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1. INTRODUCTION 

Artificial neural networks (ANNs) are now widely recognised as a facet of artificial 
intelligence. ANNs represent a set of modelling techniques which are distinctly 
different from more conventional approaches. This consideration, in conjunction with 
some notable ANN modelling successes, has prompted researchers in a broad and 
diverse range of fields (including transportation) to assess the potential of  ANNs as an 
alternative to existing techniques or, indeed, as a solution to problems formerly 
lacking an appropriate modelling technique. 

Rising traffic levels and consequently an increase in the frequency and severity of 
congestion have prompted considerable investment in the development of  traffic 
management techniques. Traffic management, particularly of an urban road network, 
relies increasingly on knowledge of  the road network traffic status obtained from a 
growing infrastructure of  network monitoring equipment. Consequently a 
progressively data rich environment has evolved to support traffic management 
system(s)'. Traffic flows in an urban network reflect a series of underlying highly non- 
linear relationships. ANN techniques are notable for their use in addressing non-linear 
problems in data rich environments. 

Set against this background, the Department of  Transport commissioned the 
Transportation Research Group at the University of Southampton, together with Smith 
System Engineering Limited, to assess the potential application of ANN techniques to 
urban traffic control (UTC) and in particular to assess the viability of using an ANN 
technique to forecast the onset of urban congestion. 

This paper describes this initial study which was conducted over a six month period. 
A comprehensive review of key issues considered ANN techniques, their applications 
in transportation and traffic control, potential data sources and congestion definition 
and management. Based on the findings of the review, a demonstrator application was 
defined with the intention of exemplifying the potential of a UTC application of 
ANNs. The demonstrator application, in fact, performed a much broader role, 
providing a focus to the study and thereby acting as a catalyst for generation of further 



understanding of the relevant issues and implications. The paper provides an 
elementary level of  technical detail and places emphasis on consideration of the issues 
and implications that emerged from the research. 

2. OVERVIEW OF ARTIFICIAL NEURAL NETWORKS 

The background, functionality and application of an increasing selection of ANN 
paradigms (models) is now well documented in a number of  informative texts (e.g. 
Carling, 1992). ANNs match the functionality of  the brain in a very fundamental 
manner. ANN architecture constitutes a distributed representation of data. An ANN 
consists of  a number of  interconnecting layers of  processing elements (units analogous 
to the brain's neurons) as illustrated in Figure 1. An ANN is essentially a transfer 
function relating one or more input(s) to one or more output(s). Internally an ANN 
evolves a configuration that relates the input(s) and output(s). This configuration 
develops through the process of  training during which the ANN is presented with a 
large number of  representative input examples and corresponding desired output 
responses. During training the error in the model's response to input examples is 
measured and the internal configuration is adjusted accordingly (weightings of 
connections between processing elements are changed) to reduce the error in overall 
response. Training is analogous to model calibration (Lyons, 1995). Validation 
consists of  assessing the ANN's success in interpreting unseen test examples thereby 
demonstrating the ability to generalise. 

Used in appropriate situations, ANNs represent a powerful form of information 
processing allowing integration and interpretation of a diverse range of data. The 
distributed nature of  data representation can enable an ANN model to interpret noisy 
or incomplete data. However this attribute is highly dependant on the data used to 
train the model. Since an ANN 'learns' from example, its capabilities rely on the data 
set used in training. An ANN is not able to draw inferences or exhibit common sense. 
It should be noted that ANNs do not represent truly self-evolving model forms. 
Although input-output relationships are elicited autonomously during training, the 
network architecture (i.e. the configuration of the processing elements and 
connections) and the training schedule must be provided and optimised by the model 
developer (state-of-the-art software can now, however, assist this process). A pertinent 
limitation of ANN models is that the input-output relationships are not revealed to the 
developer but remain in a distributed form, represented by the connection weights 
resulting from training. 

3. A REVIEW OF KEY ISSUES 

To assess the potential for developing a neural network model to forecast the onset of  
urban congestion, four key issues were identified and reviewed. The findings are 
summarised below. 

