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Abstract

Coulomb friction is considered as a mechanical approach to diminish the structural

responses during the excitations. However, in case of severe oscillations supplementary

mechanisms are employed besides the friction to mitigate the destructive effects of the

vibrations in structures. Therefore, the main goal of this research is to develop a new Hybrid

System (HS) which is a parallel combination of Viscous Damping (VD) and Coulomb friction

for structures subjected to dynamic load. To achieve this goal, the effect of viscous damper

is embedded in the equation of motion which is proposed by Den Hartog for a Single-

Degree-of-Freedom (SDOF) Coulomb system, and has been extensively implemented for

past few decades. In the considered numerical example in this study, implementing the pro-

posed HDM in system resulted in decreasing the maximum displacement in the range of 1%

to 98% for different amounts of force amplitude and viscous damping ratios. Also, applying

the proposed HDM increased the time lag for about up to 24% for the frequency ratios

greater than 1. The developed hybridized system in this study can be utilised as new gener-

ation of Tuned Mass Damper (TMD) to improve their energy dissipating efficiency under

severe excitations.

Introduction

Various attempts have been made to understand the friction mechanism of sliding objects yet,

most of them were unsuccessful [1]. It is possible to encounter the friction force as an energy

dissipator in any type of industrial machinery or civil structure where the relative motion of

parts comes to appear [2, 3]. In structures, the energy dissipation can occur through structural

material or the component friction which is classified as the inherent damping. However, in

the case of severe excitations, the inherent damping is not capable to reduce the structural

response to an acceptable range. Therefore, there is a need to utilise supplementary damping

besides the inherent damping to overcome the shortcomings. Supplementary dampers are arti-

ficial energy dissipators that increase the total structural damping, reduce the structural

response to external vibrations and contribute to structure resistance against severe transla-

tions. Various damping mechanisms such as the viscous dampers [4], yielding dampers, mag-

netic dampers, tuned mass dampers, friction dampers [5] and tuned liquid dampers [6–8] are

frequently applied in the newly built structures.
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In addition, base isolators are recently introduced techniques to separate the main structure

from the base and reduce the negative effect of base motion on the superstructure [9–11].

Whatever the choice of damping system is, the friction performs the main role in diminishing

the structural responses through the energy dissipation and therefore, its effect on the dynamic

systems is required to be studied carefully.

The Coulomb system is a conventional mechanical model in which the mass is connected

to support by the aid of a massless spring and the kinetic friction is applied to the mass while it

is moving on a rough surface. The principal issue in oscillatory movement in systems with fric-

tion is to avoid getting into the sticking phase. Thus, to overcome this problem, it is crucial to

extract a new steady-state solution of the oscillatory system and set the force amplitude ratio

such that the system has a zero-duration sticking phase. However, due to the non-linearity of

the equation of the motion and bilateral behaviour of the Coulomb friction force finding the

steady-state response of the system is somehow complicated. In 1931, Den Hartog [12] did the

early research to find a response for the Coulomb systems. By taking some assumptions finally

he succeeded to obtain a useful steady-state response for SDOF vibratory system under exter-

nal harmonic load and constant frictional force.

The simplicity of his proposed method is due to not only its basic assumptions which are

good approximations of what happens in the reality but also its simple calculation steps. In the

study conducted by Den Hartog, the formulation of Maximum Displacement (MD) was

derived and the design procedure was continued with the aid of static methods, which are pop-

ular amongst civil engineers.

In addition, complementary studies have been carried out to find the response of the

dynamic systems by applying a variety kind of mathematical techniques, for instance, the

time-domain numerical integration methods [13] and the phase plane method [12, 14, 15]

were used in several types of research to investigate the behaviour of the dynamic models

equipped with energy dissipators and supplementary dampers. Also in this regard, H.-K Hong

et al. in 2000 [5], tried to calculate the Maximum Velocity (MV) beside the Maximum Dis-

placement (MD) in a Coulomb system subjected to the lateral loading. It is noticeable that H.-

K Hong et al. also proposed a straight solution for the steady-state response of the SDOF sys-

tems in presence of the Coulomb friction [16], however, because of its complicated nature it is

not frequently used by the structural designers. Then, in another recent research performed by

D. J. Riddoch et al. in 2020 [17], the structural parameters of an SDOF oscillatory system sub-

jected to friction and the base motion was found based on Den Hartog’s formulations [12].

Furthermore, in another research, the multi-mass system in the presence of the friction and

subjected harmonic loads has been interrogated by L. Marino et al. (2021) [18] and its steady-

state response has been calculated as well. Finally, M. Ziaee et al. (2022) carried out a study to

propose a new steady-state solution for hybrid systems [19], however, the method is replaced

by simpler calculations in the present research and can be handled more easily. Also, the pres-

ent research amends the Den Hartog formulation as in real structures always there is some

inherent damping which is ignored by Den Hartog’s method.

