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Abstract: It has been well known for a long time that inert gases, such as xenon (Xe), have significant
biological effects. As these atoms are extremely unlikely to partake in direct chemical reactions with
biomolecules such as proteins, lipids, and nucleic acids, there must be some other mode of action to
account for the effects reported. It has been shown that the topology of proteins allows for cavities
and hydrophobic pockets, and it is via an interaction with such protein structures that inert gases
are thought to have their action. Recently, it has been mooted that the relatively inert gas molecular
hydrogen (H2) may also have its effects via such a mechanism, influencing protein structures and
actions. H2 is thought to also act via interaction with redox active compounds, particularly the
hydroxyl radical (·OH) and peroxynitrite (ONOO−), but not nitric oxide (NO·), superoxide anions
(O2

·−) or hydrogen peroxide (H2O2). However, instead of having a direct interaction with H2, is
there any evidence that these redox compounds can also interact with Xe pockets and cavities in
proteins, either having an independent effect on proteins or interfering with the action of inert gases?
This suggestion will be explored here.

Keywords: argon; hydrogen peroxide; hydrogen sulfide; hydroxyl radicals; molecular hydrogen;
nitric oxide; peroxynitrite; protein cavities; superoxide; xenon

1. Introduction

It is well recognised that under stress conditions, cells produce a range of small
signalling molecules [1,2]. Many of these are relatively reactive and have redox activity.
Compounds that accumulate in cells include reactive oxygen species (ROS [3]), such as
hydroxyl radical (·OH), superoxide anions (O2

·−), or hydrogen peroxide (H2O2), as well as
reactive nitrogen species (RNS), such as nitric oxide (NO· [4]) and peroxynitrite (ONOO−).
These compounds are produced by dedicated enzymes. This includes NADPH oxide [5]
for ROS (producing superoxide, which can cascade in reactions to generate H2O2, for
example), xanthine oxidoreductase (producing H2O2 or NO depending on oxygen (O2)
concentrations [6]), and peroxidases metabolising H2O2 [7]. RNS are produced by nitric
oxide synthase (NOS [8]), of which there are three isoforms in humans, and nitrate reductase
(NR), which is important for plant NO generation and metabolism [9]. Hydrogen sulfide
(H2S) is also used in stress responses and is produced by a range of enzymes in mammals:
cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate
sulfurtransferase (3-MST) [10].

Many of these signalling-active compounds are relatively toxic, so they have a detri-
mental effect on cells at high concentrations. For example, H2S has effects on mitochondrial
function, which partly accounts for its toxicity [11]. However, at low concentrations, these
molecules have significant signalling roles, which allow for stress tolerance, including
during drought [12], pathogen challenge [13], salt stress [14], heavy metal stress [15], and
extreme temperature tolerance [16].

The reactivity of ROS, RNS, and H2S partly accounts for the cellular responses seen.
Many proteins contain one or more relatively reactive thiol groups as side chains of cysteine
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residues. Such -SH groups can be deprotonated to the thiolate. If two cysteines are in
the correct three-dimensional orientation, they can react and combine to create a disulfide
cystine. This can add to the structural rigidity of a protein. On the other hand, thiols
can be modified by a reaction with a range of reactive signalling molecules. H2O2 can
lead to the oxidation of thiol to create the sulphenic acid group [17], a modification that is
reversible, so in a manner akin to phosphorylation, this oxidation can create a new protein
topology and hence activity, which can be readily reversed. Higher H2O2 concentrations
can lead to higher oxidation states of the thiol, i.e., suphinic acid and sulphonic acid,
and this leads to irreversible modification. NO leads to the modification of thiols to
produce the -SNO group (S-nitrosylation [18]), which can be reversed in a similar manner
to phosphorylation. H2S leads to the persulfidation [19] of thiols to produce -SSH, which is
reversible. Such thiol modifications of proteins can account for the range of effects seen on
ROS/RNS/H2S accumulation. These reactive molecules can also react together and create
new reactive signalling molecules. Superoxide and NO can react, for example, to create
peroxynitrite, a signalling molecule in its own right [20]. NO and H2S will react to generate
nitrosothiols [21], which can also act in a signalling role. Therefore, the reactivity of these
molecules is important for their action in signalling.

