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Abstract

Evolutionary Algorithms are search algorithms based on the Darwinian metaphor
of “Natural Selection”. Typically these algorithms maintain a population of individual solutions, each
of which has a fitness attached to it, which in some way reflects the quality of the solution. The search
proceeds via the iterative generation, evaluation and possible
incorporation of new individuals based on the current population, using a number of parameterised
genetic operators. In this thesis the phenomenon of Self Adaptation of the genetic operators is
investigated.

A new framework for classifying adaptive algorithms is proposed, based on the scope of the
adaptation, and on the nature of the transition function guiding the search through the space of
possible configurations of the algorithm.

Mechanisms are investigated for achieving the self adaptation of recombination and mutation
operators within a genetic algorithm, and means of combining them are investigated. These are shown
to produce significantly better results than any of the combinations of fixed operators tested, across a
range of problem types. These new operators reduce the need for the designer of an algorithm to select
appropriate choices of operators and parameters, thus aiding the implementation of genetic
algorithms.

The nature of the evolving search strategies are investigated and explained in terms of the
known properties of the landscapes used, and it is suggested how observations of evolving strategies
on unknown landscapes may be used to categorise them, and guide further changes in other facets of
the genetic algorithm.

This work provides a contribution towards the study of adaptation in Evolutionary Algorithms,
and towards the design of robust search algorithms for “real world” problems.

This copy has been supplied on the understanding that it is copyright material and that no
quotation from the thesis may be published without proper acknowledgement.
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Self-Adaptation in Evolutionary Algorithms

Introduction
Evolutionary Algorithms are search algorithms based on the Darwinian metaphor of “Na

Selection”. Typically these algorithms maintain a finite memory, or “population” of individu
solutions (points on the search landscape), each of which has a scalar value, or “fitness” attac
it, which in some way reflects the quality of the solution. The search proceeds via the iter
generation, evaluation and possible incorporation of new individuals based on the current popu

A number of classes of Evolutionary Algorithms can (broadly speaking) be distinguishe
the nature of the alphabet used to represent the search space and the specialisation of the
operators used, e.g. Genetic Algorithms ([Holland, 1975]: binary or finite discrete representat
Evolution Strategies ([Rechenberg, 1973, Schwefel, 1981]: real numbers) Evolutio
Programming ([Fogel et al., 1966]: real numbers), and Genetic Programming ([Cramer,
Koza, 1989]: tree based representation of computer programs). This thesis is primarily conc
with Genetic Algorithms (GAs) based on a binary problem representation, since these can be u
represent a wide range of problems (ultimately, any problem that can be represented in a com

Although not originally designed for function optimisation, Genetic Algorithms have b
shown to demonstrate an impressive ability to locate optima in large, complex and noisy s
spaces. One claim frequently made is that the GA is a robust algorithm, i.e. that is it is rela
insensitive to the presence of noise in the evaluation signal. However it is recognised th
performance is greatly affected by the choice of representation, size of population, selection m
and genetic operators (i.e. the particular forms of recombination and mutation and the rate at
they are applied). It is easily shown that poor choices can lead to reduced performance, and th
further complication in the fact that both empirical (e.g. [Fogarty, 1989]) and theoretical (e.g.[B
1992a]) studies have shown that the optimal choice is dependant not only on the nature
landscape being searched but of the state of the search itself relative to that landscape.

In this thesis a number of mechanisms are proposed and investigated within whic
parameters governing search are encoded with the individuals and are able to adapt subject to t
evolutionary pressures and mechanisms as the candidate solutions. This is known as Self Ada
of the search strategies.

These mechanisms allow the problem and parameter spaces to be searched in parallel,
the choice of a suitable representation the range of strategies accessible is extended beyon
available to “standard” genetic algorithms.

Using the metric of the best value found in a given number of evaluations, it is shown that
algorithms exhibit superior performance on a variety of problem types when compared to a ra
“standard” GAs. Furthermore, analysis of the reproduction strategies which evolve in the ada
algorithms shows that the behaviours displayed correspond well to what is known about the na
the search landscapes. Finally methods are suggested for utilising this correspondence to ob
line estimates of the nature of an unknown landscape, and to apply them to facets such as pop
sizing.
Organisation

This thesis is organised as follows:
In Chapter One the basic genetic algorithm is introduced and the various operators desc

A review of previous work on optimisation of control parameters is given, followed by a discus
of a number of schemes that have been proposed for adapting operators and parameters du
course of evolution. A framework is presented within which these adaptive algorithms ca
classified.

In Chapter Two previous work on recombination in genetic algorithms is discussed, an
concept oflinkage between genes is introduced. A framework is developed for representing
linkage between genes, within which can be described various operators and the way in whic
preserve information on linkage.
Page 7
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Building on this, in Chapter Three a Self-Adaptive mechanism is introduced based o
principles developed. Performance comparisons against a range of widely used crossover op
are presented, and the effect of changing other search parameters is investigated.

In Chapter Four, Kauffman’s NK-family of search landscapes are introduced [Kauffm
1993]. These are a set of tunable landscapes with well known statistical characteristics. An an
is then given of the recombination strategies which evolve on different types of landscapes, in th
of their known properties. Results are also presented from performance comparisons with
recombination operators. Finally it is suggested that in addition to being effective in an optimis
setting, observations of the strategies evolving may be used to characterise the landscap
searched.

In Chapter Five the focus is turned to mutation, and the application of some ideas
Evolutionary Strategies to Steady State GAs is investigated. The effect of changing other s
parameters and incorporating an element of local search is investigated and the perfor
compared with a variety of widely used and recommended fixed mutation rates. An analysis is
of the mutation rates evolved on different classes of landscapes, and with differing amounts o
search. Following this reasons are given for the empirically observed superior performance
local search mechanism.

In Chapter Six two possible ways of merging the methods described above are considered
of these produce a single reproduction operator within which both the units of heredity (w
determine recombination strategy) and the mutation rate(s) applied are allowed to ev
Performance comparisons and a range of analysis tools are used to investigate the synergistic
of co-evolving the recombination and mutation strategies.

Finally, in Chapter Seven, conclusions and a number of suggestions for future work
presented.

Some of the work contained in this thesis has previously been published elsewhere, specif
parts of Chapter One have been published in [Smith and Fogarty, 1997a],
parts of Chapters Two and Three have been published in [Smith and Fogarty, 1995],
parts of Chapter Four have been published as [Smith and Fogarty, 1996b],
parts of Chapter Five have been published as [Smith and Fogarty, 1996c] and
parts of Chapter Six are based on work published as [Smith and Fogarty 1996a].
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Chapter One
Operator and Parameter Adaptation in Genetic Algorithms
1. A Background to Genetic Algorithms

Genetic Algorithms [Holland, 1975] are a class of population based randomised se
techniques which are increasingly widely used in a number of practical applications. Typically
algorithms maintain a number of potential solutions to the problem being tackled, which can be
as a form of working memory - this is known as the population. Iteratively new points in the se
space are generated for evaluation and are optionally incorporated into the population.

Attached to each point in the search space will be a unique fitness value, and so the spa
usefully be envisaged as a “fitness landscape”. It is the population which provides the algorithm
a means of defining a non-uniform probability distribution function (p.d.f.) governing the genera
of new points on the landscape. This p.d.f. reflects possible interactions between points
population, arising from the “recombination” of partial solutions from two (or more) members of
population (parents). This contrasts with the globally uniform distribution of blind random searc
the locally uniform distribution used by many other stochastic algorithms such as simulated ann
and various hill-climbing algorithms.

The genetic search may be seen as the iterated application of two processes. FirstlyGenerating
a new set of candidate points, theoffspring. This is done probabalistically according to the p.d
defined by the action of the chosen reproductive operators (recombination and mutation) o
original population, theparents. SecondlyUpdatingthe population. This usually done by evaluatin
each new point, then applying a selection algorithm to the union of the offspring and the pare

1.1. Some Definitions
The Genetic Algorithm can be formalised as:

(D1)
where

P0 = (a1
0,..., aµ

0) ∈ Iµ Initial Population

I = {0,1}l Binary Problem Representation

δ0 ⊆ ℜ Initial Operator Parameter set
µ ∈ Ν Population Size
λ ∈ Ν Number of Offspring
l ∈ Ν Length of Representation

F : I → ℜ+ Evaluation Function

G : Iµ → Iλ Generating function

U : Iµ x Iλ → Iµ Updating function

For the purposes of this discussion it has been assumed that the aim is to maximise the eva
function, which is restricted to returning positive values. Although the fitness function is usually
as a “black box”, this restriction will always be possible by scaling etc.

A broad distinction can be drawn between the two types of reproductive operators, accord
the number of individuals that are taken as input. In this thesis the termMutationoperators is used for
those that act on a single individual, producing one individual as the outcome, andRecombination
operators for those that act on more than one individual to produce a single offspring. Typi
recombination operators have used two parents, and the term “crossover” (derived from evolut
biology) is often used as a synonym for two-parent recombination.