3.1 ANN Techniques 

Most applications of ANNs are within the areas of  pattern/image recognition, 
classification and forecasting. In addressing these application areas, there are an 
increasing number of  neural network techniques available, each with their own 



strengths and weaknesses. However, without doubt the most widely applied technique 
in all these areas is that of the backpropagation learning algorithm (used in 
conjunction with a Multi-Layer Perceptron (MLP) architecture (Rumelhart et al, 
1986)). Backpropagation derives its name from the way it handles the errors in its 
responses during training - the response error is propagated from the output layer back 
to the input layer with adjustment of connection weights to bring the predicted output 
closer to the desired output. Measured success with its use in the financial sector 
(Diamond et al, 1993) (Yoon et al, 1993) illustrates the generally accepted opinion 
that the technique is typically the most appropriate for forecasting applications. 
However, the extensive use of this technique has the potential to overshadow viable 
altematives to the extent that the implication in some articles is that the 
backpropagation technique is synonymous with ANNs. A wider range of options are 
available for pattern/image recognition and indeed classification applications. 

3.2 ANN Applications in Transportation and Traffic Control 

Neural computing is now considered a mature technology and indeed its uptake, 
particularly in exploratory work has been rapid. Yet the most popular technique 
described above has only been available for 10 years. Set against this background, the 
use of neural computing for transportation applications began much more recently and 
work to date has largely been of an exploratory nature. Applications which have been 
addressed using artificial neural networks include forecasting/classification of traffic 
flow parameters/traffic states (Dougherty et al, 1993), incident detection (Ritchie and 
Cheu, 1993) (Ritchie et al, 1995), driver behaviour/vehicle control (Hunt and Lyons, 
1994) (Pant and Balakrishnan, 1994) (Pomerleau, 1992), traffic control (Nakatsuji et 
aI, 1994) and traffic monitoring (Wan and .Dickinson, 1992). In nearly all of the 
applications reviewed the backpropagation learning algorithm was used. The success 
of applications is difficult to establish from the available documentation and it is 
reasonable to assume that the potential of neural networks in transportation 
applications has yet to be realised. Despite some encouraging results, the frequent use 
of simulated data and/or manually prepared real data sets has precluded a definitive 
assessment of the applicability of neural networks in real scenarios. For artificial 
neural net'works to be viable for on-line applications in transportation they will need to 
be able to function in real time, processing real data. As a result, training data must 
ultimately consist of real data which are automatically collected and processed. 

3.3 Data Sources 

Following from the preceding comments, the availability of appropriate data sources 
is limited. Without doubt the most viable source of data for urban areas is currently 
SCOOT (Hunt et al, 1981) and its network of detector sites. Other forms of  detection 
are being used increasingly in UTC and are likely to represent additional sources of 
data in the future. Buses with Automatic Vehicle Location (AVL) and vehicles 
equipped for Dynamic Route Guidance (DRG) also offer future possibilities. SCOOT 
provides, through the now built in ASTRID database system (Hounsell et al, 1990), a 
range of traffic parameters including estimates of flow, delay, stops, degree of 
saturation and queue length. Values are typically link based and aggregated into five 
minute intervals. A number of archives of SCOOT data are available of varying 
duration. 



3.4 Congestion Definition and Management 

The majority of  available references consider the management of  congestion (traffic 
signal control, ramp metering, congestion pricing etc.). Relatively few references 
attempt to provide a quantifiable definition of congestion, testament to the fact that 
congestion is essentially a subjective, qualitative term. To forecast the onset of  
congestion, it is first necessary to define congestion. Foresight suggests that ideally the 
definition should be selected such that it best suits the congestion management 
strategy for which the forecast will be used. The 'congestion indicators' which are 
identified by a review serve to highlight the broad range of interpretations. 

3.5 Summary 

The review of key issues lead to the following summarising comments which formed 
a platform for developing a demonstrator application: 

the backpropagation learning algorithm with a MLP appears to be. the most 
appropriate technique for the forecasting of the onset of  congestion 
model development must use real data to effectively assess the viability of  ANNs 
implementation of a successfully developed model will ultimately require 
automated collection of data if ANN models are to have a place in real time traffic 
control 
the number of  suitable data source s is likely to increase although currently data 
from SCOOT detectors remains the most viable option 
a precursor to forecasting congestion is the continuing problem of understanding 
and defining congestion 

4. DEMONSTRATOR APPLICATION 

Development of  a demonstrator application was essential to assess ANN potential to 
forecast congestion and to act as a catalyst for furthering the awareness and 
understanding of relevant issues and implications. 

