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Abstract: This study presents a general framework for the control of unknown dynamic systems
with unknown input delay. A concise output feedback control system is structured with tuning
stabilization/dynamic response by an output feedback low gain, removing steady state error against
step reference with a feedforward gain. A series of stability analyses are presented for the designed
control systems, (1) a gain/phase margin theorem is proposed for stability analysis by regulating
the feedback gain, and (2) a stability theorem based on rational function approximation of the
time delay is presented for dealing with the transcendental polynomial characteristic equations,
which is equivalent to the analysis from the algebraic polynomial characteristic equation. Both
approaches give coherent results for stability analysis by regulating the feedback gain. The approaches
are applicable to nonlinear systems, which are linearizable in the neighborhood of the operating
points. The low complexity of the controllers does not require hard analytical derivation/numerical
calculations to produce an acceptable control performance for the considered systems. Several
representative simulation case studies provide demonstrations of computational experiments against
those analytically derived and guidance for potential applications.

Keywords: input delay systems; non-predictive and model-free control; low gain control; low
complexity controller; stabilization

1. Introduction

It has been well established that input delay is a critical challenge for the design of
closed loop control in dynamic systems, and concise and effective solutions have value
in academic research and applications [1,2] Mathematically, such systems are classified as
functional differential equations (FDEs). They belong to infinite dimensional problems,
when compared with ordinary differential equations (ODEs) [2]. There have been two
major distinctive approaches for dealing with such delayed control system analysis and
design. The most popular is the predictive control [3] and the second is non-predictive
control [4,5]. For this focused study, it is not intended to make a comprehensive review
of all the representative approaches over a great number of publications. To justify the
motivation and contribution of the study, we select a few closely related representative
methods for critical review.

The Smith prediction control [6] and the other generalized prediction control ap-
proaches [7] are effective, while plant model and delay are known to be accurate. On
the other hand, they are very much less robust against uncertainties that are widely and
frequently encountered in manmade systems (industrial processes and plants). Another
problem is the computational complexity in the prediction of output/state by solving
convolution integral to nonlinear systems [1]. Stabilization of linear time-delay systems
has been studied extensively [8] in areas such as the approaches using finite spectrum
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assignment [9] and continuous pole placement [10,11]. However, stabilization of nonlinear
time-delay systems is more challenging in analysis and design.

In contrast to model-based predictive control, non-predictive control approaches are, in
the main, a class of control system designs that do not use a model to predict the time delay
induced outputs and states; most of the studies are state space model based [4,5]. When
considering a representative approach for designing a state feedback low gain vector [4],
nonsingular transformation matrices need to be set up and a state vector is assumed to be
available for applications. Output feedback stabilization, requires a plant model for the
conversion [4]. Even output feedback from a polynomial model is still commonly used in
most of the industrial operations and comparatively the scale of the studies is much smaller
than that of the state space model-based approaches. This could be because of the difficulty
in dealing with nonlinear polynomials in comparison to state space equations. It should be
noted that it is much more convenient/straightforward dealing with the time delay in the
frequency domain for linear systems, in which the time delay just induces a phase shift in
the underlying system.

Regarding using variable structure control to deal with input time delay, the Sliding
Mode Control (SMC) has been the most popular method adopted for designing the sys-
tems [12,13]. Most of the approaches assume linear models and small/known time delay.
It should be noted that if the time delay does not appear in the input, then the other delay
control system designs are simpler. Regarding using Active Disturbance Rejection Control
(ADRC) to deal with input delay systems [14], there have been some fundamental works
presented, such as Delayed Designed ADRC (DD-ADRC), Polynomial based Predictive
ADRC (PP-ADRC), and Smith Predictor based ADRC (SP-ADRC) and Predictor Observer
based ADRC (PO-ADRC) [15]. The approaches are well studied based on some condi-
tions: (1) nominal models, (2) approximation of time delay with rational polynomials, and
(3) small time delay and/or state prediction. With these results, some further development
could be conducted in reducing complexity in analysis and design via a non-predictive
model-free control. Dealing with nonlinear systems with input delay is still a generally
open issue with ADRC methodology, for which linear approximation in the neighborhood
of the operating points could be considered.

A model-free control (MFC) [16] has not been widely used to deal with input delay
systems. With the author’s best efforts, only a few related publications were found [17,18].
The study of controls with unknown time delays is in its early stages, considering simple
linear systems with good performances [17], which is based on an online adaptation of
the non-physical design parameters of an ultra-local model. Further interesting research
has been undertaken on the active disturbance rejection control for uncertain time-delay
nonlinear systems [19], which is based on complicated mathematical functional analysis. It
is noted that the Smith prediction plus model-free control has been integrated in order to
configure a scheme for network control with time varying delay [18]. In general, model-
free control of the systems with input delay is more challenging as there is less model
knowledge available.