Since all recombination operators involve the interaction of one individual with one or m
others, the general form of these functions is:

R : Iµ x δ → I Recombination Operator (D2)

GA P
0 δ0 λ µ l, , , , F G U, ,( , )=
Page 9
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where the individuals taking part are drawn from {1...µ} according to some probability distribution
pr, as opposed to the general form:

M : I x δ → I Mutation Operator (D3)

UsingO ∈ Iλ to denote the set of offspring, an iteration of the algorithm becomes:

Oi
t= M R (Pt, δt) ∀ i ∈ {1...λ} (D4)

Pt+1=U (Ot ∪ Pt) (D5)
The “canonical GA” as proposed by Holland is referred to as a Generational GA (GGA). It

a selection scheme in which all of the population from a given generation is replaced by its offsp

i.e. λ = µ , andU is defined by the p.d.f.pu (ai
t) where

(D6)

Parents for the next round of recombination are chosen with a probability proportional to
relative fitness,R drawing individuals from {1...µ} with a probability distribution functionpr given
by:

(D7)

Holland, and later DeJong also considered the effect of replacing a smaller proportion o
population in any given iteration (known as generations). At the opposite end of the spectru
generational GAs lie “steady state” genetic algorithms (SSGAs) such as the GENITOR algo
[Whitley and Kauth, 1988]. These replace only a single member of the population at any given
(λ = 1).

It can be shown that under the right conditions, the two algorithms display the same beha
In an empirical comparison [Syswerda, 1991] the two variants, were shown to exhibit near ide
growth curves, provided that a suitable form ofpu was used to defineU for the SSGA. In this case
random deletion was used i.e.

(D8)

These results are well supported by a theoretical analysis [DeJong and Sarma, 1992]
deterministic growth equations (in the absence of crossover and mutation).This showed th
principal difference is that algorithms displaying a low ratio ofλ:µ (SSGAs) display higher variance
in their behaviour than those with higher ratios (e.g. 1 for GGAs). This variance decreases with
populations, but was the basis behind early recommendations for generational algorithms
Holland’s original work and the empirical studies in [DeJong, 1975]) where small populations
used. It was also found that the use of strategies such as “delete-oldest” (a.k.a. FIFO) reduc
observed variance in behaviour whilst not affecting the theoretical performance.

However in practice, it is usual to employ techniques such as “delete-worst” in steady
algorithms. This can be seen as effectively increasing the selection pressure towards more hi
individuals, and it has been argued that it is this factor rather than any other which accoun
differences in behaviour [Goldberg and Deb, 1991].

In fact since the algorithm is iterative, the two selection distributions are applied consecut
and so they can be treated as a single operatorU with a p.d.f. given by

ps(ai
t) = pr (ai

t) * pu (ai
t-1) (D9)

pu ai
t( ) 0 i P

t∈
1 i O

t∈



=

pr ai
t( )

F at
i

( )

F at
j( )

j 1=

µ

∑
----------------------------=

pu ai
t( )

n 1–
n

------------ i P
t∈

1 i O
t∈






=
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1.1. Building Blocks and the The Schema Theorem
Since Holland’s initial analysis, two related concepts have dominated much of the theor

analysis and thinking about GAs. These are the concepts ofSchemataandBuilding Blocks. A schema
is simply a hyper-plane in the search space, and the common representation of these for
alphabets uses a third symbol- # the “don’t care” symbol. Thus for a five-bit problem, the sch
11### is the hyperplane defined by having ones in its first two positions. All strings meeting

criterion are examples of this schema (in this case there are 23 = 8 of them). Holland’s initial work
showed that the analysis of GA behaviour was far simpler if carried out in terms of schemat

showed that a string of lengthl is an example of 2l schemata, although there will not in general be

many asµ * 2 l distinct schemata in a population of sizeµ. He was able to demonstrate the result th

such a population will usefully process O(µ3) schemata. This result, known as Implicit Parallelism
widely quoted as being one of the main factors in the success of GAs.

Two features are used to describe schemata, the order (the number of positions in the s
which do not have the # sign) and the defining length (the distance between the outermost d
positions). Thus the schema H = 1##0#1#0 has order o(H) = 4 and defining length d(H) = 8.

For one point crossover, the schema may be disrupted if the crossover point falls betwe
ends, which happens with probability d(H) / (l -1). Similarly uniform random mutation will disrupt
the schema with a probability proportional to the order of the schema.

The probability of a schema being selected will depend on the fitness of the individuals in w
it appears. Using f(H) to represent the mean fitness of individuals which are examples of sche
and fitness proportional selection as per (D7), the proportion m(H) of individuals representing sc
H at subsequent time-steps will be given by:

m(H, T+1) = m(H,t) * probability of selection * (1 - probability of disruption).
In fact this should be an inequality, since examples of the schema may also be created by the
operators. Taking this into account and using the results above gives

(1)

This is theSchema Theorem.
A related concept is theBuilding Block Hypothesis (see [Goldberg, 1989 pp 41-45] for a goo

description). Simply put, this is the idea that Genetic Algorithms work by discovering low o
schemata of high fitness (building blocks) and combining them via recombination to form
potentially fit schemata of increasing higher orders. This process of recombining building bloc
frequently referred to asmixing.

1.2. Operator and Parameter Choice
The efficiency of the Genetic Algorithm can be seen to depend on two factors, namel

maintenance of a suitable working memory, and quality of the match between the p.d.f. generat
the landscape being searched. The first of these factors will depend on the choices of populati
µ, and selection algorithmU. The second will depend on the action of the reproductive operatorR
andM) and the set of associated parametersδ, on the current population.

Naturally, a lot of work has been done on trying to find suitable choices of operators and
parameters which will work over a wide range of problem types. The first major study [DeJong, 1
identified a suite of test functions and proposed a set of parameters which it was hoped would
well across a variety of problem types. However later studies using a “meta-ga” to learn su
values [Grefenstette, 1986] or using exhaustive testing [Schaffer et al., 1989] arrived at diff
conclusions. Meanwhile theoretical analysis on optimal population sizes [Goldberg, 1985] star
formalise the (obvious?) point that the value ofµ on the basis of which decisions could be reliab
made depends on the size of the search space.

The next few years of research saw a variety of new operators proposed, some of whic
Uniform Crossover [Syswerda, 1989]) forced a reappraisal of the Schema Theory and led

m H t 1+,( ) m H t,( ) f H( )

f
------------ 1 pc

d H( )
l 1–
-----------⋅ 

 – pm o H( )⋅–⋅ ⋅≥
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focusing on two important concepts.
The first of these, Crossover Bias [Eshelman et al., 1989], refers to the differing ways in w

the p.d.f.’s arising from various crossover operators maintain hyperplanes of high estimated f
during recombination, as a function of their order and defining length. This is a function of
suitability of the p.d.f. induced by the recombination operator to the landscape induced by the pr
encoding. These findings have been confirmed by more formal analysis on the relative me
various recombination mechanisms [DeJong and Spears, 1990, 1992, Spears and DeJong, 1

The second concept was that of Safety Ratios [Schaffer and Eshelman, 1991] i.e. of the r
probability that a new point generated by the application of reproductive operators would be fitte
its parent(s) to the probability that it is worse. These ratios were shown empirically to be differe
the various reproductive operators, and also to change over time. Again these reflect the
between the p.d.f.s induced by given operators on the current population to the fitness contours
landscape.

This can be demonstrated by a thought experiment using the simplest case of the On
function:

(D10)

In a random initial population, an average of half of the genes will have the non-optimal value
so on average half of all mutations will be successful. However, as the search progresses, a
mean fitness of the population increases, the proportion of genes with the optimal value incr
and so the chance that a randomly distributed mutation will be beneficial is decreased. Th
formalised in [Bäck, 1992a, 1993] where an exact form for the Safety Ratio was derived
mutation probabilityp. This could not be solved analytically, but was optimised numerically a

found to be well fitted by a curve of the form:

As can be seen, this is obviously time-dependant in the presence of any fitness-related se
pressure.

These considerations, when coupled with interactions with other Evolutionary Algori
communities who were already using adaptive operators (e.g. the (1+1) [Rechenberg, 1973] anµ λ)
[Schwefel, 1977, 1981] Evolutionary Strategies), has led to an ever increasing interest i
possibilities of developing algorithms which are able to adapt one or more of their operato
parameters in order to match the p.d.f. induced by the algorithm to the fitness landscape.

In terms of the formalisation above, this equates to potentially allowing for time variance in
functionsR,M andU, the parameter setδ, and the variablesµ,andλ. It is also necessary to provide

some set of update rules or functions to specify the form of the transitionsXt → Xt+1 (whereX is the
facet of the algorithm being adapted).

As soon as adaptive capabilities are allowed, the size of the task faced by the algorit
increased, since it is now not only traversing the problem space but also the space of all varia
the basic algorithm. This traversal may be constrained, and may take several forms, depending
scope of change allowed and the nature of the learning algorithm. It may vary from the simple
dependant decrease in the value of a single parameter according to some fixed rul
[Fogarty, 1989]) to a complex path which potentially occupies any position in the hyper space de
by variations inR, M andδ, and which is wholly governed by self-adaptation and the updating proc
(e.g. [Smith and Fogarty, 1996a]).