Molecular H2 is also known to have signalling effects and, therefore, needs to be
considered alongside other small signalling molecules. H2 has been shown to have effects
in a range of disease conditions in humans, such as diabetes [22], degenerative disease [23],
and even COVID-19 [24]. H2 has been mooted as being reactive with hydroxyl radicals
(·OH) and peroxynitrite [25]. It is thought to be unreactive with O2

·−, H2O2, or NO. It
seems unlikely that H2 has all its effects via interactions with ·OH or ONOO−, and therefore
some other mechanisms of action are probably pertinent to consider. H2 may act via its
redox action, for example, as argued previously [26].

It has been long known that inert gases such as xenon (Xe) [27] have biological effects.
Inert gases such as Xe will not chemically react with biomolecules such as proteins; therefore,
they must have a different mode of action. There has been a body of work on how Xe (and
other inert gases) interact with polypeptides, and it is known that they may engage with
cavities and pockets in proteins, as discussed in more depth below. The recent work by
Turan et al. [28] on myoglobin (Mb) exemplifies this kind of work. Although such binding
and interaction of inert gases has been studied in animal systems, such as the Mb work,
there are examples where work has been carried out in plants. For example, Duff et al. [29]
worked on plant copper amine oxidases, while Murray et al. [30] investigated the binding
of Xe to photosystem II. Having said that, there is no reason why the binding of inert gases,
and as suggested here, ROS/RNS, etc., could not be a common mechanism in any organism.
Therefore, the discussion is not limited to plants, and it is hoped that this discussion will be
of interest to a range of biochemists.

With the knowledge that Xe can interact with proteins, it has recently been suggested
that H2 may mimic the action of other gases, i.e., it may interact with cavities and pockets
in the structures of proteins [31]. Therefore, examining how inert gases act may provide an
indication of how other molecules may have bioactivity. Following on from this, a question
that could be posed here is: does this only apply to inert gases? Can other small signalling
molecules, whether inert or not, have a similar mode of action?

Here, it is suggested that small signalling molecules can act in a manner akin to Xe.
The actions and ideas mooted here can be summed up in the scheme shown in Figure 1.
The discussion below explores these ideas more deeply and looks at some of the evidence.
If small signalling molecules such as ROS and RNS can work via this mechanism, such
discussion will unlock a new way of looking at the mode of action for a range of hugely
important signals in all organisms, including plants.
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Figure 1. Possible modes of action of inert gases and other small signalling molecules. (A) Inert gases
acting via their interaction with protein cavities. (B) Small signalling molecules such as ROS and RNS
acting through their interaction with protein cavities. (C) Small signalling molecules such as ROS and
RNS acting via their interaction with thiol groups on proteins. Black arrows indicate mechanisms
that are well recognised. Red arrows indicate a mechanism mooted in this paper.

2. Other Inert Gases

The classical inert gas that is known to have bioactivity is Xe. This has been known
for a long time, at least since the 1940s [27]. Some of the actions of Xe include behaving as
an anaesthetic and having cytoprotective effects [32]. There seems to be no doubt that Xe
has physiological effects and acts on cellular function. However, if Xe is inert, how does it
interact with biomolecules?

Proteins are known to have complex, dynamic, and often quite loose structures, which
include cavities and pockets in their topology. In these cavities and pockets, some small
molecules may migrate. It is interesting to note that such cavities are often dubbed “Xenon
binding pockets”, for example, in an article by Duff and colleagues [29]. However, this
does not mean that these cavities are exclusively occupied by Xe or that the interaction of
the small atom/molecule is a static event. Recent work by Turan et al. [28] shows that the
Xe can migrate through channels in the protein, in this case Mb, and therefore there is a
dynamic interaction taking place. Indeed, this work shows that Mb is in fact an allosteric
protein.

The globin family has been used as a model system for studying Xe binding. This
interaction has been known for a long time. For example, Schoenborn et al. [33] explored
Xe binding to sperm whale Mb in the 1960s. Researchers continued to understand the
interactions more, for example, the work in the 1980s by Herman and Shankar [34] and
Tilton et al. [35], and has continued to today, as exemplified by the work by Turan and
colleagues [28]. Research with haemoglobin has a similar history, with reports spanning
back to at least the 1960s [36], work taking place in the 1980s [37], and more recent work
being reported [38].