Regarding the other alleged model-free control approaches, the most popular one is the
model-free adaptive control (MFAC) method, which has been widely studied in academic
research and used in industrial applications. The basic idea of the MFAC is to establish
a dynamic linear model of a nonlinear system at the current operating point (pointwise
linearization). This is achieved using input/output data from the controlled system to
estimate a set of pseudo partial derivatives online. A recently published representative
example is Ardupilot-based adaptive autopilot: an architecture and software-in-the-loop
experiment, a good reflection of the MFAC applications [20]. The MFAC has certainly
been widely applied in dealing with the input time delay in the control systems [21]. It
should be noted that the difference between the MFAC and the model-free control used
in the study is whether a plant model is used, or not, as reference for a control system
design. The MFAC still uses a data-driven online model in control system design. The
other type of model-free control [22,23], which is derived from the Lyapunov positive
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definite stability criterion, does not use either an offline plant model or an online estimated
plant approximation model in the control system design. The newly proposed model-free
approach is a supplement to the MFAC.

One more point that needs to be clarified is that the study takes the linear approxi-
mation approach in dealing with nonlinear plant dynamics with input delay in the neigh-
borhood of the operating points. Note that the control of “unknown dynamic systems
with unknown input delay” is intrinsically nonlinear, whereas concepts like “gain/phase
margin”, “algebra polynomial characteristic equation”, and so on, are based on linear
systems theory, which is inevitably in an approximation to nonlinearities.

In brief, the above explained approaches and many others not quoted here have
laid down solid foundations for further development in the direction of simple/effective
non-predictive model-free approaches. This study deals with the stabilization of nonlinear
systems subject to an unknown input delay, contrarily to the usual method from the
literature, following the paradigm of non-predictive and model-free control, which can
have high potential for applications. Accordingly, the main contributions of the study are
justified below.

(1) The approach, model-free robust control of nonlinear dynamic systems with input
delay, is general and concise for analytical expansions, simulation demonstrations,
and applications.

(2) The stability analysis for stabilizing the systems has established a platform for pos-
itively considering input delay into control system design. It can be even used for
intentionally introducing delay into control system design (Jin, Niculescu, Boussaada,
and Gu 2017).

(3) The approach requests less knowledge of plants and merely assumes that the open
loop is stable, output controllable, and closed loop stabilizable. There is no need
for model structures/parameters and input delay time in the control system design,
which, by trial-and-error, tunes the delay regulator output feedback gain α f b within
a narrow numerical range of 0 < α f b < 1, within which the values have role in
reducing the time delay effect in control system stabilization. The approach can
increase the system gain stability margin 1/α f b times and phase stability margin to
a ||PG(jωg)| − |Pf b(jω f bg)|| degree. Obviously, it is robust against uncertainties (the
whole plant plus delay is treated as an uncertain black box with measurable output
and enabled input at the two ends).

(4) It provides a simulation portfolio for demonstrating the design procedure and ex-
plaining the transparent application procedure.

(5) The study has application potential/significance in terms of providing simplicity (so-
lutions) while dealing with unknown input-delayed dynamic complexity (problems).

The rest of the study is organized into four sections. Section 2 presents the preliminary
research problem statement and the foundation techniques for the following development.
Section 3 designs the control system and proposes two approaches analyzing/stabilizing
the designed systems by regulating an output feedback low gain. Section 4 selects a wide
range of representative examples, from pure delay, linear, and nonlinear plants, to simulate
and analyze in order to validate the derived analytical results. Section 5 presents the
conclusions of the study.

2. Preliminaries
2.1. Problem Formulation—Control of the Dynamic Plants with Delayed Input

Consider a class of general single input single output (SISO) nth order nonlinear
dynamic plants, described by

P : y(n)(t) = f
(

y(0∼n−1)(t), u(t− h)
)

, (1)
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where y ∈ R and u ∈ R are the plant output and input, respectively, and

y(0∼n−1) =
[
y · · · y(n−1)

]T
∈ Rn is the n − 1 order output derivative vector. u(t − h)

denotes that the input is h time delayed, and h ∈ R+ is unknown.
Regarding control of plant (1), for which the control system configuration in block

diagrams is shown in Figure 1, for the given output y(t − h) and reference operating
signal r(t), the control input is generally formulated with u(t) = u(y(t− 1), r(t)) = Gc(

α f f r(t)− α f by(t− h)
)

, α f f ∈ R, α f b ∈ (0, 1)), where α f f is the feedforward gain, α f b is
the feedback gain, and Gc is the error correction controller.
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Figure 1. Nonlinear systems with unknown plant model.

2.2. Assumptions

Assumption 1. f : u→ y , an unknown mapping from the input space to the output space is a
continuously differentiable of class Cn and satisfied with the Lipschitz continuity | f (x1)− f (x2)| ≤
K|x1 − x2|, K ∈ R+.

Assumption 2. The plant is Bounded-Input-Bounded-Output (BIBO), |u(t)| ≤ Bu ∩ |y(t)| ≤ By,
∀t ∈ R+, Bu, By ∈ R+.

Assumption 3. There exists an open neighborhood at the operating point, so that plant (1) can be
approximated by a linear dynamic model with input delay at the operating points, which is expressed
in the form of a Laplace transform Y(s) = e−shG(s)U(s).