If the exact nature of the search landscape is known, then it may be possible to follow
optimal trajectory through algorithmic space for a given problem. Unfortunately this will
generally be the case, and in practice it is necessary to provide some kind of learning mechan
guide the trajectory. Inevitably there will be an overhead incurred in this learning, but the hope i
even allowing for this, the search will be more efficient than one maintaining a fixed set of oper
and parameters.

f a( ) ai
i 0=

l

∑=

popt
1

2 f a( ) 1–( ) l–
-----------------------------------≈
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In fact, the “No Free Lunch” theory [Wolpert and Macready,1995] tells us that averaged
all problem classes, all non-revisiting algorithms will display identical performance. Since for f
operator/parameter sets there will be problems for which they are optimal, it follows that there
be other classes of problems for which the performance is very poor. The intention behind the
adaptive operators and parameters within GAs is to create algorithms which display good “all-ro
performance and are thus reliable for use as optimisers on new problems.

1.3. A Framework for Classifying Adaptation in Genetic Algorithms
The various methods proposed for incorporating adaptation into Genetic Algorithms, ma

categorised according to three principles, namelyWhatis being adapted (operators, parameters et
the Scopeof the adaption (i.e. does it apply to all the population, individual members or just s
components) and theBasisfor change (e.g. externally imposed schedule, fuzzy logic etc.). In the
following sections these principles are described in more depth, along with some examples o
type of adaptation.

1.3.1.What is being Adapted?
As has been described above, the genetic algorithm may be viewed as the iterated appl

of two processes:Generating new points in the landscape (via probabalistic application
recombination and/or mutation operators to the previous population), andUpdating(via selection and
resizing) to produce a new population based on the new set of points created and (possib
previous population.

The majority of the proposed variants of the simple genetic algorithm only act on a s
operator, and furthermore it is true to say that most work has concentrated on the reprod
operators i.e. recombination and mutation. Whilst considerable effort has been expended
question of what proportion of the population should be replaced at any given iteration, the fun
U, used to update the population, once chosen, tends to be static.

Much theoretical analysis of GA’s has focused on the twin goals of exploration of new reg
of the search space and exploitation of previously learned good regions (or hyperplanes) of the
space. The two terms may be explained by considering how the p.d.f.s governing generation
points change over algorithmic time, remembering that the p.d.f.s are governed jointly by the a
of the reproduction and selection operators. An explorative algorithm is one in which a relatively
probability is assigned to regions as yet unvisited by the algorithm, whereas an exploitative algo
is one in which the p.d.f. represents rather accumulated information about relatively fitter region
hyperplanes of the search space. Thus the p.d.f. of an explorative algorithm will change more r
than that of an exploitative one.

Broadly speaking most adaptive algorithms work with the settings of either a Generationa
(GGA) or a “Steady State” GA (SSGA) which represent the two extremes of i) generating an en
new population (through multiple reproductive events) and ignoring the previous population i
selection process or ii) generating and replacing a small number (usually one) of individuals
single reproductive event) at each iteration.

If the reproductive operators which are applied produce offspring that are unlike their par
then the updating mechanisms of GGAs and SSGAs may be seen as favouring exploratio
exploitation respectively. (Note that the equivalence of the growth curves for SSGAs and G
described earlier on page  10 was only in the absence of crossover or mutation).

However the extent to which offspring differ from their parents is governed not simply by
type of operator applied, but by the probability of its application as opposed to simply reprodu
the parents. Thus for a given population and reproductive operator, it is possible to tune the sh
the induced p.d.f. between the extremes of exploration and exploitation by altering the probabi
applying the reproductive operator, regardless of the updating mechanism.

It is this last point which has led to a focusing on the adaptation of the reproductive opera
since by changing the amount of disruption they induce it is possible to indirectly adapt the prop
Page 13
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of the population which is replaced at each iteration, whilst using simple and efficient sele
mechanisms. This allows the tuning of the updating mechanism to particular applic
characteristics e.g. the possibility of parallel evaluations etc.

A number of different strands of research can be distinguished on the basis of wha
algorithms adapt, e.g. operator parameters, probabilities of application or definitions.

In some ways the simplest class are those algorithms which use a fixed set of operato
adapt the probability of application of those operators. Perhaps the two best known early exam
work of this type are the use of a time-dependant probability of mutation [Fogarty, 1989] and th
of varying probabilities of application for a few simple operators (uniform crossover, avera
crossover, mutation, “big creep” and “little creep”) depending on their performance over the las
generations [Davis, 1989]. Many later authors have proposed variants on this approach, u
number of different learning methods as will be seem later. A similar approach which change
population updating mechanism by changing the selection pressure over time can be seen in the
Deluge Evolutionary Algorithm [Rudolph and Sprave, 1995].

An extension of this approach can be seen in algorithms which maintain distinct
populations, each using different sets of operators and parameters. A common approach is to
approach with a “meta-ga” specifying the parameters for each sub-population- e.g. [Grefen
1986, Kakuza et al., 1992, Friesleben and Hartfelder,1993] to name but three. Although the se
in different (sub)populations may utilise different operators, each can be considered to have t
set available, but with zero probability of applying most, hence these are grouped in the first cate
A similar approach is taken to population sizing in [Hinterding et al., 1996]. All of this class
algorithms are defined by the set:

(D11)

whereΓ: δ → δ is the transition function such thatδt = Γ (δt-1). As has been described, the functio
Γ will often take as parameters some “history” of relative performance, and the numbe
generations iterated. Note that hereλ andµ are subsumed intoδ.

A second class of adaptive GA’s can be distinguished as changing the actual action
operator(s) over time. An early example of this was the “Punctuated Crossover” mechanism [Sc
and Morishima, 1987] which added extra bits to the representation to encode for crossover p
These were allowed to evolve over time to provide a 2 parent N-point recombination mecha
where N was allowed to vary between zero and the length of the string. The Lego and related
mechanisms [Smith and Fogarty,1995, 1996a, 1996b] evolve the “units of heredity” which dete
recombination and mutation mechanisms, through the use of genetic encoded “links” between
the representation.

In both of these cases, the form of the reproductive operators are constant but their expr
is dependant the particular individuals to which they are applied. The definition of the population

changes toPt ∈ Iµ x Xµ where the form ofX will depend on the algorithm: for example in Schaffe

and Morishima’s workX = {0,1}l-1 with a 1 in positionj denoting that crossover should take plac
after locusj. The information governing the crossover operator is genetically encoded, and subj
mutation and recombination along with the problem encoding. The transition function here is s
the genetic algorithm itself i.e.Γ = UMR.

Algorithms which encode their operators and/or parameters in the genotype and use tra
functions of this form are generally referred to as Self-Adaptive.

Within the category of algorithms which change the form of their operators rather than si
the probability of application fall those algorithms which alter the mechanisms governing
updating of the working memory by continuously changing its size (e.g.[Smith R., 1993, Smith R
Smuda, 1995, Arabas et al., 1994,). In the first two examples, the form ofpu is determined by
comparing pairs of individuals as matched during crossover. In the work of Arabas et al.,
individual is given a “lifespan”,g, at the time of its creation, according to its relative fitness. The p.
governing the creation of a new population thus changes according to the current state

GA P
0 δ0

l, , F G U Γ, , ,( , )=
Page 14
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i.e. P = (a1,...,aµ, g1,...gµ) and (D12)

This can be contrasted to the SSGA with FIFO deletion where the lifespan of every individuaµ
evaluations.

An alternative approach is to alter the representation of the problem itself: this can be vi
as an attempt to make the landscape suit the p.d.f.s induced by the operators rather than vic
Work on “Messy GA’s” ([Goldberg et al., 1989] and many subsequent publications) is base
finding appropriate linkages between genes, using a floating representation where the order
variables is not fixed. Since the “cut and splice” recombination operator tends to keep tog
adjacent genes, this can be seen as moulding the landscape to suit the operators. Similarly the A
strategy [Schaefer, 1987] adaptively resizes the representation according to global measure
algorithm’s success in searching the landscape, and more recently work on co-evo
representations [Paredis, 1995] can be seen in this restructuring light, as can the Adaptive P
Functions of [Eiben and van der Hauw, 1997, Eiben et al. 1998].

1.3.2. What is theScope of the Adaptation?
The terminology of [Angeline, 1995] defines three distinct levels at which adaptation can o

in evolutionary algorithms.Population-leveladaptations make changes which affect the p.d
contribution from each member of the current population in the same way.Individual-level
adaptations make changes which affect the p.d.f. contribution from each member of the popu
separately, but apply uniformly to each of the components of the individuals’ representation. A
finest level of granularity areComponent-leveladaptations, where the p.d.f. contributions from ea
component of each member may be changed individually.

Inevitably, the scope of the adaptation is partly determined by what facet of the algorith
being adapted, and the nature of the transition function. Changes in population size [Smith, R
Smuda 1995], or problem restructuring (e.g. [Schaefer, 1987, Eiben and van der Hauw, 1997,
et al. 1998]) for example can only be population level adaptations. However changes in
operators can occur at any of the three levels (for example mutation rates in Evolutionary Strate
and so the notion of Scope forms a useful way of distinguishing between algorithms.