4.1 Data Source 

Archives of  SCOOT data (predominantly consisting of aggregated 5 minute data) 
were available for Southampton and London (Kingston). A particular region of 
Southampton's SCOOT network was selected for the demonstrator application and 
software utilities were developed to allow data sets suitable for ANN model 
development to be prepared from the archived SCOOT message data. Southampton 
has clearly defined peak periods during which the range of congestion levels is 
typically highest. Data for the weekday morning peak (0730-0900) were therefore 
collected (113 useable days were available). Data for Kingston were collected for 
weekdays between 1000 and 1900 (50 days were available). The morning peak was 
not used because a congestion mitigation strategy is already operable during this 
period. 



4.2 Model Specification 

Figure 2 outlines the model specification considered. A range of options were 
available, however the following specific model form was used. 

Congestion in this study was defined using the Congestion Index (CI) (Van Vuren and 
Leonard, 1994): 

mean travel time delay + cruise time 
free - flow travel time cruise time 

This definition was used, in part, because its meaning is easy to interpret and it can be 
readily calculated from available SCOOT data. 

Output from the congestion forecasting model was the value of CI for a particular link 
at time t+5 minutes. Potentially appropriate input information to the model was 
considered to consist of  CI values for the chosen link and for upstream and 
downstream links at times t, t-5, t-10 and t-15 minutes. The use of such temporal data 
concurs with previous traffic parameter forecasting applications (Dougherty et al, 
1993) (Dougherty and Cobbett) (Taylor and Meldrum, 1995). Corresponding values of  
flow (vebJh) were also considered as potentially appropriate. With data for a number 
of  upstream and downstream links available, the number of  potential inputs to a model 
was typically about 90. A key stage in ANN model development (or indeed any 
model) is to identify a sub-set of  useful inputs from such a set of  available inputs. 

4.3 Model Development Software 

ANN models are generally developed using simulation software which allows the user 
to select an ANN paradigm, specify the architecture size and identify training and test 
data sets. The software will then 'build' and train the ANN model. Until recently 
however, model development involved a substantial element of  trial and error in 
determining the appropriate sub-set of  inputs and an optimum architecture size. 

Next generation model development software used in this project, attempts to 
automate the process of  input parameter selection and architecture size optimisation 
thereby achieving substantial time savings in model development. Predict 
(NeuralWare, 1995) uses a genetic algorithm to select a synergistic sub-set of  input 
parameters and subsequently builds and trains an ANN model using a constructive 
method called Cascade Learning (which determines a suitable number of  hidden-layer 
processing elements) in conjunction with a backpropagation learning rule. 

4.4 Results 

Models were developed for 4 forecast links (2 in Southampton and 2 in Kingston)• 
Model performance can be interpreted in a number of  ways. The percent average 
absolute error (PAAE) for each model was calculated initially to obtain a measure of 
overall performance: 

PAAE = (1 / N ) ~  [Y, - O, l/Y, x 100 
I 



where N is the number of  examples 
Y, is the desired model output 

and O, is the actual model output 

The results appeared initially encouraging. Figure 3 plots actual and predicted CI 
values at time t+5 minutes for one of the Southampton links. The model achieves a 
PAAE value of 15.9 for the test data with a corresponding correlation coefficient, R, 
value of 0.75 (comparable results were achieved by Dougherty et al (1993) in a very 
similar approach to urban flow forecasting). However, comparison was then made 
against a simple benchmark - a model which forecasts the value at t+5 minutes as 
being the value at t minutes. Such a model was, for the same test data, able to achieve 
a PAAE value of 17.7 and an R value of 0.73. Although performance of the ANN 
model is marginally better, this indicated that the ANN predictions were closely 
correlated with the preceding CI value (indeed this commonly occurs when time series 
data are used in forecasting). Figure 4 confirms this with a comparison of  CI values 
during a particular morning peak period. Indeed, the only clear observation from 
Predict's selection of a sub-set of  input parameters is that all preceding CI .values on 
the forecast link are selected. 

An alternative assessment of  performance was achieved by treating the model as a tool 
for predicting the occurrence of a pre-specified traffic condition. For example, for a 
particular threshold of CI it can be assumed that above the threshold congestion is 
critical (i.e. it must be detected for some remedial action to be taken). Below the 
threshold, congestion is considered acceptable with no action required. Figure 5 shows 
the performance results for such an approach. The rapid decline in detection rate 
(proportion of examples above the threshold correctly identified by the model) beyond 
CI threshold values of  approximately 3.5 corresponds to the sparse amount of  training 
data available for CI values greater than this. The results suggest that for thresholds of  
CI of  between 2 and 3.5 the detection rate is reasonable while the false alarm rate 
(proportion of examples below the threshold wrongly predicted as above the 
threshold) is low. It should be noted however that displaying results as percentages 
masks the fact that there are typically far more examples below the threshold than 
above. Consequently the actual number of  false alarms, while appearing 
encouragingly low in percentage terms, can be quite high. 