Assumption 4. The time delayed plant is stabilizable in a closed loop control. Accordingly, the up-
bound nature of the time delay h is varied with the stabilization condition of each underlying system.

2.3. Linear Control Systems with Input Delay

This study uses a general SISO linear closed loop output feedback control system as a
foundation to analyze the stability of the nonlinear control system shown in Figure 1, in the
neighborhood of each operating point of the plant (1) without referring to the plant model
and the time delay. Figure 2 shows the linear equivalent control system block diagram.
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From Figure 2, the closed loop transfer function between output y ∈ R and input
u ∈ R is expressed by,

Y
R

= α f f
GcGpe−hs

1 + α f bGcGpe−hs = α f f
GcNGpNe−hs

GcDGpD + α f bGcNGpNe−hs , (2)

where Y and R are the Laplace transforms of the output and the input, respectively, Gc and
Gp (a strictly proper rational function) are the Laplace transforms of the controller and the
plant, respectively, and e−hs is the Laplace transform of the pure time delay h > 0.

To facilitate the follow-up analysis, let

Gc =
GcN
GcD

Gp =
GpN
GpD

, (3)

where subscripts N and D denote the transfer function numerator and denominator poly-
nomials, respectively.

Accordingly, the closed loop system characteristic equation, in terms of polynomials,
is expressed as

GcDGpD + α f bGcNGpNe−hs = 0. (4)

This characteristic equation determines the underlying system stability with the location of
its roots/zeros.

2.4. Routh–Hurwitz Stability Criterion (Patil 2021)

This study uses the Routh–Hurwitz stability criterion to convert the stability issues
in the neighborhood of the operating point to a linear polynomial from a transcendental
polynomial (due to the input time delay). The Routh–Hurwitz stability criterion [24] is a
necessary and sufficient condition for analyzing the stability of linear time invariant (LTI)
dynamical systems. The class of stable systems is bounded by its all-dynamic states as time
goes to infinity. In formulation, consider an LTI dynamic system without time delay below,

Y(s)
R(s)

= G(s) =
GN(s)
GD(s)

=
β0sm + β1sm−1 + · · ·+ βn−1s + βm

α0sn + α1sn−1 + · · ·+ αn−1s + αn
n ≥ m, (5)

where α’s and β’s are constants. The stability of the system is determined by the roots
(also called poles in control system analysis) in the denominator polynomial. Without
factorization of the polynomial for the roots, there are two equivalent algorithms, the Routh
test and Hurwitz matrix test, which just use the denominator polynomial coefficients to
examine if all the poles with negative real parts are stable, that is, Re(polei) < 0, i = 1, · · · n,
if it is a Hurwitz polynomial.

2.5. Poles of Control System with Input Time Delay

This study acknowledges the linear system stability issues induced by the input delay,
which is rooted in the transcendent characteristic equation, and provides reference to deal
with unstable poles on the right half of the S plane. Inspecting the characteristic Equation (4)
in a linear closed loop control system, a transcendental equation has an infinite number of
poles (roots). However, the number of those poles to the right half of the S plane is finite [11].
A continuous pole placement method has been developed to remove the identified unstable
poles into left half of the S plane by tuning a small controller gain, while monitoring the
other stable poles with large real parts. This approach is a model-based trial-and-error
computational procedure.

2.6. Non-Predictive Low Gain Control

This study acknowledges the non-predictive low gain control for linear systems and
points out an open space for further expansion. For describing a general class of continuous
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time SISO dynamic systems with input delay, consider a popular state space model of (Liu
and Fridman 2014)

.
x(t) = Ax(t) + Bu(t− τ(t)), x(0) = x0

y(t) = Cx(t)
, (6)

where the variables are the state vector x(t) ∈ Rn, control input u(t) ∈ R, u(t) = 0, ∀t < 0,
time varying, and delay τ(t) ∈ [0, h]. This study lets τ(t) = h an unknown bounded
constant, and output y(t) ∈ R. For the feasibility of control and measurement, the stabi-
lizable/controllable pair (A, B) and the observable pair (A, C) are assumed (Lin and Han
2007). For the corresponding stabilizing state feedback control, assign u(t) = Kx(t) to
make the underlying system exponentially stable, and K is low gain vector. Accordingly,
the control system is formatted with,

.
x(t) = Ax(t) + Bu(t− h)
= Ax(t) + BKx(t− h)

. (7)

Proposition 1. It has been proven that for any given arbitrarily large time delay h ≥ 0, there
exists the low gain vector K to make the closed loop system asymptotically stable [4]. It should
be noted that even though the low gain vector is selected by trial-and-error, it is still required of
the corresponding model that it design the output feedback law. This is a motivation for the study
to develop a model-free approach for the total unknown plant (unknown dynamic structure and
unknown time delay) with a concise output feedback control system configuration and narrow
controller parameter tuning range.