The forms ofΓ defined by different adaptive algorithms are all attempts to tune the p.d
arising from the action of genetic operators on the population to the topography of the pro
landscape. Earlier an algorithmic space was described encompassing any given variant of the G
adaptation was defined as a traversal of this algorithmic space. For population level chang
trajectory will be a single path, as all members of the algorithm’s population at any given time
share a common set of operators and parameters. For individual and component level adaptati
path will be that of a cloud, as each member follows a slightly different course. This clou
composed of a number of traces which may appear and disappear under the influence of sele

1.3.2.1. Population-Level Adaptation.
Recall from above that Genetic Algorithms can be viewed as the iterated probaba

application of a set of operators on a population, and that in most cases these operators are sta
is to say that their forms and parameters are fixed and apply uniformly to the whole populatio
they areglobal. Population-level adaptation algorithms can be typified as using a fixed set of gl
operators, but allowing their parameters to vary over time. The most important parameter is of c
the probability of application. The various “meta-ga” algorithms mentioned above, and the comp
sub-populations of the breeder GA e.g. [Schlierkamp-Voosen and Mühlenbein, 1994] belong f
to this level. In general algorithms using adaptation at the population level will take the form of (D
They may differ in the set of operators used, but are principally distinguished by the trans
functionΓ.

pu ai
t( )

0 gi t≥

1 gi t<



=
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There are a number of theoretical results which provide support for this kind of approach
regarding the time-variance of the optimal mutation rate [Mühlenbein, 1992, Hesser
Manner, 1991] (see also the discussions Bäck’s results, and of Schaffer & Eshelman’s experi
results regarding the time dependencies of Safety Ratios for mutation and crossover, on page

In [Fogarty, 1989] an externally defined form is used to reduce the mutation rate over tim
a similar fashion to the cooling schedules used in Simulated Annealing. However a more com
approach is to adjust one or more parameters dynamically in accordance with the performance
algorithm or some measured quantity of the population.

A well known, and popular approach (e.g. [Davis, 1989, Corne et al., 1994, Julstrom, 199
to keep statistics on the performance of offspring generated by various reproductive operators r
to their parents. Periodically “successful” operators are rewarded by increasing their probabi
application relative to less successful operators. This approach does require extra memory, sin
usually found necessary to maintain family trees of the operators which led to a given individu
order to escape from credit allocation problems.

Other authors have proposed control strategies based on simpler measures. Eshelm
Schaffer use the convergence of the population to alter the thresholds governing incest prev
and the time spent without improvement to govern the probability of restarting the GA using vigo
mutation [Eshelman and Schaffer, 1991]. This latter is similar to many strategies for trac
changing environments, where a drop in the performance of the best member of the current gen
is used to trigger a higher rate of mutation e.g. [Cobb and Grefenstette, 1993].

In [Lee and Takagi, 1993] fuzzy rules are learned and used to control various parameters
on the relative performance of the best, worst and mean of the current population. This conc
observing the fitness distribution of the population and then altering parameters according to a
rules is also used in [Lis, 1996] where the mutation rate is altered continuously in order to k
fitness distribution metric - the “population dispersion rate” within a desired range.

A more complex approach, and one which at first appears to belong to the component le
that of [Sebag and Schoenauer, 1994] who maintain a library of “crossover masks” which they
as good or bad. Inductive learning is used to control application of crossover and the periodic up
of mask strengths. However the rules learnt to control crossover are applied uniformly and s
belongs firmly in the category of population-level adaptation.

Perhaps the most obvious method of achieving population-level adaptation is to dynam
adjust the size of the population itself by creating or removing members according to some g
measurement. Two approaches have been recently reported. In [Smith R., 1993, Smith
Smuda, 1995] the size is adjusted according to estimated schema fitness variance, whe
[Hinterding et al., 1996] three populations of different sizes are maintained, with periodic res
according to their relative successes.

Finally many of the proposed methods of adapting representations mentioned above plain
into this category.

1.3.2.2. Individual Level Adaptation
An alternative approach to adaptation is centred on consideration of the individual memb

the population rather than the ensemble as a whole. Thus as a simple example, a globa
adaptation may vary the probability of mutation for the whole population, whereas an individual
algorithm might hold a separate mutation probability for each member of the population. Consid
the p.d.f. governing generation as the sum of the contributions from each member, then popu
level changes affect the way in which the contributions are determined uniformly, whereas indiv
level adaptations affect the p.d.f. contributions for each member separately.

A frequently claimed justification for this approach is that it allows for the learning of differ
search strategies in different parts of the search space. This is based on the not unrea
assumption that in general search space will not be homogeneous, and that different strategies
better suited to different kinds of sub-landscape.

As a crude metaphor, imagine a blind robot, equipped only with an altimeter, dropped at ra
Page 16
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on the earth and trying to reach the highest point it can. If on a large flat region, it would be b
employed using a wider search (more uniform p.d.f. i.e. exploration), whereas if dropped by c
in the Himalayas such a search might rapidly lead it out of the mountain range. In the latter c
more localised search (i.e. exploitation) would be far preferable.

Algorithms at this level have been proposed which fall into a number of different categori
terms of the basis and scope of adaptation.

Perhaps the most popular class are algorithms which encode some parameters for an o
into the individual and allow these to evolve, using the updating process itself as the basis for lea
An early example of this was the “Punctuated Crossover” mechanism of [Schaffer
Morishima, 1987]. This added a mask to the representation which was used to determine cro
points between two parents during recombination, and which was evolved along with the solu
(as described on page 14 above). The results reported were encouraging, but this may have b
to the high number of crossover points evolved (compared to the algorithm used for compariso
[Levenick, 1995] a similar mechanism is investigated, but with the added bits coding for chang
crossover probability at those points rather than deterministic crossing.

A more complex version of these, which uses discrete automata to encode for the cros
probabilities at each locus, is discussed in [White and Oppacher, 1994]. In this algorithm

representation is extended to store the state of the automata at each locus i.e.ai = {0,1} l x {0,... n} l-1.

Unlike the two algorithms just mentioned, the transition functionΓ, which mapsai
t → ai

’ t is not
simply the combination of recombination and mutation acting on the genotypes prior to the act
selection. Rather a set of rules are applied based on the relative fitness of offspring and parents
update the state of each automata.

An alternative method for controlling recombination strategies was used in [Spears, 1
where a single bit was added to the genotype and used to decide whether two-point or un
crossover would be used when an individual reproduced. Again self-adaptation was used f
transition. This control method differed from the above mechanisms in that they allow the form o
operator itself to change, whereas this algorithm effectively associates two operators with
individual and associates probabilities of 0 or 100% of application with each.

It is noticable that this was compared with a population level mechanism where the re
proportion of bits encoding for the two operators was used to make a global decision about op
probabilities. Although these two alternatives should provide the same ratio of usage of th
operators, the latter mechanism was found to work far less well, suggesting that there is indeed
in attaching reproductive strategies to particular individuals. Certainly the two methods can
different p.d.f.s for the next generation of points.

Perhaps more common has been the adoption of the idea of self adaptive mutation rate
Evolutionary Strategies. The addition of extra bits to the genome to code for the mutation rate fo
individual was first investigated for GGAs in [Bäck, 1992b]. It was found that the rates evolved w
close to the theoretical optimum for a simple problem, providing that a sufficiently rigorous sele
mechanism was used. The second level of adaptation in [Hinterding et al., 1996] uses a s
encoding to control the standard deviation of the Gaussian distributed random function used to
genes. In [Smith and Fogarty, 1996c] self adaptive mutation was translated into a Steady
algorithm, with the addition of a (λ,1) “inner GA”. This was found to be necessary to provide t
selection pressure for self adaptation, but also provided a kind of local search.

However not all algorithms using adaptation at the individual level rely on endogenous co
and self-adaptation. As with population level adaptations, a number of other algorithms can be
to control the behaviour of individuals.

A typical example is found in [Srinivas and Patnaik, 1994] where the probabilities of appl
mutation or crossover to an individual depend on its relative fitness, and the degree of conver
(of fitnesses) of the population. This fitness-dependant control of the p.d.f. contribution from
individual is used to control the global balance of exploitation and exploration, so that the inform
in relatively fitter individuals is exploited whereas exploration is achieved by associating “broa
Page 17
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p.d.f.s with the less fit members. Another approach based on relative local fitness in a stru
population uses a pattern of rules to control the reproduction strategy (replication, crosso
mutation) based on metaphors of social behaviour [Mattfeld et al., 1994]. Similarly the Grand D
Evolutionary Algorithm of [Rudolph and Sprave, 1995] adapts the “acceptance” threshold gove
the updating process separately for each point, based on relative local fitness over a period o
Effectively all of these exogenously controlled algorithms take the form:

(D13)

where there is now a vector of sets of parameters

Similarly measures of relative fitness and convergence are used to determine the “life
given to a newly created individual in [Arabas et al., 1994]. This novel approach controls the con
and size of the working memory by assigning a fixed lifetime to each individual after which
removed from the memory (see page 14). This is one of the very few algorithms reported prov
dynamic population sizing, and the results reported suggest that this is a promising line of res

1.3.2.3. Component-Level Adaptation
This is the finest level of granularity for adaptation: here algorithms allow differ

reproduction strategies for different parts of the problem representation. Again these ideas or
from Evolutionary Strategies research, which has progressed over the years from a single par
controlling the mutation step size for the population, through individual step-sizes for each me
to having a separate mutation step size encoded for each component being optimised.