As discussed above, prior investigations were about the Coulomb systems and the necessity

to find an acceptable steady-state response for them. However, in the present work, the main

focus is on developing Den Hartog’s method into a dynamic hybridized system with the pres-

ence of both Coulomb friction and viscous damper. As the previously investigated dampening

systems were ineffective to mitigate the response of the structures under lateral loading,

throughout this research the structural designers would be able to seize the opportunity to

design the structures equipped with two energy dissipation mechanisms [20] which can ame-

liorate their performance under severe excitations. Also, the proposed system in this work can

be compared to TMDs as it shows the same behaviour and can be utilised as new generation of
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TMD in real structures in comparison to other carried out studies [21, 22]. TMDs and their

effectiveness are widely investigated by researchers [23, 24] as in the case of severe excitations

they can be optimized to suppress the structural vibrations [25–27]. Conversely, the HDM

demonstrates more resistant against mistuning in comparison with conventional TMDs [28].

Therefore, Den Hartog’s method is expanded to this proposed hybridized dynamic system

as it contains less calculation steps. By embedding the effect of the Viscous Damper (VD) in

the main equation of the motion, MD and its corresponding time lag can be found easily.

Besides finding the system parameters additional effort is done to calculate the the steady-state

response of the developed hybrid system. And finally, to avoid the sticking phase in the calcu-

lations a boundary limit for α is determined which can be considered as a handy design criteria

for the structural designers.

1. Developing a new hybrid damping mechanism

Nowadays, structures are frequently subjected to dynamic loads which in the long term will

have harmful effect on the structure’s stability and highly reduce operation life of structures.

Consequently, in order to protect structure against applied excitation, it is necessary to dissi-

pate vibration effect on structure. Therefore, the inherent damping performs a key role in

exhausting the excessive energy of structures caused by the external loads. However, in case of

severe excitations, the effectiveness of inherent damping does not seem enough to diminish

structure oscillations and therefore there is a need to ameliorate the efficiency of vibration con-

trol using the supplementary damping system such as dampers.

Therefore, as a solution, in this research an HDM is developed by implementing and com-

bining the supplementary dampers and Coulomb friction in structure. The proposed HDM is

capable to increase the amount of energy dissipation and consequently reduces the structural

response significantly.

Therefore Single-Degree-of-Freedom (SDOF) System is considered due to its simplicity to

prove the efficiency of the proposed HDM for structure and development of formulations

regarding structural response under applied excitations.

To commence the formulation of the SDOF system’s parameters, the schematic model of

the proposed hybrid system is sketched up as shown in Fig 1.

In where, P0 and ωf denote the amplitude and angular frequency of the externally applied

load respectively and t points to elapsed time. Other parameters are m, c and k where the first

Fig 1. Developed hybrid damping mechanism in schematic view.

https://doi.org/10.1371/journal.pone.0290248.g001
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one represents the mass of the system, the second one shows the damping coefficient and the

last one is the stiffness of the mass-less spring. Also, by assuming that the SDOF structure is

oscillating on a horizontal surface, the vertical load component applied to the hybrid system

and perpendicular to the direction of the motion (N) is equal to the product of mass by the

gravity acceleration. Multiplying the N by kinetic friction coefficient μk results in fd which is

known as the kinetic friction force or Coulomb friction. In this case, the governor equation of

the motion for the proposed SDOF system with the Hybrid Damping Mechanism (HDM) can

be formed as:

m€x þ c _x þ kx ¼ P0sinof t � fd ð1Þ

In which _x and €x designate velocity and acceleration which are the first and second deriva-

tives of displacement with respect to time respectively. Then to formulate the steady-state

response of the proposed SDOF system a zero-duration sticking cycle of motion is considered

and it is presumed that the phase plane curve (x; _x) has a symmetrical form as illustrated in

Fig 2. Therefore, it seems sufficient to consider only one half of the curve, for instance, the

lower branch which is similar to Den Hartog’s assumption [2].

To begin the formulation, the steady-state solution of the equation of motion is supposed to

be similar to one presented by Den Hartog in 1931 [2]. However, to develop the results for the

proposed hybrid system the effect of VD is embedded in the principal equation of the motion

of the SDOF system

So, after the differential equation of the motion is solved for the proposed SDOF hybrid sys-

tem and the steady-state response is found. The new form of steady-state response passes

Fig 2. The schematic cycle for non-sticking motion.

https://doi.org/10.1371/journal.pone.0290248.g002
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throughout four specific points and unlike the H.-K Hong et al.’s method it is hypothesized

that the maximum velocity (MV) occurs on the _x axis and so there is not any deviation and

time lag attributed to it.

According to Fig 2, the displacement and velocity for different time steps are as:

ð0;þV0Þ@t1; ðD0; 0Þ@t2; ð0; � V0Þ@t3; ð� D0; 0Þ@t4 ð2Þ

In which the time steps are defined using the below formula:

t4 ¼ t2 þ p=of ð3Þ

By applying the boundary conditions to the derived steady-state solution the finalised form

of the steady-state response of the hybridized SDOF system can be obtained. This derived solu-

tion is similar to the result achieved by Den Hartog in 1931 [2]. However, there are some dif-

ferences between Den Hartog’s solution and the proposed solution in this research which are

attributed to the presence of the viscous damper in the SDOF system.

The developed damping mechanism can be also utilised in the structures as Tuned Mass

Dampers (TMD) and capable to resolve the main drawback of TMDs which is the large ampli-

tude of the motion for the tuned auxiliary mass.