3. Stabilization of Dynamic Systems with Input Delay
3.1. Configuration of Linear Equivalent Control Systems

This study proposes a new control system configuration as shown in Figure 1, in which
the feedback gain is α f b, the feedforward gain is α f f , and the cascade controller is Gc. The
closed loop transfer function is expressed in (2), written down again for easy reference,

Y
R

= α f f
GcGpe−hs

1 + α f bGcGpe−hs = α f f
GcNGpNe−hs

GcDGpD + α f bGcNGpNe−hs . (8)

The controllers are specified by (1) using the feedback gain α f b to stabilize the system, (2)
using the feedforward gain α f f to remove steady errors in response to a step reference
input, and (3) using the cascade controller Gc in conjunction with α f b and α f f to improve
the dynamic/steady state response.

Remark 1. This is a type of two-degree freedom control [25], but it is the simplest one because (1)
both stabilizing controller α f b and setpoint tracking controller α f f are constant gains instead of
dynamic compensators, and (2) the designs are model-free instead of model (nominal model)-based,
and are therefore more robust against uncertainty and disturbance.

3.2. Controller Design

For the control system design, the study assumes (1) the time delay h is an unknown
bounded constant, and (2) the closed loop is stabilizable. Therefore, the delay boundary
varies from the underlying stabilized control systems.

For step reference input (a type of operating point), the objectives of designing the con-
trollers with the configured control system in Figure 1 are explained in the following steps.

(1) Use the feedback gain α f b to stabilize the system. It is not analytically calculated as
there is no plant model available and the design follows a trial-and-error approach
to select a proper α f b in the range of 0 < α f b < 1. The smaller of the α f b, the more
of a stability margin, which is possibly a monotonic response. Increasing α f b could
generate a decayed oscillatory response, further increasing will drive the system
to instability.
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(2) Use the feedforward gain α f f to remove steady errors in response to a step reference
input. This is achieved by the final value theorem referring to Figure 2. First assign
α f f = 1 it has,

lim
t→∞

y(t) = lim
s→0

sY(s) = r
GcGp

1 + α f bGcGp

∣∣∣∣∣
s=0

. (9)

Consequently, remove the steady error, let y(∞) = r give,

α f f =
1 + α f bGcGp

GcGp

∣∣∣∣
s=0

(10)

If controller Gc has an integrator ( 1
s ), the feedforward gain α f f =

1+α f bGcGp
GcGp

∣∣∣
s=0

= α f b.
For model-free control systems, by observing the steady state output response, select

α f f =
r

y(∞)∈α f f =1 .

(3) Use the cascade controller Gc in conjunction with α f b to improve the system dy-
namic/static performance. This is left for future studies and this study sets Gc = 1.

3.3. Stability Analysis

This study takes Assumptions 1 to 4 to hold, presenting two approaches to conducting
stability analysis from different angles.

3.3.1. Open-Loop-Based Stability Analysis (Frequency Response/Gain and Phase Margins)

Now consider the closed-loop stability by analyzing the open-loop gain and phase
margins in the frequency domain.

Remark 2. In a closed loop control, stability analysis is the same at any point of the loop. Accord-
ingly, for gain/phase margin analysis, it is feasible to take α f bGcGpe−hs . In order to focus on the

role of α f b for stability analysis, take α f bGpe−hs
∣∣∣
Gc=1

.

The gain margin gm and phase margin pm are defined below [26]

gm =
∣∣G(jωp)

∣∣−1,∠G(jωp) = −180
◦

pm = P(jωg) + 180
◦
,
∣∣G(jωg)

∣∣ = 1
. (11)

Accordingly, the safe margins (before instability) are defined below.
In decibel

gm = −20lg
∣∣G(jωp)

∣∣ > 0, ∠G(jωp) = −180
◦

pm = P(jωg) + 180
◦
> 0,

∣∣G(jωg)
∣∣ = 1

, (12)

where lg is the logarithmic function with base 10.
In ratio

gm =
∣∣G(jωp)

∣∣−1
> 1, ∠G(jωp) = −180

◦

pm = P(jωg) + 180
◦
> 0,

∣∣G(jωg)
∣∣ = 1

, (13)

let G = Gpe−hs refer to definition (11), let ω f bp for the frequency having∠α f bG(jω f bp) = −180
◦
,

and ω f bg for the frequency having
∣∣∣α f bG(jω f bg)

∣∣∣ = 1, then the regulated gain and phase margins

of α f bGpe−hs = α f bG are formulated as.
In decibel,

g f bm = 0− 20lg
∣∣∣α f b

∣∣∣− 20lg
∣∣∣G(jω f bp)

∣∣∣−1
, ∠α f bG(jω f bp) = ∠G(jω) = −180

◦

p f bm = P(jω f bg) + 180
◦
,
∣∣∣α f bG(jω f bg)

∣∣∣ = 1
, (14)
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and in ratio,

g f bm =
∣∣∣α f bG(jω f bp)

∣∣∣−1
, ∠α f bG(jω f bp) = ∠G(jω) = −180

◦

p f bm = P(jω f bg) + 180
◦
,
∣∣∣α f bG(jω f bg)

∣∣∣ = 1
. (15)

Theorem 1. The feedback gain α f b, in a range of 0 < α f b < 1, can regulate the margins to increase

1/α f b times in the gain margin and
∣∣∣∣∣PG(jωg)

∣∣− ∣∣∣Pf b(jω f bg)
∣∣∣∣∣∣ degree in the phase margin for

the corresponding closed-loop system.