This can be considered as a means of allowing the focus of search to be directed, a
principal advantage is that it allows for a much finer degree of tuning of the p.d.f. contribu
associated with each individual. All of the work done at this level has used self-adaptation a
method of learning parameters.

This approach was tried in the self-adaptive mutation mechanism of [Bäck, 1992b]
compared with individual level adaptation. Essentially a real-valued mutation rate was added fo

locus i.e.ai = {0,1} l x ℜl. The results suggested that in certain circumstances the results
advantageous, but that on other landscapes the learning overheads associated with all th
mutation parameters slowed the search down. The conclusions seemed to be that such a me
could be very effective if the components were properly defined i.e. the level of granularity
chosen suitably.

An attempt to solve some of these problems can be seen in the Lego mechanisms [Sm
Fogarty, 1995, 1996b]. These are somewhat similar to the “Punctuated Crossover” algorith
Schaffer and Morishima in adding extra bits to the representation to determine whether two ad
genes may be broken by crossover. However the emphasis is different, in concentrating on f
blocks of co-evolved linked genes. The recombination mechanism also differs in that blocks of
may be chosen from the whole population (rather than just two parents) when a new individ
formed. This evolution of linkage has to be seen therefore as an adaptation of recombination s
at the component level, since individuals have no meaning in the context of parents other th
contributing to a “genepool” from which new individuals are assembled. This emphasis on evo
successful components rather than individuals was taken further in the Apes algorithm [Smit
Fogarty, 1996a]. This included component level adaptation of mutation rates by attaching a mu
rate to each block, which is also self-adapted.

1.3.3. What is the Basis for Adaptation?
The final distinction between classes of adaptive genetic algorithms is perhaps the most imp
namely the basis on which adaptation is carried out. This in turn hinges on two factors, firstl
evidence upon which adaptation is carried out, and secondly the rules or algorithm which defin
changes are effected. In terms of our notation this second factor is the definition of the tran
functionΓ, and the evidence translates to the choice of parameters or inputs for that function.

GA P
0 δ0

l, , F G U Γ, , ,( , )=

δ δ1 … δµ, ,( )=
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The first distinction between kinds of adaptive algorithms is drawn on the basis of the evid
that they consider.

In one camp are all those algorithms which take as their evidence differences in the re
performance of strategies. These include Self-Adaptive and meta-GAs. Those algorithms
adjust operator probabilities based on records of performance, such as those of [Davis 1989, C
al. 1994, Julstrom 1995] fall into this category as their probabalistic nature allows the concu
testing of multiple strategies (the difference being that they use predefined rules to adju
strategies). Also into this category fall those algorithms which draw conclusions base
observations of strategy performance such as Sebag and Schoenauer’s Inductively Learned Cr
Masks, and White and Oppacher’s Automata Controlled Crossover.

Into the other camp fall those algorithms which adapt strategies based on empirical evi
which is not directly related to the strategy followed. This might be convergence statistics (in t
of the population fitness, or the allele distribution), observed relative schema fitnesses etc. Alth
some use simple rules e.g. previously learned Fuzzy Rule-Sets [Lee and Takagi, 1993] or pred
schedules [Fogarty, 1989], most base the derived trajectory on an attempt to fulfil some criter
maintain a population statistic. Examples of this latter are the “Population Dispersal” metr
[Lis, 1996], and “Schema Fitness Variance” [Smith, R. and Smuda, 1995].

Consideration of the nature of the transition function itself suggests another impo
distinction that can be drawn between two types of algorithm. These have been labell
“Uncoupled vs. Tightly Coupled” [Spears, 1995], or “Empirical vs. Absolute” update rules [Ange
1995]. Essentially in the first type of algorithm, the transition functionΓ is externally defined -
previously referred to as exogenous algorithms. In the second type (endogenous algorithm
operator parameters (and possible definitions) are encoded within individuals, andΓ is itself defined
by the genetic operatorsU, M andR, i.e.the GA itself is used to determine the trajectory. This lat
approach is more commonly known as Self-Adaptation.

To clarify this point, in all algorithms a set of evidence is considered, on the basis of which
trajectory of the algorithm is decided. If the evidence is not relative strategy performance, the
control mechanism is necessarily uncoupled from the generation-updating mechanisms
evolutionary algorithm itself. If the evidence is relative strategy performance, then the co
mechanism may be externally provided (as in, for example, Davis’ work) or may be a function o
genetic operators of the algorithm itself i.e. Self Adaption.

In most uncoupled adaptive algorithms the evidence takes the form of statistics abou
performance of the algorithm, such as the fitness distribution of the population, “family trees
simply the amount of evolutionary time elapsed. The important factor is that the mechanism u
generate the new strategies based on this evidence isexternally providedin the form of a learning
algorithm or a set of fixed rules.

A number of Self-Adaptive algorithms have been described above, and their reported su
is perhaps not surprising in the light of the considerable research into these topics in the fie
Evolution Strategies and Evolutionary Programming. The rationale is essentially two-fold, firstly
if strategies are forced to compete through selection, then what better proof of the value of a st
than its continued existence in the population. Secondly, and perhaps less tritely, the algor
space being searched has an unknown topography, but is certainly extremely large, very comp
highly epistatic, since there is a high degree of dependency between operators. Evolut
Algorithms have repeatedly been shown to be good at searching such spaces...

This same rationale is used for many of the meta-ga strategies, the “competing sub-popula
of the Breeder GA [Schlierkamp-Voosen and Mühlenbein, 1994], and the population s
adaptation described in [Hinterding et al., 1996]. However it is more correct to describe the
Uncoupled Adaptations since the strategies are not coded for directly in the populations, a
evidence for change is the relative performance of (sub) populations of individuals in a given
period. In other words, although it is still true thatΓ = UMR, in this case the operators and paramete
defining Γ are those of the meta-algorithm rather than the “ground level” GA. Since the prob
representation, and the representation used in the meta-ga are highly unlikely to be the sam
Page 19
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1.4. Discussion
The framework proposed above categorises algorithms according to three principles. Th

two of these are what features of the algorithm are susceptible to adaptation, and the granul
which this is done. Separate from these, a further important distinction was drawn according
basis for change. This took two forms, namely the type of evidence used as input to the str
deciding algorithm, and that algorithm itself.

There are a number of possible ways of representing this categorisation, in Figure 1, a sim
taxonomic tree is shown to illustrate the main branches of Adaptive Genetic Algorithms (algori
are referred to by their first authors).

The first branch of the tree is evidence for change (or more formally the inputs to the trans
function). If this is the relative performance of different strategies then there is a further subdiv
according to whether the transition function is tightly coupled (Self Adaptation) or uncoupled. I
input to the transition function is some feedback other than relative strategy performance, th
nature of the transition function is necessarily uncoupled from the evolutionary algorithm, s
second branch point does not apply. Below all these branches are leaves corresponding to th
of the adaptation.

The nature of the field, and the absence of a standard test suite of problems make it impo
to compare algorithms on the basis of reported results and declare a universal winner. Indeed t
considerations that drive research into adaptive algorithms make such statements meaningle
however possible to draw a few conclusions.

Firstly, those algorithms based on observing the relative performance of different strat
appear to be most effective. This seems to follow naturally from the fact that GA theory is curr
not sufficiently advanced either to permit the specification of suitable goals in terms of other me
or (more importantly) how to achieve them. It is ironic that perhaps the most widely quoted pap
adaptive strategies, the externally defined time-decreasing mutation rate of [Fogarty, 1989] i
one of the most widely misquoted works in the field, since this was concerned specifically
initially converged populations.

Secondly, there appears to be a distinct need for the maintenance of sufficient diversity wi
population(s). It is the experience of several authors working with adaptive recombin
mechanisms that convergence makes the relative assessment of different strategies imp
Variety within the population is vital as the driving force of selective pressure in all Evolution
Algorithms, and will be doubly so in Self-Adaptive algorithms. This is less of a problem
algorithms manipulating mutation rates as mutation is generally a force for increased diversity

Thirdly, there are powerful arguments and empirical results for pitching the adaptation
appropriate level. The success of individual level adaptive reproduction schemes appears conv
and there is promise in the various methods proposed for identifying suitable components via li
analysis which would allow adaptation at an appropriate level. However as Angeline points ou
Hinterding demonstrates, there is scope for adaptation to occur at a variety of levels with the 

Finally adaptation can be seen as searching the space of possible configurations for the G
space is one about which little is known, and needless to say the landscape will depend on w
being optimised (e.g. best solution in a given time, mean performance etc.). However it is the fa
little is known about it which makes it so similar to those problem landscapes of interest. Al
arguments used in favour of adaptive GA’s in the first section of this chapter would appear to
equally to the search of this space.
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Figure 1:    Taxonomy of Adaptive Genetic Algorithms
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Chapter Two
Recombination and Gene Linkage
2. Introduction

Having previously discussed the rationale behind adaptive genetic algorithms, and prov
basis for the choice of self-adaption as the preferred method, this chapter concentrates
recombination operator. It is this operator which principally distinguishes genetic algorithms
other algorithms, as it provides a means by which members of the population can interact with
other in defining the p.d.f. which governs the generation of new points in the search space.