2. Shaping the equation of motion of the hybrid system for the lower

branch

For this purpose, by selecting the lower path of Fig 2 for the time step t2�t�t4, the steady-state

formula of the hybrid SDOF system in the clockwise direction takes the form of:

xðtÞ ¼ Acosðof t þ �Þ þ Bþ e� xontðasinodt þ bcosodtÞ ð4Þ

In which;

A ¼
P0

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � b
2
Þ

2
þ ð2xbÞ

2

q ; B ¼
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � b
2
Þ

2
þ ð2xbÞ

2

q

a
; a ¼

P0

þfd
ð5Þ

b ¼
of

on
; on ¼

ffiffiffiffi
k
m

r

; od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x
2

q

; x ¼ 2mon ð6Þ

Where B can be expressed as static displacement of the friction force, β is the frequency

ratio and ωn is the frequency of the main structure, ωd is the frequency of the HDS, ξ represents

the damping ratio which is the total damping (inherent damping plus supplementary VD), t is

time, ϕ is phase shift and a and b are the constant parameters.

Now it is needed to take the first derivative of displacement regarding time to find the

velocity. Therefore, the velocity can be arranged as:

_xðtÞ ¼ � Aof sinðof t þ �Þ þ e� xontðaodcosodt � bodsinodtÞ � xone
� xontðasinodt

þ bcosodtÞ ð7Þ

t2 � t � t4

By taking into account the below initial conditions, applying them to the velocity equation

and making some new assumptions, four equations with four unknowns will be obtained.

Solving four equations simultaneously leads to the final results. The procedure could be
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described as:

xðt2Þ ¼ þD0; xðt4Þ ¼ � D0; _xðt2Þ ¼ 0; _xðt4Þ ¼ 0; ð8Þ

Then knowing that normally ξ�1, then ξ2ffi0. So, the following equations can be achieved:

on ¼ od; b ¼ bd !
of

on
¼
of

od
; eþxonðt3 � t2Þ ffi e� xonðt2 � t1Þ ð9Þ

Now by introducing the foregoing boundary conditions to Eqs (4) & (7), taking π1 = π/β,

and substituting t4 = t2+π/ωf in Eq (8), the below equations arise:

xðt2Þ ¼ Acosðof t2 þ �Þ þ Bþ e� xont2ðasinont2 þ bcosont2Þ ¼ þD0 ð10Þ

xðt4Þ ¼ � Acosðof t2 þ �Þ þ Bþ e� xont2ðasinðont2 þ p1Þ þ bcosðont2 þ p1ÞÞ ¼ � D0 ð11Þ

_xðt2Þ ¼ � Aof sinðof t2 þ �Þ þ e� xont2ðaoncosont2 � bonsinont2Þ � xone
� xont2ðasinont2

þ bcosont2Þ
¼ 0 ð12Þ

_xðt4Þ ¼ Aof sinðof t2 þ �Þ þ e� xont2ðaoncosðont2 þ p1Þ � bonsinðont2 þ p1ÞÞ

� xone
� xont2ðasinðont2 þ p1Þ þ bcosðont2 þ p1ÞÞ

¼ 0 ð13Þ

Considering the above-mentioned equations and solving them together, results in finding

the basic response parameters of the proposed hybrid SDOF system.

3. Finding the maximum displacement and its time lag for the structures

equipped with HDM

To proceed with design for dynamic loads, it is needed to formulate MD of the single-degree-

of-freedom system equipped with the new hybrid damper. As mentioned earlier, the equations

are established for the lower branch of Fig 2.

Rearranging Eqs (10) and (11) can result in the following statements:

Acosðof t2 þ �Þ ¼ þD0 � B � e� xont2ðasinont2 þ bcosont2Þ ð14Þ

Acosðof t2 þ �Þ ¼ þD0 þ Bþ e� xont2ðasinðont2 þ p1Þ þ bcosðont2 þ p1ÞÞ ð15Þ

and confronting Eqs (14) and (15) by using the trigonometric rules will result in an important

equation that contributes a lot to getting to the final results:

e� xont2 asin ont2 þ
p1

2

� �
cos

p1

2

� �
þ bcos ont2 þ

p1

2

� �
cos

p1

2

� �� �
¼ � B ð16Þ

or in another form:

e� xont2 ¼
� B

asin ont2 þ
p1

2

� �
cos p1

2

� �
þ bcos ont2 þ

p1

2

� �
cos p1

2

� �� � ð17Þ

By following the same steps for Eqs (12) and (13) the below equations are reachable:

Absinðof t2 þ �Þ ¼ e� xont2ðacosont2 � bsinont2Þ � xe
� xont2ðasinont2 þ bcosont2Þ ð18Þ
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and simplifying Eq (18) leads to:

Absinðof t2 þ �Þ ¼ e� xont2ðða � xbÞcosont2 � ðxaþ bÞsinont2Þ ð19Þ

Again, at this moment the Eq (13) is recalled. As it is apparent by changing the sides in this

equation the below relation is obtained:

Absinðof t2 þ �Þ

¼ � e� xont2ðacosðont2 þ p1Þ � bsinðont2 þ p1ÞÞ þ xe
� xont2ðasinðont2 þ p1Þ þ bcosðont2

þ p1ÞÞ ð20Þ

and reshaping Eq (20) transforms it to:

Absinðof t2 þ �Þ ¼ � e
� xont2ðða � xbÞcosðont2 þ p1Þ � ðxaþ bÞsinðont2 þ p1ÞÞ ð21Þ

At this time employing Eqs (19) and (21) simultaneously yields to:

acos ont2 þ
p1

2

� �
� bsin ont2 þ

p1

2

� �

asin ont2 þ
p1

2

� �
þ bcos ont2 þ

p1

2

� � ¼ x ð22Þ

or

tan ont2 þ
p1

2

� �
¼

a � xb
xaþ b

ð23Þ

Referring to the Eqs (14) and (15) and doing the summation of sides reveals that:

Acosðof t2 þ �Þ ¼ þD0 þ e� xont2 acos ont2 þ
p1

2

� �
sin

p1

2

� �
� bsin ont2 þ

p1

2

� �
sin

p1

2

� �� �
ð24Þ

or in a simplified form, it can be stated as:

Acosðof t2 þ �Þ
sin p1

2

� � ¼
þD0

sin p1

2

� �þe� xont2 acos ont2 þ
p1

2

� �
� bsin ont2 þ

p1

2

� �� �
ð25Þ

Introducing Eqs (17) and (22) to Eq (25) and doing mathematical simplifications yields the

following statement which is revealed to be the fundamental equation to derive the subsequent

formulas for the hybrid SDOF system.

Acosðof t2 þ �Þ
sin p1

2

� � ¼
þD0

sin p1

2

� � �
xB

cos p1

2

� � ð26Þ

or

Acos of t2 þ �
� �

¼ þD0 �
xBsinp1

1þ cosp1

ð27Þ

On the other hand, by adding Eq (19) to Eq (21) it can be obtained that:

Absinðof t2 þ �Þ
xaþ bð Þsin p1

2

� � ¼ þe� xont2 tan ont2 þ
p1

2

� �
sin ont2 þ

p1

2

� �
þ cos ont2 þ

p1

2

� �� �
ð28Þ
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Now by using Eq (23) and replacing it into Eq (28) it is observed:

cos ont2 þ
p1

2

� �
¼

e� xont2 xaþ bð Þsin p1

2

� �

Absinðof t2 þ �Þ
ð29Þ

sin ont2 þ
p1

2

� �
¼

e� xont2 a � xbð Þsin p1

2

� �

Absinðof t2 þ �Þ
ð30Þ

To further the process some trigonometric rules are required. As a basic rule it is known:

sin2 ont2 þ
p1

2

� �
þ cos2 ont2 þ

p1

2

� �
¼ 1 ð31Þ

So, by substituting Eqs (29) and (30) in Eq (31) the following formula is achievable:

e� xont2 ¼
Absinðof t2 þ �Þ

sin p1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ x
2
Þða2 þ b2Þ

q ð32Þ

Then new types of formulas are ensued by replacing Eq (32) in Eqs (29) and (30) as what

follows below:

cos ont2 þ
p1

2

� �
¼

ðxaþ bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ x
2
Þða2 þ b2Þ

q ð33Þ

sin ont2 þ
p1

2

� �
¼

ða � xbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ x
2
Þða2 þ b2Þ

q ð34Þ

It is instructive to know that Eqs (32), (33) and (34) can convert Eq (16) to:

Absin of t2 þ �
� �

¼
� ð1þ x

2
ÞBsinp1

1þ cosp1

ð35Þ

By using Eq (35) and replacing it into Eq (32) a new formula is obtained as what is seen in

Eq (36). The recently derived equation is an important benchmark to calculate the maximum

displacement of the proposed hybrid mechanism (Δ0) and its corresponding time (t2). In the

below statement the Eq (36) is represented:

e� xont2 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ x
2
Þ

q

B

cos p1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ b2Þ

p ð36Þ

To calculate the maximum displacement of the hybridized SDOF system (Δ0), it is necessary

to square both sides of Eqs (27) and (35). Then by doing the summation of the squared equa-

tions the maximum displacement of the developed hybrid system can be drawn as what fol-

lows:

A2 ¼
� ð1þ x

2
ÞBsinp1

1þ cosp1

� �2

þ þD0 �
xBsinp1

1þ cosp1

� �2

ð37Þ
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or with rearranging Eq (37) in the other way, it can be explained as:

D0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 �
� ð1þ x

2
ÞBsinp1

bð1þ cosp1Þ

� �2
s

þ
xBsinp1

1þ cosp1

� �

ð38Þ

By dividing the Eq (38) to B and A which are the displacement due to the Coulomb friction

force and the dynamic displacement of the hybrid SDOF system respectively and with the aid

of the Eq (5) two new dimensionless terms are introduced below:

D0

B
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Also, from the Eqs (27) and (35) the time corresponding to maximum displacement (Δ0),

can be described as:

t2 ¼ �
�

of
þ

1

of
arccos

þD0

A
�

xBsinp1

Að1þ cosp1Þ

� �

ð41Þ

or

t2 ¼
p

2of
�
�

of
þ

1

of
arccos

� ð1þ x
2
ÞBsinp1

Abð1þ cosp1Þ

� �

ð42Þ

As seen above, the maximum displacement of the hybrid SDOF system described in Eq (38)

is transformed to two dimensionless forms referred to as Dynamic Amplification Factor

(DAF) for SDOF equipped with hybrid damper under external loading as expressed in Eqs