Proof. Assume the transfer function G(s) is properly rational and stable. Consider gain
margin stability conditions in decibel satisfied below,

g f bm(dB) : 0− 20lgα f b − 20lg
∣∣G(jωp)

∣∣ > 0, ∠α f bG(jω f bp) = ∠G(jω) = −180
◦
. (16)

This can be derived as below,

g f bm(dB) : 0− 20lgα f b − 20lg|G(jωp)| = 20|lgα f b|0<α f b<1 − 20lg|G(jωp)| > 0. (17)

Therefore, the gain margin increases 20
∣∣∣lgα f b

∣∣∣ dB. Convert it into a ratio expressing

gain margin and this correspondingly increases 1
α f b

times.
Consider the phase margin stability conditions satisfied below,

p f bm : Pf b(jω f bg) + 180
◦
> 0,

∣∣∣α f bG(jω f bg)
∣∣∣ = 1. (18)

As ωg > ω f bg, it gives
∣∣pG(jωg)

∣∣ > ∣∣∣p f b(jω f bg)
∣∣∣. Consequently, the phase margin

increases
∣∣∣∣∣pG(jωg)

∣∣− ∣∣∣p f b(jω f bg)
∣∣∣∣∣∣ degree. �

Remark 3. The theorem is applicable to those nonlinear systems, satisfying Jacobian and Hessian
conditions in the neighborhood of the operating point, which can be linearized.

3.3.2. Closed-Loop-Based Stability Analysis (Laplace Transfer Function/Routh Criterion)

Now consider the closed loop stability analysis of the input delay control system of
(8), the characteristic equation is expressed by

GcDGpD + α f bGcNGpNe−hs = 0. (19)

Let the denominator and numerator polynomials expressed below,{
GcDGpD = sn + α1sn−1 + · · ·+ αn−1s + αn
GcNGpN = β1sm + · · ·+ βm−1s + βm

m = n− 1, (20)

and have both stable poles and zeros, that is, they represent the stable and minimum phase
systems, which have been assumed as the necessity of stable open loop in some delay
control system designs [15].

Add the delay factor e−hs to expand the characteristic Equation (19) in form of

GcDGpD + α f bGcNGpNe−hs = sn + (α1 + β1α f be−hs)sn−1 + · · ·+ (αn−1 + βn−1α f be−hs)s + (αn + βnα f be−hs) = 0, (21)

which is a quasi-polynomial where the s powers are multiplied by an exponential function
as the delay factor [27].
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Theorem 2. With the first order rational approximation to the time delay factor e−hs, the stability
analysis has the following equivalency,

GcDGpD + α f bGcNGpNe−hs stability↔
n+1

∑
i=0

cisn+1−i = c0sn+1 + c1sn + · · ·+ cn−1s + cn, (22)

where ci, i ∈ 0 · · · n are the coefficients of the polynomial.

Proof. Consider the first degree rational approximation (the same function in either the
Taylor approximation or Pade approximation) of the time delay below [28],

e−hs =
e−hs/2

ehs/2 ≈ R1,1(hs) =
2− hs
2 + hs

. (23)

The first order Pade approximation, like the other higher order approximations, has
the role of introducing an unstable zero in open loop and, consequently, could induce
unstable poles in the closed loop systems, which is the goal of the study: to express
unstable zeros/poles introduced by time delay.

Substitute the approximation (23) into the transcendental characteristic Equation (21)
and it gives,

GcDGpD + α f bGcNGpNe−hs R11→ GcDGpD(2 + hs) + α f bGcNGpN(2− hs)
= c0sn+1 + c1sn + · · ·+ cn−1s + cn = 0

, (24)

where C(c0 · · · cn+1) ∈
(

α, β, 2,±h, α f b

)
, α(α1 · · · αn), β(β1 · · · βm).

Therefore, the classical Routh array and Hurwitz matrix tests are applicable for delayed
system stability analysis.

In general, the Pade approximation of order (mp, np) to e−hs [28] is a rational function
Pmp ,np(h, s) formulated in expression of

Pmp ,np(h, s) =
q0 + q1(hs) + · · ·+ qmp(hs)mp

p0 + p1(hs) + · · ·+ pnp(hs)np , mp ≤ np, (25)

where
qi = (−1)i (mp+np−i)!mp!

(mp+np)!(mp−i)!i! , i ∈ [0, 1, · · ·mp] ∈ R

pj =
(mp+np−j)!np!