2.1. The Importance of Recombination
Since Holland's original formulation of the GA there has been considerable discussion o

research into, the merits of crossover as a search mechanism. Much of this work has been conc
on contrasting the behaviour of algorithms employing recombination as one of the reprodu
operators as opposed to those using only mutation-based operators. Into this second cla
algorithms such as Evolutionary Strategies (either (1+1)[Rechenberg, 1973] or (1,λ) [Schwefel,
1977]), Evolutionary Programming (Fogel et al. 1966), various Iterated Hillclimbing algorithms
other neighbourhood search mechanisms such as Simulated Annealing [Kirkpatrick et al.,198

The conditions have been studied in which sub-populations using crossover would “inv
populations using mutation alone by the use of a gene for crossover [Schaffer and Eshelman,
It was found that providing there was a small amount of mutation present then crossover w
always take over the population. This was not always beneficial to the search, depending
amount and “locality” of epistasis in the problem encoding.

They also confirmed empirically that the safety ratio of mutation decreased as the s
continued, whereas the safety ratio of crossover (especially for the more disruptive un
crossover) increased as the search progressed. For both algorithms the ratio was never abov
i.e. offspring are more likely to be worse than better when compared to their parents.

Some reasons why mutation is decreasingly likely to produce offspring which are fitter
their parents were discussed earlier (see page 12). The probability that crossover will disp
increasing safety ratio on a given problem representation depends on a number of factors. Alt
the state of GA theory is not sufficiently advanced to be prescriptive, two closely related factors w
have been widely recognised and investigated are:

1. Crossover is much less effective than mutation at resisting the tendency of selection pr
towards population convergence - once all of the population has converged to the same allele
at a locus, crossover is unable to reintroduce the lost allele value[s], (unlike mutation). As a res
this, as the population converges and identical parents are paired with increasing frequency, cro
has less and less effect, sending the safety ratio towards unity. This was demonstrated in expe
using the adaptive “Punctuated Crossover” mechanism [Schaffer and Morishima, 1987] w
allowed a traditional G.A. to learn binary decisions about effective crossover points at different s
of the search. It was found that as the search continued the number of encoded crossover
increased rapidly, although the number of productive crossover operations did not.

2. Until the population is almost entirely converged, crossover has a greater ability to con
higher order schemata from good lower order ones (the Building Block hypothesis). This abil
modelled theoretically in [Spears, 1992] where it is shown that crossover has a higher potentia
mutation. The nature (in terms of order and defining length) of lower order schema that wi
combined depends on the form of the crossover operator (this is discussed further in section 2.
so the quality of the higher order building blocks constructed will depend in part on a suitable m
between the epistasis patterns in the representation and the operator.

The quality will also depend on the accuracy of the estimates of the fitnesses of competin
order schemata. As time progresses, and more instances of the low order schemata are sampl
estimates are likely to become more accurate. If crossover can combine small building block
Page 22
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high probability, then the Safety Ratio is likely to rise initially as these schema fitness estim
improve.

As the size of the building blocks increases over time there is a secondary effect that popu
convergence biasses the sampling which can have deleterious effects. However as noted, (an
mutation) the probability of constructing new high order hyperplanes depends on the degr
convergence of the population. Therefore whether the combination of relatively fit low o
hyperplanes is beneficial or not, the effect on the Safety Ratio will diminish over time as
population converges.

Although Safety Ratios are a useful tool for understanding the differences between oper
they can also be misleading as they consider relative rather than absolute differences in
between offspring and parents. As an example on their “trap” function, Schaffer and Eshelman
that the ratio diminished over time for mutation and increased over time for Uniform Crossove
the former had a far better mean best performance in terms of discovering optima.

The Royal Road landscapes [Mitchell et al., 1992, Forrest and Mitchell, 1992] were created
building blocks specifically designed to suit the constructive powers of crossover. Mitchell e
compared results from algorithms using both crossover and mutation with those from ite
hillclimbing techniques. It was found that contrary to the authors' expectations, Random Mut
Hill Climbing outperformed algorithms using crossover on these “Royal Road” functions. Ana
showed that this was due to the tendency of crossover based algorithms (especially those usin
number of crossover points) to suffer from “genetic hitch-hiking” whereby the discovery o
particularly fit schema can lead to a catastrophic loss of diversity in other positions.

These issues have in fact been studied for many decades prior to the invention of g
algorithms, or even modern computers. The origins of sexual recombination, and what bene
confers, have long been studied by Evolutionary Biologists (see [Maynard-Smith, and Szath
1995 chapter 9] for a good overview).

From the point of view of the “selfish gene” [Dawkins, 1976], it would initially appear th
“parthenogenesis” (asexual reproduction) would appear to confer an advantage, since all
organism’s genes are guaranteed (saving mutation) to survive into the next generation. It mi
expected that a gene for parthenogenesis that arose by mutation in a sexually reproducing pop
would soon dominate. However, when a finite population is considered, the effects of Mu
Ratchet [Muller, 1964] come into play. Simply stated, this is the effect that deleterious mutation
tend to accumulate in a population of fixed size. In practice this tendency is counteracted by sele
so that an equilibrium is reached. The point (i.e. the mean population fitness) at which this occ
a function of the selection pressure and the mutation rate. By contrast, if recombination is allo
then Muller’s ratchet can be avoided, and this has led to one view of the evolution of recombin
as a repair mechanism -“It is now widely accepted that the genes responsible for recombinat
evolved in the first place because of their role in DNA repair” [Maynard-Smith, 1978, p36].

A second strand of reasoning used by biologists is similar to the Building Block hypothesis
shows that in changing environments populations using recombination are able to accumula
combine successful mutations faster than those without [Fisher, 1930]- this is sometimes kno
“hybrid vigour”.

2.2. Recombination Biases
Considerable effort has been put into deriving expressions which describe the amount an

of schema disruption caused by various crossover operators and how this is expected to aff
discovery and exploitation of “good” building blocks. This has been explored in terms of positi
and distributional biases, experimentally [Eshelman et al., 1989, Eshelman and Schaffer, 199
theoretically [Booker, 1992, Spears and DeJong, 1990, 1991].

In brief, an operator is said to exhibit positional bias if the probability of disrupting schemH
of a given ordero(H) is a function of the defining lengthd(H). Thus for example One Point Crossove
exhibits high positional bias since for a fixedo, the probability of a randomly chosen crossover poi
Page 23
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falling between the ends of a schemaH of ordero will be directly proportional tod(H) according to
d(H) / (l-1) as was seen earlier (page 11). In fact the probability of disrupting a schema is pur
function ofd(H), and since all genes between the end of the representation and the crossover po
transmitted together, is independent of the value ofo(H).

Distributional Bias is demonstrated by operators in which the probability of transmittin
schema is a function of its order. For example, Syswerda defines Uniform Crossover [Sysw
1989] as picking a random binary mask of lengthl, then taking the allele in theith locus from the first
parent if the corresponding value in the mask is 0, and from the second if it is 1. Since each bit
mask is set independently, the probability of picking allo genes from a schema in the first parent

purely a function of the value ofo and is independent ofd(H): p(survival) = po(H), wherep = 0.5.
This can be generalised by considering masks which have a probabilityp (0 < p < 1.0) of having the
value 0 in any locus, and so the amount of bias exhibited can be tuned by changingp.

Positional bias, the tendency to keep together genes in nearby loci, is responsible f
phenomenon of genetic hitch-hiking, whereby the genes in loci adjacent to or “inside” high
schemata tend to be transmitted by recombination along with them. This assigns to the hitch-
schemata an artificially high mean fitness since they will tend to be evaluated in the context of h
fit individuals. This is known as “spurious correlation” and can lead to a loss of diversity,
premature convergence to a sub-optimal solution, as the proportions of the hitch-hiking sc
increase according to (1).