(39) and (40). From these mentioned equations, it is seen that the ratios of maximum displace-

ment of the proposed hybridized system (Δ0) to the displacement caused by the Coulomb fric-

tion and to the dynamic displacement of the SDOF system merely with VD, will change with

variation in dimensionless parameters such as α, β and ξ.
Actually, the main aim was to focus on parameters that are effective on dynamic amplifica-

tion factor. In conventional TMD system, damping ratio and frequency ratio are the most

effective ones. However, when it comes to the developed HDM, beside the pre-mentioned

parameters, the Coulomb friction plays an important role in fluctuating of dynamic amplifica-

tion factor. The effectiveness of the Coulomb friction varies by change of mass and any change

in the mass of system will result new amounts of friction (resistant) force and subsequently

force amplitude ratio. Thus, damping ratio, frequency ratio, mass of structure (needed to find

friction force and force amplitude ratio respectively) are the considered parameters to evaluate

the behaviour of new developed damping system.

Accordingly, as an illustration of the change in the displacement amplification factor (Δ0/

A) regarding α, β and ξ a particular numerical example is applied. By taking the mass of the

SDOF structure (m) 50,000 kg, the Coulomb friction force (fd) = 15,000 N and external force-

frequency (ωf) = 2π (rad/s), the DAF graphs for the SDOF fortified with HDM for various

amounts of α, β and ξ are represented in Fig 3. As it is observed in the graphs, variation of

DAF for SDOF with new hybrid damping mechanism is classified into three main ranges of

frequency ratio (β) as what is explained below:
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i. Frequency ratio 0<(β)<0.5

As is perceived from Fig 3, for this β range the combined effect of ξ and α on the reduction of

the Displacement Amplification Factor (DAF) is not tangible, however, this effect is more

observable and rises after β = 0.5. On the other hand, in this range of frequency ratios, it can be

seen that the curves related to different hybrid damping ratios have a horizontal intersection

with the zero DAF line.

Fig 3. (Δ0/A) for the hybrid SDOF system subjected to harmonic load for various amounts of α, β and ξ. DAF (a):

Force amplitude ratio (α) = 2. (b): Force amplitude ratio (α) = 3.5. (c): Force amplitude ratio (α) = 5.

https://doi.org/10.1371/journal.pone.0290248.g003
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It is interpreted that the SDOF dynamic system equipped with the HDM confronts conse-

cutive sticking phases during some particular frequency ratio intervals. It is evident from the

graphs as the force amplitude ratio (α) decreases the length of the sticking intervals increases,

this means that by reducing the force amplitude ratio the Coulomb friction becomes more

effective in comparison to external lateral load and tends to control the system. However, the

sticking phase is not favourable for structural designers and therefore this range of frequency

ratio is not considered in dynamic designs.

ii. Frequency ratio 0.5<(β)< inflection point

By inflection point, it is meant that the graphs change their trends. Normally for the hybridized

SDOF, this turning point occurs after β = 1. In this particular example, for the α equal to two

the inflection happens at the frequency ratio of 1.3, however, for the α’s of 3.5 and 5, this point

is shifted back to the frequency ratios of 1.15 and 1.05 respectively. Therefore, it is concluded

that the α performs a significant role in changing the position of the inflection point.

The tangible range to evaluate the effect of force amplitude ratio is in the range of 2 to 5.

For less than 2 the amount of friction force gets closer to amplitude of the external load and

there is the possibility that system confronts sticking phase. Also, for ratios greater than 5 the

effect of friction force is negligible, and the developed HDM behaves as non-frictional system.

Therefore, for better illustrations of plots the range of 2 to 5 is chosen.

By considering the frequency ratios between 0.5 and the inflection point it is evident that

both ξ and α have a noticeable effect on reduction of the Displacement Amplification Factor

(DAF). It is comprehended that increasing the ξ and α results in the higher displacement

responses due to external loading and consequently for a constant Coulomb friction force

DAF increases as well. Thus, in this case, the behaviour of the SDOF system subjected to har-

monic loads and with the Coulomb friction resembles the SDOF systems without friction and

therefore DAF is almost 1 in this range of β.

However, by magnifying the effect of friction force the effect of the proposed hybris system

is more perceivable and the Displacement Amplitude Factor (DAF) decreases subsequently

and locates below 1. As the frequency ratio gets closer to 1, the frequency of external load

becomes close to the natural frequency of the proposed SDOF and technically the resonance

occurs. At this time the minimum ξ needed to control the structural response depends on the

α since as mentioned earlier, reducing the α engender the reduction in DAF.

For instance, in this particular example, a 5% damping ratio is required to keep the DAF at

0.6 for the α ratio of 2, however, to obtain the same DAF it is necessary to increase the damp-

ing ratio to 0.1 and 0.15 for force amplitude ratios of 3.5 and 5 respectively. Therefore, the use

of the proposed HDM is meaningful as the inherent damping ratio is 2% and 5% for the steel

and concrete structures respectively and as a consequence, it is not sufficient to curb the struc-

tural displacements during the severe excitations.