However, Xe interacts with a range of proteins. Prangé et al. [39] list a range of proteins
that were studied for the binding of Xe and Krypton (Kr). These include elastase, subtilisin,
cutinase, collagenase, lysozyme, the lipoamide dehydrogenase domain from the outer
membrane protein P64k, urate-oxidase, and the human nuclear retinoid-X receptor RXR-α.
Rubin et al. studied maltose binding protein [40], while others have focused on copper
amine oxidases [29,41] and urate oxidase [42]. It has also been found that in humans, Xe
leads to an increase in erythropoietin by triggering an increased production of hypoxia-
inducible factor 1α (HIF-1α) [43]. Clearly, there is a range of proteins that are able to bind
inert gases, with the potential for changes in their structures and therefore functions. In this
vein, Winkler et al. have reported in silico screening to identify xenon protein targets [44].
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However, Xe is not the only inert gas that is known to have an influence on a cell’s
activity. Kr was mentioned above [39]. As with other gases, this work spans back to at
least the 1960s, when the solubility of Kr in biological materials was reported [45], whilst
more recent work has shown that Kr nanobubbles inhibit the activity of pepsin [46]. Argon
(Ar) is known to have neuroprotective [47] and organoprotective effects [48]. For example,
it was shown to be neuroprotective against cerebral ischemia and brain injury in in vitro
models [49]. Ar appears to have neuroprotection by inhibiting Toll-like receptors, and it
also has anti-apoptotic action [50]. Some of Ar’s effects may also be due to altering kinase
signalling in neurons and glial cells [51]. Ar is also known to have narcotic effects. A review
of argon’s biological effects was published by Ye et al. [52], but what seems certain is that
Ar has effects on proteins despite being inert.

Other inert gases worth considering here are Neon (Ne) and helium (He). Both have
reported effects [53]. However, just because one gas has an effect does not mean they all do.
Interestingly, in Neurospora crassa, it was reported that the growth rate in the presence of
inert gases was correlated to the molecular weight of those gases. There was also a formula
provided: R = 3.88 − 0.1785 (MW)

1
2 , where R is the growth rate (in millimetres per hour

at 30 ◦C) [54]. In a neuronal injury model, Xe was found to be protective, Ar and Kr had
no effect, and He was the detrimental effect [55], a trend also reported by Rivzi et al. [56].
Therefore, what is found with one gas cannot be automatically translated to the other gases.
This needs to be borne in mind if we are going to extend this idea of small molecules
binding to proteins to a range of other compounds, such as ROS, RNS, or H2S.

As already mentioned, H2 could be thrown into this mix [31]. There is no evidence
that H2 has an influence on the activity of proteins using such a mechanism. There are
issues to be considered here. H2 is extremely small, and perhaps it could be argued that it is
too small to have such an effect. On the other hand, there is no reason to suspect that single
H2 molecules act alone, and until a thorough investigation of this possible mechanism of
H2 is carried out, there is no reason to rule this out, or indeed in, as a mode of action of H2.

3. Other Small Signalling Molecules That May Need to Be Considered When
Discussing Protein Cavities

It is known that inert gases can interact with proteins via cavities and pockets. Here it
is suggested that other small molecules, especially ROS, RNS, and sulphur-based molecules
(so-called reactive sulfur species (RSS)), should be considered. Classically, these molecules
are grouped together, but in reality, they are a wide range of compounds. Xe has a Van
der Waals radius of 216 pm, so anything smaller than this should be able to partake in
the protein interactions suggested here. Any molecule that is substantially larger may be
excluded from cavities and pockets, but there is also the inherent reactivity of the molecule
to consider.

The term ROS traditionally embraces those molecules based on oxygen [57]. Therefore,
O2

·− is to be considered here. This molecule is relatively unstable and is likely to react with
other molecules. However, it can also be protonated and move through membranes. It is
small and should be considered here. O2

· can readily dismute to H2O2, a molecule known
to have numerous signalling roles in a range of organisms [58], and therefore should be
included here. On the other hand, although small, ·OH is very reactive and unlikely to
partake in sitting in protein pockets without having an imminent or previous chemical
reaction. Other ROS that would be worth considering include other peroxides, singlet
oxygen (1O2) [59], and perhaps alpha oxygen (α-O), both of which would be small enough
to enter protein pockets.

RNS are also a wide-ranging group of compounds, and like ROS, they are known
to have signalling functions in cells [60]. Although NO is often the focus as it is such
an important signalling molecule [61]. However, as mentioned, superoxide and nitric
oxide can react together to produce ONOO−, a relatively reactive but also relatively small
molecule. It should probably be considered a compound worth more investigation here.
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However, there are also several other RNS worth considering, including nitrosyl anions,
nitrosyl cations, nitrogen dioxide, dinitrogen oxide, and nitronium ions.