2.3. Multi-Parent and Co-evolutionary Approaches
Recently the investigation of multi-parent crossover mechanisms, such as Bit Simu

Crossover (BSC) [Syswerda, 1993], has led to more discussion on the role of pair-wise matin
the conditions under which it will have an advantage over population based reproduction. Emp
comparisons [Eshelman and Schaffer,1993] showed that for carefully designed “trap” functions
wise mating will outperform BSC. This was attributed to the high amount of mixing occurring in
BSC algorithm, compared to the delayed commitment shown by the pair-wise operators w
enables the testing of complementary middle order building blocks. However it was conclude
“the unique niche for pair-wise mating is much smaller than most GA researchers believe, and
the niche for 2X (sic) is even smaller”

Work on multi-parent recombination techniques (with fixed numbers of parents) [Eibe
al.,1994, 1995] showed that for many standard test bed functionsn-parental inheritance (withn
greater than 2 but less than the size of the population) can be advantageous, although they id
problems with epistasis and multi-modal problems. Two of the operators they introduced for
order based problems are “scanning crossover” and “diagonal crossover”. The former is sim
BSC in performing a new selection process from the pool ofn potential parents at each locus, thu
effectively co-evolving each position. In the absence of any selective pressurepr (this form is known
as “uniform scanning”) this will introduce a distributional bias whose strength will depend on
number of parents in the pool (Eiben et al. refer to this number as the “arity” of the operator). Dia
crossover is a (n-1)-point generalisation of traditional one-point crossover, where sections are
from the n parents successively. This will exhibit positional bias to a degree dependant on the

The idea of co-evolving separate populations of sub-components was used in [Potte
DeJong, 1994] as an approach to function optimisation, with similar findings that the efficiency o
approach is lessened as the amount of epistasis increases, but that if the problem decompo
suitable then improvements over the “standard” operators are attainable. However the system re
relies on user-specified problem decomposition, and each of the sub-species is optimised seque
This leads to questions as to which of the candidates from the other populations to use when c
a full solution for evaluation. Subsequent work has suggested that in fact the choice of partn
evaluation is highly problem specific [Bull, 1997].

These investigations on the beneficial effects of pair-wise mating have been paralleled
field of Evolutionary Strategies, which have evolved from single parent algorithms to popula
Page 24
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based models where recombination plays an important part in the creation of offspring. In [Bä
al.,1991] a variety of recombination operators are listed which include single parent, two paren
multi parental strategies.

One obvious way of distinguishing between reproductive operators is on the basis of the nu
of parents involved in the generation of a child Another way is in terms of the way that ge
material is chosen to be exchanged, and the effect that has on the likelihood of sampling par
hyperplanes (schemata). As was seen above, a common analysis is to consider two types
positional and distributional. All of these, will have an effect on the p.d.f governing the way that
elements of the search space are generated and sampled.

On this basis a “reproduction space” can be defined, with axes defined by these three fa
which contains all of the algorithms discussed above. In two dimensions the two types of bia
shown as extremes of the same axis, which is obviously a simplification since some operators (
point crossover with n = l or 2) will display moderate amounts of both types. These operator
therefore shown as two linked points. Despite the simplification, this diagram is useful for
purposes of illustration

.

Figure 2:    Representation of Space of Reproduction Operators
For any non-trivial new problem it will not be known in advance what the fitness landsc

looks like, and it is impossible to decide in advance which is the most effective search algorith
employ. Furthermore as the search continues it is likely that the optimal search method will de
a trajectory through the algorithmic space as discussed previously. This has been the rationale
many of the adaptive recombination operators discussed in the previous chapter.

2.4. Gene Linkage
In previous sections an explanation of the operation of GAs was given by the Building B

Hypothesis, which described evolution as a process of discovering and putting together blocks
adapted genes of increasing higher orders. The “messy GA” [Goldberg et al., 1989] was an a
to explicitly construct an algorithm that worked in this fashion. The use of a representation
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allowed variable length strings, and removed the need to manipulate strings in the order o
expression, began a focus on the notion of gene linkage (in this context gene will be taken to
the combination of a particular allele (bit) value in a particular locus (position)).

Subsequent variants (the “fast messy GA” [Goldberg et al., 1993] and the “Gene Expre
Messy GA” [Kargupta, 1996]) rely on first order statistics to identify the blocks of linked genes
they manipulate, as do a number of other schemes e.g. [van Kemenade,1996]. An alternative s
was proposed in [Harik and Goldberg, 1996], which attempted to co-evolve the positions and v
of genes using a representation which consider loci as points on a circle, with the (real-va
distance between points representing their linkage.

Simply stated, the degree of linkage between two genes may be considered as the prob
that they are kept together during recombination. Thus for a problem composed of a numb
separable components, the genes in the building blocks coding for the component solution
ideally exhibit high inter-block linkage but low intra-block linkage.

In the succeeding sections a model of recombination operators based on boolean gene
will be introduced, and it will be demonstrated that standard operators can easily be describe
generalised within this model. Some linkage learning operators are also described in these term
a new learning operator based on the model is proposed.

2.4.1. A Model for Gene Linkage
In this section a model of gene linkage is developed that permits the description of a num

different recombination operators in terms of the way that they manipulate and preserve lin
between loci within an individual. Although the effect of mutation is to disturb allele values, so
locus linkage and gene linkage are not strictly synonymous over evolutionary time, the low ra
mutation used in GAs mean that for the purposes of this discussion this distinction is irreleva
most of the operators described here, and will be ignored.

This model associates with each member of the population a boolean arrayA of sizel x l which
encodes for gene linkage within the problem representation. Recombination is considered in pa
function which acts on these arrays:R(A) -> A’, such that the contents of the parents’ arrays after
operator is applied determine which genes in the parents will be transmitted together, and hence
schemata will be preserved. When the allele values from loci in a selected parent are copied i
offspring, the corresponding columns of that parent’s linkage array are copied into the array
child, (even though in many cases they will be completely rewritten by the application of
recombination operator in the next iteration).

For conventional operators a recombination operator will take a fixed number of pa
individuals as its inputs, and the same transformation is applied to the linkage array of each (a
be described in the next section). In this case the offspring will initially have the same linkage
as its parents. A number of adaptive algorithms have been proposed in which the linkage patte
learned, and for these operators the parents will in general have differing arrays, as will the res
offspring.

A recombination operator is thus defined by its arity, the functionR, and a representation of the
random choices made by the operator, such as the crossover points in N point crossover, a
choice of parents in uniform or scanning crossover.

To give a simple example, which will be formalised later, One Point Crossover works by ta
two parents and selecting a crossover point at random, which effectively splits each parent in
blocks of linked loci. In both parents all of the array elements corresponding to inter-block link
settrue, and those corresponding to extra-block links (i.e. links “across” the crossover point) a
false. In other words the effect of this operator is to rewrite both arrays completely, according
randomly chosen number (the crossover point).

In this model, each elementAij of the linkage array takes the valuetrue or falseaccording to
whether there is a link from locusi to locus j. In many cases an unambiguous definition of th
recombination operators requires a symmetrical array, but this is not always the case. Two lo
Page 26
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considered to be linked (i.e. remain together under the recombination operator) if and only if bo
the relevant array elements are settrue. For the purposes of this discussion the problem representa
will be assumed to be linear.

Having defined the linkage array, it is useful to formally define some terms (using stan
discrete mathematical notation), starting with a boolean function that tells us whether two loc
linked.

(D14)

One property common to all operators is that since each locus is by definition linked to i
then the principal diagonal of the array is composed entirely oftrue elements, i.e.

(2)
This may be read asfor all i, j, between 1 and l such that i = j it holds i is linked to j.

In order to specify a recombination operator, it is also necessary represent the arity,a, and the
random choices made when the operator is applied. This is done via a randomly created vectx of
sizel. The contents ofx and the way that they are specified vary from operator as will be seen.

2.4.2. Static Recombination Operators

2.4.2.1. N-Point Crossover
For n-point crossover operators, the elements ofx are integers which represent the number

crossover points to the left of the corresponding loci. They are monotonically increasing, wit
changes in value corresponding to the randomly chosen crossover points, i.e.

(D15)

Using definition 15 withn = 1 (and by necessity arity 2) allows the specification of One Po
Crossover (1X) as:

(D16)

where the function Linked’() is taken to refer to the array after the operator is applied.
This definition states that two loci are linked if there are the same number of crossover p

(0 or 1) to the left of them in the representation. If there are not the same number of crossover p
then according to D16 both of the elements in the array which determine the link are set false
ensures an unambiguous specification ofA’.

Settingn > 1 in (D15) and increasing the arity accordingly ton+1, andusing D16 to specifyR
produces Diagonal Crossover [Eiben et al. 1995].