If the SDOF oscillatory system is not equipped with a supplementary damping system like

the proposed one in this research, as the frequency ratio stands near 1 (resonance case) the

structure experiences uncontrollable drifts and it contributes to fatigue in structural compo-

nents and is followed by damage and collapse of the structure. Applying the developed HDM

to the SDOF system decreases the maximum displacement between 1% to 98% for different α
and VDS damping ratios.

iii. β> frequency of the inflection point

Also from Fig 3, it is observed that when it comes to frequency ratios (β) greater than the

inflection point increasing the damping ratio of the hybrid system (ξ) neutralizes the positive
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effect of the increment in the force amplitude ratio. In another word, increasing the damping

ratio beyond the inflection point leads to a larger DAF. Therefore, the inflection point is called

the economic design point and during the design procedure, the natural frequency of the main

structure can be set such that the frequency ratio becomes equal to the inflection point ratio.

Indeed, DAF at the inflection point is still greater than the DAF at resonance but as the real

displacement in the structure is lesser than the displacement in the resonance case, it is

referred to as the economic design point. It is instructive to remind that the DAF (Δ0/A) shows

the amount of reduction in displacement of hybrid SDOF in comparison to the displacement

of the non-hybrid systems.

Now, this is the time to deal with the time lag of the maximum displacement. From Eq (42)

it is observable that time lag (ωft2) is a function of ϕ, α, β and ξ, However, by ignoring the effect

of phase shift (ϕ) it would be only a function of three dimensionless parameters (α, β and ξ).
By multiplying e Eq (42) in ωf and doing some simplification the following statement is

obtained:

of t2 ¼
p

2
� �þ arccos

� ð1þ x
2
ÞBsinp1

Abð1þ cosp1Þ

� �

¼
p

2
� �þ f a; b; xð Þ ð43Þ
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2
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By assuming the numerical example introduced earlier the variation of time lag for the

hybrid SDOF system regarding various amounts of frequency ratio (β), damping ratio (ξ) and

force amplitude ratio (α) can be seen as what is illustrated in Fig 4.

From Fig 4 and its illustrated graphs the following findings can be derived:

1. Utilizing the Hybrid Damping Mechanism (HDM) contributes to decreasing the time lag

of the Maximum Displacement (MD) for the frequency ratios in the range of 0.5 to 1. It can

be interpreted that due to the increase in the Coulomb friction force the velocity of the

hybridized SDOF decreases. On the other hand, the maximum displacement decreases as

well, yet the rate of decrease in the maximum displacement is lesser in comparison to the

velocity decrement. Therefore, the time lag shows a descending trend. In this particular

example installing the proposed HDM on an SDOF system resulted in a decrement in time

lag in the range of 0 to 36%.

2. Implementing the proposed HDM on the SDOF dynamic system increases the time lag for

the frequency ratios greater than 1. Although by applying the HDM the maximum displace-

ment decreases, the velocity decreases at a lesser rate and consequently time lag rises. In the

previous example, the amount of increment is between 0 to 24%.

3. A higher damping ratio (ξ) results in a lower or greater time lag depending on the frequency

ratio, however, the effect of the damping ratio is more sensible for β between 0.85 to 1.15.

4. Without any change in the amplitude of the external force as the Coulomb friction rises,

the force amplitude ratio decreases and therefore the friction controls the hybrid SDOF sys-

tem. As a consequence, the length of the sticking phases in the graphs (horizontal intersec-

tion of graphs with frequency ratio axis) increases with the increase in the friction force.
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Fig 4. Time lag of the maximum displacement (ωft2) for the proposed hybrid SDOF system for various amounts

of t α, β and ξ. (a): Force amplitude ratio (α) = 2. (b): Force amplitude ratio (α) = 3.5. (c): Force amplitude ratio (α) =

5.

https://doi.org/10.1371/journal.pone.0290248.g004
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5. For all amounts of the α, the time lag locates between 0 to 4.64. It implies that the total

range of the time lag is the same for various α’s, however, by decreasing α the SDOF system

confronts more sticking intervals.

6. The minimum time lag occurs at frequency ratios close to resonance (β = 1). At this stage,

the mass reaches its maximum energy, then it leads to experience of the maximum velocity

as well. Therefore, the time lag corresponding to the maximum displacement is minimum

at the resonance stage since the mass reaches to the peak velocity.

7. In the sticking phase as the hybrid SDOF system stops its movement, neither the maximum

displacement nor the time lag can be defined and therefore there is not any amount on the

graphs that can be attributed to them.

8. For all damping sudden sharp changes has been observed at β = 0.2. However, in these

graphs since the colour of damping ratio equal to 0.1 is dominant, it seems that it only hap-

pens for ξ = 0.1. In fact, for frequency ratios between 0 to 0.4, there are some fluctuations in

amplification factor because system is confronted with stick and release conditions fre-

quently, due to presence of Coulomb friction. This sudden increment is also a result of

experiencing the sticky phase and the subsequent release state.

4. Obtaining the coefficients of the steady-state response of the hybrid

system (a and b)

In this section, the two coefficients for the steady-state response of the hybrid SDOF system

are derived. Then by finding the coefficients, a complete steady-state solution for the SDOF

system equipped with HDM can be presented, however, to obtain the mentioned coefficients

some mathematical calculations are needed.

Replacing Eq (27) into Eqs (14) and (15), results in Eqs (45) and (46) with two unknowns.