(mp+np)!(np−j)!j! , j ∈ [0, 1, · · · np] ∈ R
. (26)

Accordingly, the nth order Pade approximation of the characteristic equation with the
time delay factor e−hs (19) is expressed in forms of

GcDGpD + α f bGcNGpNe−hs Pade(mp ,np)→ GcDGpD + α f bGcNGpN Pm,n
= c0sn+np + c1sn + · · ·+ cn−1s + cn+np = 0

, (27)

where C(c0 · · · cn+np) ∈
(

α, β, Q, P, α f b

)
, α(α1 · · · αn), β(β1 · · · βm) and Q = [q0 · · · qmp ],

P = [p0 · · · pnp ].
Therefore, the classical Routh array and Hurwitz matrix tests are applicable for delayed

system stability analysis. �

Remark 4. This confirms the fact that both the transcendental polynomial (11) and algebra
polynomial (13) could have finite poles on the Right Half Plane (RHP) in an S coordinate system
(nb. a system is unstable as long as one unstable pole appears), even though the former has infinite
stable poles [11].
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Remark 5. It has been established that such delay systems have ‘a finite dimensional flavor’. There
has been a remark [29] that the problems in delay systems, related to stability and optimality in the
framework of hyperstability (or dissipativity/passivity called today), may be accommodated in the
systems without delay [30].

Remark 6. The equivalency is true and becomes equality for the corresponding linear discrete time
systems (Z transfer function modelled) with integer time delay (h ∈ Z+). That is,

GcDGpD + α f bGcNGpNz−h =
N=n+h

∑
i=0

cizN−i+ = zn+h + c1zn+j−1 + · · ·+ cn+h−1z + cn+h, (c0 = 1), (28)

where ci ∈ f (α f b), i ∈ Z+ = [0, n + h].

Remark 7. The differences, comparing the two characteristic equations in (21), are (1) one is
a transcendental polynomial equation with infinite poles and the other is an algebra polynomial
equation with finite poles (but it can have infinite groups of N poles through varying α f b), and
(2) by tuning the feedback gain α f b, one is model-based (requesting the delay time known as well)
including a trial-and-error iterative computation process [11] and the other is model-free (no need to
know the delay time as well) trial-and-error iterative simulation process within a narrow parameter
of tuning bands 0 < α f b < 1, which is the kernel of the study.

Remark 8. (feasibility of nonlinear systems): Assume a nonlinear plant can be approximated
by a series of piecewise linearized models (e.g., transfer functions) [31] or pointwise linearized
models [32] in the neighborhood of the operation points. Then, the above analyses are applicable to
such nonlinear plants.

Remark 9. (a summary of the two stability analyses): In principle, input time delay can be
treated as a virtual gain, proportionally, and gain increases with delay increasing. It is a common
understanding that the gain increasing can reduce the stability margin or cause instability in
closed loop control of the dynamic systems. The delay cannot be changed, however, changing the
feedback gain can equivalently reduce the delay. Therefore, reduce the virtual gain to increase the
stability margin.

4. Examples

This section selects several bench test plants of (1) to simulate to test the proposed
control performance to a step reference input. It is noted that the plant models and time
delay are just used for simulation rather than being used for the controller design, which
represents the model-free control prototype. The Simulink simulations follow the general
control system configuration as shown in Figure 1. For testing the examples’ performance
in the computational experiments, set up,

(1) The operating point is assigned as a step reference with amplitude four for all of
the examples.

(2) Time delay h = 5 for all the examples, and is only used for simulation, not for
controller design, which means that the time delay is unknown.

(3) The controller Gc = 1 for all of the examples.
(4) Using a trial-and-error iterative approach to determine the feedback gain α f b case

by case, which starts from the value 0.5 in the middle of the feedback controller
boundaries (0, 1) and then tries the two directions (increase/decrease) until a desired
value is determined. Once α f b is selected, calculate the feedforward gain α f f . It
should be noted that this simulation study uses a unique choice α f b = 0.1 for all the
simulated control systems for comparison.
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4.1. Pure Time Delay Gp = e−hs

Two groups of controllers are used for simulation,

(1) α f b = 1 α f f = 1, for full delay feedback;
(2) α f b = 0.1 α f f = 4/3.636, for reduced delay feedback.

Figure 3 illustrates both case simulations for comparison. To explain the output re-
sponses in both cases, consider the plant discrete time model (Z transform). The time delay
is correspondingly converted as Gp(s) = e−hs ⇔ Gp(z) = z−h(h ∈ Z+) . Consequently, the

closed loop transfer function is given by Y(z)
R(z) = z−h

1+α f bz−h = 1
zh+α f b

. For αb f = 1, the

system pole is on the unit circle on Z plane to give such a constant output oscillation.
For 0 < α f b < 1, the system poles are within the unit circle to give such a decayed
output response.
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4.2. First Order Linear Plant with Input Delay Gp = 2e−hs

s+1

Two groups of controllers are used for simulation,

(1) α f b = 1 α f f = 1, for full delay feedback;
(2) α f b = 0.1 α f f = 4/0.9756, for reduced delay feedback.