The results were, in general, not as encouraging as had been initially anticipated but a 
number of  issues and implications were identified as a consequence. 

5. ISSUES AND IMPLICATIONS 

The issues and implications which have arisen from this project can be addressed 
under three headings. 

5.1 Defining the Problem 

To forecast (the onset of) congestion it is first necessary to define congestion. A 
number of  definitions exist. For congestion monitoring in SCOOT networks TRL 
have recently proposed the use of "wasted capacity" which enables the location of the 



critical link to be identified and, to some extent, the severity of congestion to be 
monitored. Wasted capacity is defined as: 

Wasted Capacity = Min [ lost capacity, queue at end of green ] 

where "lost capacity" is the total flow potentially lost on a link, defined as the total 
time a link is blocked during its green stage multiplied by the link's saturation 
occupancy. 

However, neither CI, wasted capacity or other available definitions provide an entirely 
comprehensive and pragmatic definition for what is clearly a complex phenomenon. 
For example, in this study, unrealistically high delay and consequently high CI values 
were sometimes found to occur as a result of problems in estimating average journey 
times from flow/delay relationships on links with short time intervals under congested 
conditions. Contamination of model development data sets by such occurrences is to 
the detriment of model performance. 

Defining the problem also entails determining the model's objective and subsequently 
identifying a suitable and unambiguous performance measure to assess the model's 
capabilities. Results presented in 4.4 illustrate the varying interpretations of 
performance which can result. To isolate an appropriate means of measuring 
performance, consideration must be given not only to the immediate objective of, in 
this case forecasting congestion, but to the end-use of the model and any specific 
demands that are thereby imposed on the model. 

5.2 Defining a Solution 

Defining the problem determines the model output. It is subsequently necessary to 
define a solution, i.e. determine appropriate input parameters which will allow the 
model to deliver the required output. 

The set of possible inputs used for the demonstrator application was based on 
precedents and informed judgement. However, closer consideration highlighted a 
number of  potential flaws in the adopted approach. 

Model inputs and output should represent the elements of a cause-effect relationship. 
For the demonstrator application it was assumed, for example, that the CI value at 
time t+5 minutes on a given link (the effect) was the result, in part, of upstream flows 
for preceding time intervals (causal factors) which would propagate downstream to 
the forecast link. 

However, capturing the cause-effect relationship for this application is not a trivial 
matter. The rate of downstream propagation of causal factors (and the subsequent 
'arrival time' at the forecast link) is, for example, dependent on traffic conditions. 
Hence, the importance of particular inputs to the model will vary depending on the 
traffic conditions in the network. 

The data used in the demonstrator application represented 5 minutes intervals. In the 
context of  traffic movement (particularly during relatively uncongested conditions) 



this is a long time. Consequently, for example, the effect on a given forecast link at 
time t+5 minutes may be due (in part) to a cause several links upstream at time t 
minutes, perhaps beyond the extent of  the network represented by the model 's inputs. 
This suggests two possible remedial actions. The first is to increase the number of  
model inputs to cover an increased range of upstream links. There are two points to 
the detriment of  this option. By increasing coverage, the number of  inputs to a neural 
network model will increase. In addition to potentially capturing more causal 
information, this will introduce an increasing amount of unwanted input information. 
This is likely to be detrimental to the model's development and performance. Moving 
progressively further upstream, it becomes increasingly unlikely that traffic on such 
upstream links is destined for the 'forecast' link. Therefore data from such links is less 
likely to provide causal information. The second remedial action would be to reduce 
the level of  aggregation of the data. This, however, contravenes the objective of 
aggregation which is to smooth the SCOOT data which are highly variable on a cyclic 
basis. An argument could be tentatively put forward that such variability represents 
useful information and should not be disregarded as noise. However this study's 
subsequent consideration of a model developed using 2 minutes data showed no 
noticeable improvement. 

There may well be other potential causal parameters that were lacking as inputs to the 
demonstrator application models. However, to take positive steps towards determining 
what such parameters might be, it is necessary to further the understanding of 
congestion itself and its complex process of development (and indeed dissipation). 