By solving the Eqs (45) and (46) for two unknowns (a and b), the values of a and b can be

determined respectively. The procedure is explained as:

e� xont2 asinont2 þ bcosont2ð Þ ¼ xBtan
p1

2
� B ð45Þ

e� xont2 asinðont2 þ p1Þ þ bcosðont2 þ p1Þð Þ ¼ � xBtan
p1

2
� B ð46Þ

From Eq (45) b is calculated and expressed versus a:

b ¼
eþxont2 xBtan p1

2
� B

� �
� asinont2

cosont2
ð47Þ

and introducing Eq (47) into Eq (46) reveals the value of a as:

a ¼ eþxont2
� Bsinðont2 þ p1Þ

cos p1

2

�
xBcosðont2 þ p1Þ

cos p1

2

� �

ð48Þ

From Eq (48) it is evident that a is a function of the below parameters:

a ¼ f ðx; a; b; �;BÞ ð49Þ
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Repeating the same steps for b leads to the following statement:

b ¼ eþxont2
� Bcosðont2 þ p1Þ

cos p1

2

þ
xBsinðont2 þ p1Þ

cos p1

2

� �

ð50Þ

Again, it is seen that b is also a function of the five parameters:

b ¼ f ðx; a;b; �;BÞ ð51Þ

To verify the effect of ξ, α and β on the coefficients of the steady-state response of the hybrid

system, it is assumed that ϕ = 0 and also B is a constant value.

Therefore, by considering the aforesaid assumptions the Eqs (49) and (51) reduce to:

a ¼ f ðx; a;bÞ ð52Þ

b ¼ f ðx; a;bÞ ð53Þ

In what follows the variation of the response coefficients (a and b) with the change in the

amounts of damping ratio, force amplitude ratio and frequency ratio (ξ, α and β) is illustrated.

As is seen in Fig 5 the following conclusions regarding the coefficient’s graphs can be

drawn:

a. As the amplitude ratio of force increases (α) the range of β in which the possible amounts

for the steady-state response coefficients (a and b) can be found increases as well. In this

particular example, the minimum range belongs to α of 2 which is located between β of 0.5

to 1.4.

b. As it is evident there is not any amount that can be allocated to a and b for frequency ratios

lesser than 0.5. This is attributed to the sticking phase that occurs in this range of frequency,

therefore the SDOF hybrid system stops oscillating and there is not any steady-state response

definable for the system

a. Increasing the amplitude ratio of force due to a decrease in the Coulomb friction results in

a lower magnitude of the coefficient a, however, meanwhile, the coefficient b has an ascend-

ing trend and reaches 36 and 37 for force amplitude ratios of 3.5 and 5 respectively.

b. The effect of the damping ratio (ξ) on the variation of the response coefficients (a and b) is

more tangible for the frequency ratios in the range of 0.85 to 1.15.

5. Determining the minimum required force amplitude ratio to avoid the

getting stuck in the SDOF systems equipped with HDM

During the derivation of the formulas for the steady-state response of the hybrid SDOF sys-

tems, the basic assumption is that the oscillatory motion has zero-duration stick phases. It

means to imply that the back-and-forth motion will not trap in the sticking phase. To, fulfil

this condition it is needed to set the amplitude of the external load in a way that the mass con-

stantly oscillates in the sliding phase. Therefore, it is obvious that the following equation must

be satisfied:

jP0sinof t � kxðtÞj � fd ð54Þ

From the oscillation trend, it is known that the most critical condition occurs at time inter-

vals t2 and t4, respectively. At these points, the system velocity becomes zero and if the
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externally applied force is less than the restoring force inserted by the spring, the stick phase

will happen. So, recasting Eq (68) for time t2 leads to:

jP0sinof t2 � kxðt2Þj � fd ð55Þ

Knowing that x(t2) = Δ0 and by introducing Eqs (38) and (42) to the Eq (55) the following

statement can be shaped:

�
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Fig 5. Variation of the coefficients of the steady-state response of the proposed hybrid SDOF system for various amounts of α, β and ξ. (a): Force

amplitude ratio (α) = 2 and B = 0.3. (b): Force amplitude ratio (α) = 2 and B = 0.3. (c): Force amplitude ratio (α) = 3.5 and B = 0.3. (d): Force amplitude ratio

(α) = 3.5 and B = 0.3. (e): Force amplitude ratio (α) = 5 and B = 0.3. (f): Force amplitude ratio (α) = 5 and B = 0.3.

https://doi.org/10.1371/journal.pone.0290248.g005
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Then the Eq (56) is simplified and the boundary line for α will be gained. This boundary

line will assist structural engineers to avoid the sticking in their calculations and is used as a

handful guideline in dynamic analysis of the SDOF systems reinforced with HDM.

By assuming a particular case in which ϕ = 0, a simpler form of Eq (56) can be extracted as:
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and by replacing A and B from Eq (5), the force amplitude ratio boundary can be defined as:
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Then Eq (59) is solved for different frequency and damping ratios (β and ξ) and the results

are illustrated by the graphs as shown in Fig 6.