Figure 4 illustrates both case simulations for comparison. It shows clearly that the
full delay feedback produces an unstable output response. By reducing the feedback gain
to regulating the delay feedback effect, the output response is stabilized. An interesting
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observation is that this first order system can have an oscillatory response with the inclusion
of the delay, otherwise it must add at least one more additional pole though a controller.
This gives a positive impression of delay (increasing the additional number of poles)
introduced in the control system design/operation [10].
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Furthermore, the simulation results can be explained analytically. Consider the first
degree rational approximation (the same function in either the Taylor approximation or
Pade approximation) of the time delay below,

e−hs =
e−hs/2

ehs/2 ≈ R1,1(hs) =
2− hs
2 + hs

, (29)

where R1,1(hs) is for the first degree rational approximation to the time delay e−hs.
Accordingly, the considered example has the closed loop transfer function of

Y
R

=
Gpe−hs

1 + α f bGpe−hs . (30)
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The corresponding characteristic equation gives,

1 + α f bGpe−hs = hs2 + (2 + h− 2α f bh)s + 2 + 4α f b = 0. (31)

For the general second order systems with characteristic equation α0s + α1s + α2 = 0,
it is Hurwitz stable if all the coefficients are positive, that is αi > 0, i ∈ [0, 2]. Clearly the
stability condition is (2 + h− 2α f bh) > 0.

For the full feedback control α f b = 1, the characteristic equation has[
1 + α f bGpe−hs

]
α f b=1,h=5

= 5s2 − 3s + 6 = 0. (32)

Therefore, it is unstable. The oscillatory response is because of the complex conjugate
poles in the characteristic equation.

Correspondingly the open loop gain margin and phase margin are,

gm = 0.35dB|ωcg=0.825rad/s pm = −66.57deg|ωcp=3.856rad/s. (33)

The negative phase margin indicates that the closed loop is unstable.
For reduced (low gain) feedback control α f b = 0.1, the characteristic equation has,[

1 + α f bGpe−hs
]

α f b=0.1,h=5
= 5s2 + 6s + 2.4 = 0. (34)

Therefore, it is stable. The oscillatory response is because of the complex conjugate
zeros.

Correspondingly the open loop gain margin and phase margin are

gm = 3.5dB|ωcg=0.825rad/s pm = +∞|ωcp=NaN . (35)

Both margins are positive, therefore the closed loop is stable. Further comparing the
gain margins in the two cases confirms the analytical expectation that the low gain control
improves the gain margin 1

α f b
= 1

0.1 = 10 times. Moreover, the example can represent a
cease while the control of nonlinear plant (1) is in the neighborhood of its operating point,
which is in the form of a linearized approximation.

4.3. Second Order Plant with Input Delay Gp = 2e−hs

s2+s+1
Two groups of controllers are used for the simulation,

(1) α f b = 1 α f f = 1, for full delay feedback;
(2) α f b = 0.1 α f f = 4/6.664, for reduced delay feedback.

Figure 5 illustrates both case simulations for comparison. It shows clearly that the full
delay feedback produces an unstable output response. By reducing the feedback gain to
regulating the delay feedback effect, the output response is stabilized.

Once again, the analytical derivations should be coherent with the simulated deriva-
tions, while following the routine explained with Section 4.2. Furthermore, the example
can represent a cease while the control of nonlinear plant (1) is in the neighborhood of its
operating point, which is in the form of a linearized approximation.
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4.4. Van de Pol (VDP) Oscillator Dynamics with Input Delay

The Van der Pol oscillator is composed of a non-conservative system with nonlinear
damping to follow a second-order dynamic [33]. For the VDP system with input delay,
replacing u(t) with u(t− h) throughout the system gives,

y(2)(t) = µ(1− y(t))y(1)(t)− y(t) + u(t− h), (36)

where µ = 1.5 for the nonlinear damping strength.
Two groups of controllers are used for the simulation,

(1) α f b = 1 α f f = 1, for full delay feedback;
(2) α f b = 0.1 α f f = 4/3.636, for reduced delay feedback.

Figure 6 illustrates both case simulations for comparison. This shows that both
designed systems are stable, one with decayed oscillatory output response, the other with a
monotonic output response. Clearly, increasing the decay regulation gain makes the system
response decayed oscillatory, and constantly oscillatory (α f b ≥ 1.5, tested, but not shown
in the figures). Furthermore, the other tests indicate that the control of the delay system is
stable with α f b > 0.
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4.5. Nonlinear Nonaffine Plant with Input Delay

The selected nonlinear nonaffine dynamic system [22] with input delay is expressed as

.
x1(t) = x2(t).

x2(t) = −0.6x2(t)− x1(t)x2(t)− u(t− h)x2(t) + sin(u(t− h)) + 2u(t− h) + u3(t− h)
y(t) = x1(t)

. (37)

Two groups of controllers are used for the simulation,

(1) α f b = 1 α f f = 1, for full delay feedback;
(2) α f b = 0.1 α f f = 4/14.5, for reduced delay feedback.