Small signalling molecules based on sulphur are also a diverse range of molecules,
some of which are likely to have signalling roles in cells [62,63]. Most of the signalling roles
of this group of compounds tend to focus on H2S [64]. However, several other compounds
ought to be considered for discussion here. These include the sulfhydryl (HS·) or thiyl
radicals (RS·), but these may be too reactive to interact with protein cavities as suggested
here. Sulfur compounds can also produce disulphides. Hydrogen disulfide (HSSH) may
be worth considering, but those with large R groups (RSSR) are less likely to interact with
cavities simply because of steric hindrance. Glutathione (GSH or GSSG) is also unlikely to
be important here either, for the same reason. Other RSS that ought to be contemplated are
thiosulfate, polythionates, and even perhaps elemental sulfur [65].

What is clear, however, is that there is range of compounds that are small and have
biological effects, and as such, it would be worth considering many of these as acting in the
same manner as Xe.

4. Do Other Small Signalling Molecules Use Xe Pockets?

It is clear that Xe is not the only gas that takes advantage of the cavities and channels
in proteins. It is likely that other inert gases, e.g., Ar, Kr, and He, may have the same
mode of action. However, the question being asked here is: can this mechanism of direct
interaction with protein structures be extended to the action of small molecules that are
known to have profound effects on cell signalling? Some of these candidate molecules are
themselves gases, such as NO and H2S, so perhaps this is not such a stretch to consider.

There are certainly some examples in the literature that would support small molecules
interacting with Xe-binding pockets. For example, in haemoglobin, oxygen has been shown
to migrate through Xe docking sites while the protein is in the R-state [38]. Previously,
using mutations in the protein, Scott and Gibson [66] had looked at the effects of Xe on O2
binding to Mb. Furthermore, the migration and escape of both O2 and carbon monoxide
(CO) from Mb seem to take advantage of Xe-binding regions and are influenced by the
presence of Xe [67].

Nitrous oxide has effects on proteins and, in many cases Xe is used as a model or a
method of investigation [42,68,69]. Using urate oxidase as a model, Marassio et al. [42]
report that “Xe and N2O bind to, compete for, and expand the volume of a hydrophobic
cavity” in the protein, and so this leads to the inhibition of activity. Later, the same
group [68] argues that although both gases bind to proteins, the mechanisms are not the
same. With a focus on P450 monooxygenase via the work of LeBella et al. [69], it was shown
that both Xe and nitrous oxide occupy a haem-pocket in the enzyme and hence lead to
inhibition. Therefore, here we have a gas that does not sit in the noble gas group but does
have biological activity and seems to have a mechanism akin to that of the noble gases.

If such a mechanism can mediate the effects of nitrous oxide, is there scope to consider
such a mechanism for other small signalling molecules?

In what are described as “gas pockets”, Winter et al. explore how nitric oxide and
other gases have their binding facilitated by the presence of hydrophobic cavity regions [70].
It has been suggested that NO can bind momentarily to alternate cavities in Mb. These
cavities are some distance from the haem binding site and therefore not near the O2 binding
site [66,71,72]. Brunori [71] goes on to say that the sites where NO bind are those that
have been identified in Mb as binding Xe [73]. In haemoglobin, it appears that NO has
movement through tunnels in the protein structures. The paper discusses the presence of
short and long tunnels and emphasises that hydrophobic residues at the entrances to such
tunnels are important: Phe for the long tunnel and Ile for the short tunnel. The authors also
point out that NO can “diffuse from Xe cavity to Xe cavity” [74]. NO has been shown to
bind to the haem-pocket in horse radish peroxidase [75]. In a bacterial system, it is thought
that there is an interaction between nitrite reductase (NiR) and NO reductase (NOR), but of
pertinence to the argument here, NO generated by the first enzyme (NiR) migrates to NOR,
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with that movement being facilitated by the NO translocating through a cavity in NiR and
then a hydrophobic channel in NOR [76].

For other gases, such as carbon monoxide (CO), a similar situation has been reported.
Chu et al. [77] asked if the binding of gases such as NO, O2, CO, or H2 is a random event
on proteins but concluded that the migration of such ligands involves a limited number of
pathways and is facilitated by the presence of specific docking sites on the protein [77]. Elber
and Karplus [78] suggested that in Mb, CO used Xe binding regions, a notion that more
recently has been revisited and reported on [79]. In sperm whale Mb, Bossa et al. [80] also
suggested that CO takes advantage of Xe pockets for binding and migration through the
proteins, along with what they describe as “additional packing defects”. Others too have
added to the weight of evidence that CO migrates through proteins such as Mb, facilitated
by Xe-binding regions [81]. Using nitrogenase, it was suggested that CO might migrate
through the protein through a gas channel which is composed of a series of cavities [82].
Using CO as a probe in hydrogenases (DdHydAB from Desulfovibrio desulfuricans; CaHydA
from Clostridium acetobutylicum; CrHydA1 from Chlamydomonas reinhardtii), it was shown
that inhibition was dependent on the redox state of the H cluster but also the migration of
the gas through the protein [83].