As is seen in Fig 6 by ignoring the fluctuations of curves in the frequency range of 0 to 0.5

and separating the rapid changes that occur at resonance (β = 1) the overall trend of α regard-

ing the variation of β is linear. Knowing that the amounts of force amplitude ratio for fre-

quency ratios of 0.5 and 2 are 0.6 and 8.4 respectively, the linear relation can be described as

what follows:

a ¼ 5:2� b � 2 ð60Þ

Therefore, the Eq (59) is converted to a simple for as represented in Eq (60). By choosing

the frequency ratio and consequently the force amplitude ratio (α) greater than the amounts

obtained from Eq (60) the designing procedure of the structure will be arranged in a way that

the vibrating system will not experience any sticking phase. For force amplitude ratios lesser

than amounts of Fig 6(a) the hybridized SDOF system faces sticking intervals. Even at the reso-

nance if some viscous damping ratio is added to the system the external loading will not be

enough to neutralize the Coulomb friction and the system stops oscillating and the HDM is

not effective anymore, therefore, adding the HDM in the Coulomb systems must be carried

out with the full attention to avoid negative consequences.

Also, for 1/α the Eq (61) can be derived. In some cases, using 1/α can be easier as its range

is located between 0 to 0.9 in this particular example. By dividing 1 to both sides of Eq (60) it is

observed:

1

a
¼

1

5:2� b � 2
ð61Þ

Eqs (60) and (61) are the borderlines of the amplitude ratio of the force and its inverse

respectively and eventually, they can be used as guidelines for structural designers during the

designing process. The illustrated curves will aid designers to select the frequency ratio such

that the minimum displacement and the non-sticking condition are satisfied simultaneously.

It is useful to remind that applying the Hybrid Damping Mechanism (HDM) to the SDOF
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systems must be done carefully to have the best efficiency and the least sticking intervals at the

same time.

6. Conclusion

In this research, a hybrid damping mechanism for structures is introduced. To evaluate the

dynamic behaviour of the proposed Hybrid Damping Mechanism (HDM) under the external

harmonic loading, the effect of the VDS was implemented in the principal equation of the

motion and formulations for structural response were developed for the SDOF system as a

basic and simple structure.

By solving the equation of motion for boundary conditions the main response parameters

such as the Maximum Displacement (MD) and its corresponding time lag (the radian elapsed

by the structural mass to reach the maximum displacement) were formulated accordingly.

Fig 6. Boundary lines for α and its inverse (1/α) versus β. (a): Borderlines’ graphs for force amplitude ratio (α). (b):

Borderlines’ graphs for the inverse of force amplitude ratio (1/α).

https://doi.org/10.1371/journal.pone.0290248.g006
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Besides the aforesaid parameters, coefficients of steady-state response were calculated as well.

A numerical example was applied to the derived formulations of MD and its time lag. The

analysis indicated that employing the HDM in the SDOF system results in decreasing the MD

in the range of 1% to 98% for various force amplitude and hybrid damping ratios.

In case of β between 0 to 0.5, the effects of ξ and α on reducing the MD or the Displacement

Amplification Factor (DAF) are not tangible, however, these effects are more observable at

β�0.5. Also, the SDOF faces several non-zero duration sticking phases and therefore the appli-

cation of HDM must be done carefully at this frequency range.

Considering the frequency ratios between 0.5 and the inflection point (the point at which

the DAF graphs change their trends) it is concluded that both α and ξ have a significant impact

on diminishing the DAF. On the other hand, in the pre-illustrated numerical example, increas-

ing α shifts the position of the inflection point toward β = 1.

In a frequency ratio greater than the inflection point increasing damping has a reverse

influence on the DAF and increases it. Thus, the inflection point is the optimal design point

and is referred to as the economic design frequency ratio.

Changing ξ results in a lower or greater time lag depending on the tuning frequency ratio.

The impact of ξ in varying the time lag and the steady-state response coefficients (a and b) is

more observable for the frequency ratios between 0.85 to 1.15.

Also, the boundary line was calculated for amplitude ratio of the force to avoid sticking.

The exact formulation is somehow complicated; however, it can be approximated by a linear

polynomial. The derived formulas and the corresponding graphs can be utilised as guidelines

for structural designers during the dynamic designing procedure.

The developed hybrid SDOF system in this carried out research can be considered as a

more efficient mechanism alternative to the conventional system for the Tuned Mass Damper

(TMD) with high capability to decrease the amplitude of the motion for the auxiliary mass

which is the main drawback of the TMDs.

Applying the developed damping mechanism in this study contributes to higher reduction

of amplitude of motion through the function of the viscous damper to dissipate vibration

beside the action of the Coulomb friction to generate resistant force against the movement.

Since the performance of viscous damper enhances by applied friction, therefore action of the

proposed hybrid mechanism is noticeable specially in high velocity excitations, where the con-

ventional system may experience excessive motions.

And finally, the proposed HDM mechanism and derived formulations can be expanded to

the Multi-Degree-of-Freedom (MDOF) systems to implement in more structural applications.

In order to extend the SDOF system to MDOF, since the mass corresponding to each floor is

connected to the other floors using spring and damping components, therefore the equation

of motion also is expanded to the MDOF by employing new terms. Accordingly, the mass of

each floor will have a new maximum displacement and its corresponding time lag. Therefore,

more unknown parameters appear in the equation of motion, and it is a little bit more compli-

cated to solve multi-uncoupled equations to find required parameters in comparison to SDOF

system.
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