changed: or a broadcast: needs to convey by
inspecting the methods of the dependant objects that
will receive them. They find out what information a
dependant actually needs to perform its tasks, and then

arrange for the model to provide this, and only this,
information.

This ad hoc approach is not really satisfactory. It in-
troduces an unhealthy dependency between the code
of the model and the code of its dependants: if a de-
pendant is rewritten or if a new kind of dependant is
added to the program, then we might have to modify a
model’s code. We don’t want to have to do this. After
all, a model shouldn’t depend on its dependants at any
level.

But we don’t have to work like this. As we shall
see in the next section, we can design general-purpose
arguments to broadcast: and update: that can
support any conceivable dependant and can save us
from having to modify models if we ever modify their
dependants.

3 Formulating Update Messages

It is actually surprisingly easy to arrange for a given
model to generate general-purpose update messages.
The trick is to have the model forward the messages it
receives to it dependants.

There are several ways of forwarding messages in
Smalltalk. One possibility uses changed:; another
uses broadcast:.

Taking the first possibility, we can forward messages
to dependants by calling changed: with an argument
that contains the message received by the model. The
argument must, of course, fully describe the message:
this means that the argument must include not only the
message’s selector but also all its arguments, including
the implicit argument self.

It is convenient to bundle the elements of the message
into an Array. This array can then be used as the
argument to changed:.

Of course, not every message a model receives has to
be forwarded to its dependants. Only those that might
have caused the model to change have to be forwarded.
Methods that cannot possibly change the model’s state,
such as query methods, need not be forwarded.

As an example, consider this trivial implementation
of a stack:

instance variables: anArray

class methods

new
ˆsuper new initialize.

instance methods

initialize



anArray <- Array new.

push: anObject
anArray addLast: anObject.

pop
anArray removeLast.

top
ˆanArray last.

isEmpty
ˆanArray isEmpty.

Only two messages can cause stacks to change state—
push: and pop—so only these messages need to be
forwarded.

To forward push:s and pops, we modify their meth-
ods like so:

push: anObject
anArray addLast: anObject.
self changed: (Array with: #push:

with: self
with: anObject).

pop
anArray removeLast.
self changed: (Array with: #pop

with: self).

Here we can see the calls to changed: with the
arrays containing the messages.

As mentioned above, there is another obvious way
for models to forward their messages, this time using
broadcast:. Instead of sending each dependant the
message changed: with an argument containing the
forwarded message, we could arrange for a model to
send the dependants the forwarded message itself, us-
ing broadcast:. Actually, we can’t just send the for-
warded message directly, because, as mentioned before,
we need to make sure the dependants get the impli-
cit argument self as well as the ordinary arguments.
What we do instead is extend the message we want
to forward with an extra keyword, providing another
argument place with which we can pass self to the
dependants.

A convenient way of adding the extra keyword, with
a pleasant incidental benefit, is for us to extend the
message selector that we want to forward with the class
name of the model. Using this scheme on the stack
example, we would extend push: to stack:push:.
Then push:’s method would become:

push: anObject

anArray addLast: anObject.
self broadcast: #stack:push:

with: self
with: anObject.

The other message that needs to be forwarded, pop,
is slightly trickier to extend. This is because pop is
a unary message and so, rather than having an ex-
tra keyword grafted on, it actually needs to be made
into a keyword message, say stackPop:. Then, pop’s
method becomes:

pop
anArray removeLast.
self broadcast: #stackPop:

with: self.

The incidental benefit of this way of extending the
message selector is that it makes finding the source
of update messages very easy. With the name of the
originating class on the front of every update message,
it is obvious where they are coming from. In even a
medium-size system, this is a good thing.

4 Generality of the Method

Though simple, this method is perfectly general in the
sense that it provides us with a way of adding to any
model a set of update message capable of precisely
describing any possible change in any model to any
dependant.

This method and its generality are based on two basic
properties of objects. First, an object can only change
state because it has been sent a message asking it to
change; this is because only an object’s methods can
change it, and these methods are invoked only by mes-
sages. Second, an object accepts only a limited number
of messages, as defined by its protocol; this means we
can list all the messages that a given object can accept.

Using these to basic properties of objects, we can
see that it is possible to list all the messages that can
cause a given object to change. We will know that this
list is complete and that it completely characterises the
changes which the object may undergo.

The method presented in this paper uses this list to
determine which messages to forward to dependants.
In using this list we guarantee that the messages for-
warded to dependants completely describe the changes
of the models.

In fact, in this scheme, so much information is
provided to the dependants that they could, if they
wished to, duplicate the behaviour of their models.
They of course rarely need to, but the possibility is
reassuringly still there.



5 Conclusions

In this paper, we have seen a method for formulating
the update messages used in Smalltalk’s dependency
mechanism. The method produces update messages
that are completely general, and are suitable for use
with any dependant.

Of course, this technique is not limited to use only
in Smalltalk. The basic insight—that a model should
forward the messages it receives to it dependants—is
applicable in any environment. Smalltalk does, though,
make this scheme particularly easy to implement.

References

[1] Adele Goldberg and David Robson. Smalltalk-80:
The Language. Addison Wesley, 1989.

[2] Glenn E. Krasner and Stephen T. Pope. A cook-
book for using the model-view-controller interface
paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, August 1988.