With the view to understanding how proteins may be useful for carbon capture—with
the background of climate change—Cundari et al. [84] suggested that CO2 binding to
proteins is facilitated by acid/base interactions and that β-sheet structures are better than
α-helices.

What of ROS, which are thought to have many of their effects via thiol modifica-
tion? Using 4-hydroxybenzoate hydroxylase (PHBH) and phenol hydroxylase (PHHY),
Hiromoto et al. [85] suggested that their data implied that hydrophobic pockets served as
binding sites for H2O2. In cholesterol oxidase, it was found that both O2 and H2O2 are able
to interact with a hydrophobic tunnel in the protein [86]. Zhao et al. [87] have taken this
idea further and engineered tunnels in cytochrome P450 monooxygenases that are able to
accommodate H2O2. Superoxide anion migration was seen, a process that was reliant on
the presence of a tyrosine residue [88]. Therefore, examples of how ROS can, and need to,
interact with proteins via direct physical mechanisms have been reported.

5. Conclusions and Future

Many gases, such as Xe, have anaesthetic effects, and this has been known for a
long time. As pointed out by Eckenhoff [89], Claude Bernard suggested in 1875 that
such effects involved proteins. Eckenhoff also cites papers pointing out that the presence
of hydrophobic domains in proteins where inert molecules could interact has also been
known for a long time [90,91]. Such work is still continuing, as exemplified by the work of
Colloc’h et al. [92] and Turan et al. [28].

There seems little doubt that inert gases such as Xe have an influence of protein
activity [39], and therefore the activity of the cell, via the direct interaction of the gas
molecules with proteins by taking advantage of the pockets and cavities that exist in
protein structures. Other inert gases have similar biological effects and actions, including
Ar, He, and Ne, while it has been suggested H2 also acts in this way [31]. Certainly, for
H2, much more work focused on this potential mechanism needs to be carried out, either
to confirm that this is one of the modes of action of H2 or to rule it out. Recent work has
concentrated on the interaction of H2 with haem and the subsequent effects mediated by
the removal of hydroxyl radicals [93–95]. However, such mechanisms probably do not
account for all the actions of H2. Several modes of action probably need to be considered to
obtain a full understanding of what H2 is doing in cells [31], including H2 interactions with
protein cavities.

Other gases, such as nitrous oxide, appear to use Xe binding sites for their ac-
tion [42,68,69]. However, what about other small signalling molecules, which fall under the
umbrella terms ROS, RSS, and RNS? Although many such small reactive molecules, such
as H2O2 and NO, have other mechanisms by which they interact with proteins, such as oxi-
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dation [17] and S-nitrosylation [18], respectively, little is known about how such molecules
may interact with proteins by exploiting physical interactions, such as hydrophobic regions,
cavities, and pockets, in the manner in which Xe acts. However, there is some evidence
for NO, H2O2, and O2

·− interacting with proteins by exploiting Xe-pockets and similar
structures [85–88].

A series of questions can be raised here. Should such interactions be more thor-
oughly investigated? Is there competition between small signalling molecules at such
interaction sites in proteins? After all, many of these molecules will be present or even
accumulating—such as during stress responses—together in cells. Is the binding of one
signalling molecule more likely than others, i.e., is there a hierarchy of binding? This seems
to be the case for the noble gases [54]. Can all such molecules partake in this sort of protein
interaction? After all, perhaps H2 is too small. Or do these molecules manage to pack into
these cavities and tunnels in some way, perhaps preventing others from interacting?

Here, there is an attempt to bring together some of the relevant literature about
small molecules, some of which are inert and/or gases, interacting with proteins using
polypeptide cavities and tunnels. It is hoped that this will inspire researchers to look
outside of the normal paradigms of how ROS, RNS, and H2S may interact with proteins.
The future may show that this is a fruitless exploit, but with inert gases such as Xe having
profound effects on protein activity, it is suggested here that such protein biochemistry at
least be considered.
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