Figure 7 illustrates both case simulations for comparison. For α f b = 1, the system is
unstable because of the large gain effect. Obviously, by regulating the delay feedback gain
(reducing α f b), the system is stabilized and a good decayed oscillatory output response
profile is achieved. Again, further reducing α f b could generate decayed monotonic output
responses (0 < α f b ≤ 0.05 with simulated tests).
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4.6. Nonlinear Rational Plant with Input Delay

A nonlinear rational model, a ratio of numerator differential polynomial against
denominator differential polynomial, has appeared widely in chemical engineering pro-
cesses [34] and has been used as bench test to control complex nonlinear dynamic sys-
tems [35,36]. The input delay is a critical challenge in such control system design. A bench
test example is considered below,

.
x1(t) = x2(t)

.
x2(t) =

−4x1(t)−x2(t)+4u(t−h)
1+0.1x2

1(t)+0.1u2(t−h)
y(t) = x1(t)

. (38)

Two groups of controllers are used for the simulation,

(1) αb f = 1 α f f = 1, for full delay feedback;
(2) αb f = 0.1 α f f = 8/7.25, for reduced delay feedback.

Figure 8 illustrates both case simulations for comparison. For αb f = 1, the system is
slow, oscillatory, and unstable (observed by expanding simulation time to 4000 because of
the large gain effect). Obviously, by regulating the delay feedback gain (reducing αb f ), the
system is stabilized with decayed oscillatory output response. As the model is an open loop
decayed oscillatory dynamic, from simulation observation, when further reducing αb f until
the feedback is disconnected (αb f = 0) the system output responses move towards the open
loop response. It is noted that such control system cannot achieve a monotonic response to
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a step reference, which could be further studied to regulate the system’s dynamic response
and stabilization in the future.
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Summary discussions of the simulation results

(1) The simulation tests demonstrate the analytical results derived from stability analysis
and control system design.

(2) The input delay increases the dynamic order of the characteristic equation, which
easily drives open loop stable systems into instability with full delay feedback in the
corresponding closed loop systems. It is observed that through reducing output feed-
back gain α f b (regulating delay feedback), the systems can be comfortably stabilized
for the closed loop stabilizable systems.

(3) All tests show that unstable responses are oscillatory (instead of monotonic unstable).
The oscillatory instability comes from the fact of at least one pair of complex conjugate
poles have a positive real part, which is due to the exponential components in the
system transfer function.

(4) The approach is a model-free control for linear/nonlinear systems with unknown
constant input delay. There is no need for prediction, non-physical design parameters
of an ultra-local model, when compared with aforementioned popular model-free
control approaches.

(5) Regarding the decay regulation, tuning α f b within a narrow trial-and-error range
provides an easy iterative testing/tuning procedure (similar to engineering tuning
on site–connect to tune). The selection of 0 < α f b < 1 increases stability gain/phase
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margins, robustness, etc. Both limits of α f b = 0 α f b = 1 represent the open loop
operation and full decay feedback operation, respectively.

(6) The simulations–computational experiments are mainly designed for validating feed-
back stabilization using the decay regulator α f b. For dealing with the steady er-
ror referring to a step reference, the feedforward gain α f f has been determined by
α f f = r

y(∞)∈α f f =1 case by case. For a unilateral approach to remove such steady

errors, a simulation was assigned to the cascade controller Gc with a Proportional and
Integral (PI) transfer function, which has been tested (not shown in the figures) with
the nonlinear nonaffine dynamic system of (37). The results confirm the feedforward
gain α f f = α f b, which is consistent with that derived in Section 3. Using integral
control to remove the steady error against step/level reference has been the general
procedure in analytical work and applications. As explained in Section 3, Gc will be
systematically studied in the future work.

5. Conclusions

This study proposes a concise approach, using output feedback low gain to stabilize
control systems with unknown dynamic and input delay. The stability analysis is presented
in both open loop (gain and phase margins) and closed loop (Routh/Hurwitz array/matrix).
The feedback gain controller 0 < α f b < 1 tuning is trial-and-error based, but within a very
narrow range (0, 1), and similar to onsite tuning. Simulation tests are consistent with those
analytically derived. This creates the potential to introduce input delay intentionally for
designing future control systems within a concise framework. The other topic left out of
the study is the analysis and design of the controller Gc integrated with α f b and α f f , which
should provide a more flexible/enhanced control effect. Another potential study could be
expanding the approach to control systems with variable time delay. Wide range bench
tests are needed in order to provide comprehensive assurance for future applications.

It should be noted that, essentially, the role of the feedback low gain α f b is to sta-
bilize such systems (closed loop stabilizable input time delay systems; without α f b the
systems could easily be unstable). In the simulated examples, α f b cannot be tuned to
make the desired dynamic/transient response (such as that specified by the damping ratio
and undamped natural frequency), with the exception of stabilization and the following
dynamic response. This is a constraint of the current study. Hopefully in future studies
the error correction controller Gc, as shown in Figures 1 and 2, will play a role in transient
response regulation.
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