5.3 Producing an Effective Solution 

To produce an effective solution requires good quality data in sufficient quantities to 
allow an ANN to be fully trained and tested. Typically these two requirements (quality 
and quantity) are conflicting. If a fixed amount of  data is available then the size of a 
selected sub-set used to train an ANN will decrease as the required quality of  the sub- 
set is increased. Quality can, of  course be interpreted in a number of  ways. In this 
study (not unusually) quality related to the ability of the data sets to provide a range of 
input values representative of the different traffic conditions and congestion levels that 
can arise. A notable difficulty was the comparative lack of high and sustained levels of  
congestion and indeed examples representative of the onset of  congestion. Although 
such examples were available, they were outweighed by a predominance of low CI 
values (particularly for Southampton) reflecting uncongested conditions. 

Data quality also concerned the need for provision of complete input examples for 
ANN training. Inevitably, real data are susceptible to intermittent faults within the 
system from which the data are derived. If for example, the loop on a particular link 
providing input data to the ANN was damaged for a short period covered by the 
archive, then corresponding SCOOT message data will be unavailable. In this study 
input examples with missing fields were discarded since they were deemed to 
represent excessively noisy examples. Although such examples should be adequately 
interpreted by a successfully trained ANN, including such examples in the training 
data set would be likely to compromise the performance of the model. 



Discarding incomplete examples clearly reduces the available quantity of  data. The 
anticipated quantity of  data obtainable from the archives was further reduced by the 
fact that whole days and weeks were unusable or unavailable due, typically, to data 
recording interruptions due to UTC system maintenance and development work. For 
the Southampton archive which had 280 potentially useable days of data, only 113 
days were retrieved. It should be noted that SCOOT was designed to run on a 
computer alongside the UTC system. The UTC computer generally performs a number 
of  important tasks and data collection from SCOOT is usually considered to have low 
priority. 

SCOOT currently remains the only source of readily accessible data in the UK which 
has reasonable network coverage and provides a range of data items. It is however, a 
misconception to suppose that entire urban areas have SCOOT coverage. Although 
likely to increase, SCOOT coverage is incomplete. If data from upstream (and 
downstream) detectors are required to forecast the onset of  congestion on a link (and, 
subsequently, potentially on a route) then the number of  'forecast sites' is limited. 

6. CONCLUDING REMARKS 

ANN techniques are being increasingly applied for a variety of  purposes such as 
pattem recognition and forecasting in many applications. In transport, specific 
applications of  ANNs such as incident detection on inter-urban roads (Cheu and 
Ritchie, 1994) and urban journey time estimation from detector data (Cherrett et al, 
1996) have delivered impressive results. This in itself substantiates a conclusion that 
there is a role for ANN techniques in traffic monitoring and control. This study has 
investigated the potential for ANNs in UTC, .concentrating on congestion forecasting. 
While other studies have looked at forecasting urban congestion, this is believed to be 
the first study to attempt to build a working model based on a substantial, real 
database. In so doing, the study has highlighted the extent of  ANNs' potential and the 
problems in its realisation, both through a demonstrator application and through a 
critical evaluation o f  issues. 

The demonstrator application produced an ANN performance which is only slightly 
better than a much simpler alternative. It is important, however, in drawing more 
generalised conclusions about the potential of  ANN models to enhance UTC, to set 
the results of  this particular study into context. Addressing any forecasting problem is 
an order of  magnitude more difficult than a corresponding estimation problem. 
Addressing a problem of  forecasting or estimation in an urban context is considerably 
more complicated that in an inter-urban context. Attempting to forecast the onset of  
urban congestion is therefore arguably one of the most difficult modelling tasks. The 
demonstrator application was also limited to a single definition of congestion, for 
single links only and to particular inputs. Performance results are therefore very 
specific, limiting any generalisations. 

As comprehensive on-line traffic information becomes more readily available it is 
likely that progress using ANN techniques will be more significant as the quantity of  
quality data in model development data sets improves. Substantial amounts of  data for 
a large number of  data items can already be collected from urban regions under 



SCOOT control. However, consistent collection and storing of complete data is 
currently inhibited by the low priority attributed to data collection in UTC systems. 

This study has highlighted the complexity of the urban congestion phenomenon which 
continues to elude an unambiguous definition and associated understanding. Currently 
there is no generally accepted definition of the dynamic temporal and spatial queuing 
variability which characterises congestion. Forecasting congestion then adds a further 
level of difficulty• Improving the understanding of this phenomenon should enhance 
understanding of what parameters are most important in representing the underlying 
cause-effect relationships involved. Subsequently a more rigorous assessment of the 
viability of short term congestion forecasting using ANNs could be usefully 
conducted. 
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