In the case wheren > 1, but the arity is two (i.e “traditional” two-point andn-point crossover)
it is necessary to take account of the fact that alternate blocks are also linked. The random vecx is
still defined as per (D15), and the linkage of alternate blocks is catered for by noting that this eq
to thexi values yielding the same result mod(2) if they are linked. The generalised two-parentn-point
crossover is defined by (D15) and:

(D17)

Although Diagonal Crossover picksn crossover points at random and then selects the blo
from n+1 parents successively, it would be simple to generalise this to any number of parents, s
if the aritya is less thann more than one block is picked from some parents (e.g. D17 whena = 2). If
the arity is greater thann+1, then this generalisation is still valid as long as more than one chil
created per crossover application. Thus the general form of this class of recombination ope
wheren crossover points are picked at random and offspring created froma parents is:

(D18)

where the vector of crossover points,x, is defined as per D15.

i j,∀ 1 … l, ,{ }∈ Linked i j,( ) Aij Aj i∧=•

i j,∀ 1 … l, ,{ }∈ i j=( ) Linked i j,( )•

i 1 … l, ,{ }∈∀ i l<( ) xi 0 … n, ,{ }∈ 0 xi 1+ xi– 1≤ ≤( )∧ ∧( ) xi n=( )∨•

R1X A( ) A'→ i j,∀ 1 … l, ,{ }∈ xi xj=( ) Linked' i j,( )∧( ) A'ij¬ A' ji¬∧( )∨•

R2 nX, A( ) A'→ i j, 1 … l, ,{ }∈∀ mod2 x, i( ) mod2 x, j( )=( ) Linked' i j,( )∧( )
A'ij¬ A' ji¬∧( )∨

•

Ra nX, A( ) A'→ i j, 1 … l, ,{ }∈∀ mod a x, i( ) mod a x, j( )=( ) Linked' i j,( )∧( )
A'ij¬ A' ji¬∧( )∨

•
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2.4.2.2. The Uniform Crossover Family of Operators
The case of Uniform Crossover can be represented in one of two different ways. The esse

that at every locus a random choice is made as to which parent the gene should be copied
Although the more usual case has a 50% probability of selecting from either parent, some autho
[Spears and DeJong, 1991]) have championed the cause of parameterised uniform crossover
genes are copied from the first parent with probabilityp. The arity of Syswerda’s original version, an
most implementations, is two.

The first difference between this family of operators and then-point crossovers above is
immediately apparent: in the formern crossover points were chosen at random, and the vectorx filled
in accordingly. For the Uniform Crossover family of operators, a set ofl random values must be
chosen. A second apparent difference is that in the former the number of crossover points is k
whereas in the second it may vary between 0 andl-1. However it should be noted that since the valu
are chosen at random from {1...l} for n-point, the valuen is in fact an upper bound on the number o
crossover points, as they may coincide, and also because a crossover point at either extrem
representation has no effect.

One representation of two parent Uniform Crossover which makes this distinction clear, si
notes that two adjacent loci will remain linked in both parents if the corresponding random num
are both either less than or greater thanp. Using a vectorr to denote a random vector where eachri is
selected uniformly from [0,1], the elements ofx are given by:

x1 = 0, (D19)

Using (D19) to determine the vectorx, the function R is then defined exactly as per (D17). It
evident that this model could be used to generate a class of multi-parent operators by taking any
for the arity,a, and using (D18) to specifyR. This class of operators would have a crossover po
between adjacent loci with probability 2p(1-p), and hence a mean number of 2p(l-1)(1-p)crossovers
per genome. However fora>2 this class is no longer isomorphic to Syswerda’s original specificati

An alternative representation, which is more easily generalised to models with aritya, such as
Scanning Crossover [Eiben et al. 1994], is for the elements ofx to be drawn from the set {0...a-1}
according to some probability distribution. This might be uniform, fitness proportionate
parameterised as above. The generalised representation becomes:

(D20)

Usinga to denote the arity, the elements ofx are drawn from {0,...a-1} as:

Parameterised Uniform Crossover (D21

Uniform Scanning (D22)

 Fitness Proportionate Scanning (D23

This definition ofx for Fitness Proportionate Scanning is an implementation of the “roul
wheel” algorithm, and the variablek is taken to be an index into the set of parents. Other selec
methods could easily be implemented with the corresponding changes to (D23).

2.4.2.3. Other Static Reproduction Operators
All of the recombination operators above utilise a new randomly generated vectorx to transform

the parents’ linkage arrays each time they are applied. Although the definition of the operator in
of its effect on the linkage array is constant, the resultant arraysA’ may be different for each
application. By contrast mutation based search and Bit Simulated Crossover employ strategies

i∀ 2 … l, ,{ }∈ r i 1– p<( ) r i p<( ) xi xi 1–=( )∧ ∧( )
r i 1– p≥( ) r i p≥( ) xi xi 1–=( )∧ ∧( )

xi xi 1– 1+=( )
∨
∨

•

RUX A( ) A' i j, 1 … l, ,{ }∈∀ xi xj=( ) Linked' i j,( )∧( ) Aij'¬ Aji'¬∧( )∨•→

xi

0 r i p≤

1 r i p>



=

xi int r i a⋅( )=

xi j= fit k
k 0=

j 1–

∑ r i fit k
k 0=

a 1–

∑⋅ fit k
k 0=

j

∑≤<•
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can be modelled as having a completely fixed and identical linkage array for each individual.
Algorithms which employ no recombination select an individual from the population and c

it whole. The effect of this “asexual reproduction” is to treat each individual as having a compl
linked genome, i.e. the linkage set consists of every locus. This can be modelled as:

(D24)

By contrast, the action of Bit Simulated Crossover is to treat each individual as havi
completely unlinked genome i.e. all the entries in the linkage array are false:

(D25)

2.4.3. Adaptive Recombination Operators
In Section 2.4.2 a number of recombination operators were described in terms of the gene

of a set of random numbers which are used to specify a vectorx which instantiates one application o
the operator. For the n-point and Uniform crossover families the specification ofR is such that the
linkage arrays in alla parents are completely and identically rewritten according to the contentsx,
i.e. no linkage information is accrued over time.

However, it has repeatedly and persuasively been argued (e.g. [Goldberg et al., 1989],[Th
and Goldberg, 1993],[Harik and Goldberg, 1996],) that designers of genetic algorithms ig
linkage at their peril. As was mentioned above part of the rationale behind the development
messy-ga and its variants was to identify and amass building blocks and intrinsic to this was the
of linkage.

The messy-ga itself uses a variable length encoding which allows for under and
specification, coupled with mechanisms such as “competitive templates” for filling in missing p
of a representation, all of which make it hard to analyse in terms of the model above.

The latest variant, the “Gene Expression Messy GA” uses first order statistics to identify li
blocks and reproduction operators which work on these linkage sets. The algorithm maintains li
sets for each gene in much the same way as described above. The recombination operator w
selecting a number of genes from one parent at random. For each member of this “Exchang
(provided certain first order statistical criteria are met), the gene and its linkage set are copied in
opposite parent. The problem of “block conflict” (see next section) is surmounted by not insisting
the linkage sets are coherent. This can be represented by dropping the linkage criterion (1
allowing each row of the array to be considered separately.

Because the arrays are potentially different in each member of the population, it is no lo
sufficient to consider a single array A. Instead A will refer to the “donor” parent, B to the recip
and C to the offspring.Ignoring the statistical criteria, and denoting the Exchange set as X, the
in the linkage array of the offspringC, (and the corresponding genes) are given by:

(D26)

Unfortunately, the inconsistencies introduced also provide scope for spurious lin
correlations to propagate. Although this algorithm is claimed to guarantee convergence to the o
solution for problems where the building blocks are of a known orderk, there are two problems.
Firstly, as shown in [Thierens and Goldberg,1993], the population size required to guar
convergence to the optimal solution scales exponentially withk. Secondly, and more importantly fo
practical implementations,k is, in general, unknown. This has the unfortunate effect that ifk is
underestimated, and there is deception of order ~k in the problem, then the algorithm is guaranteed
converge to a sub-optimal result.

Another variant of this approach, which explicitly attempts to learn values from the range
to enter into the linkage array is seen in [Harik and Goldberg,1996]. Again, this uses a dyn
encoding where genes have the form (position, value), and a cut and splice crossover operat
model used allowed some calculations to be made about the bias of the operator in terms of the
distribution, provided certain assumptions about the proportion of optimal building blocks w

RasexualA( ) A' i j 1 … l, ,{ }∈,∀ Linked i j,( ) Linked' i j,( )∧•→

RBSC A( ) A' i j 1 … l, ,{ }∈,∀ A'ij¬ A¬ ij A' ji¬ Aj¬∧ ∧ ∧•→

i∀ 1 … l, ,{ } i X∈( ) j∀ 1 … l, ,{ }∈ Cij Aij=( )•∧( )
j∀ 1 … l, ,{ }∈ Cij Bij=( )•∨

(
)

•∈
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made. Unfortunately when run in the context of a “real” GA, i.e. with selection, the algorithm did
display any appreciable learning of appropriate linkage. This was attributed to the effec
convergence. Essentially it was found that using the crossover operator alone as a means of ex
the space of linkages was too slow, since once selection has converged the problem encoding,
or linking genes has no effect. As Goldberg put it “all our attempts to evolve linkage with
intervention (inversion, crossover, etc.) have failed because the alleles want to converge bef
linkage gets tight.” [personal communication, June, 1996]. This arises partly because the alg
was trying to learn real valued linkages, rather than restricting itself to a boolean space.

In the Punctuated Crossover mechanism [Schaffer and Morishima, 1987], self adaption is
to govern the evolution of the linkage array.In their algorithm the problem representatio
augmented by the addition of a binary flag between each pair of adjacent loci, which encodes
crossover point. Transcription starts with one parent, and successive genes (and crossover b
copied from that parent until a crossover point is encountered in either parent. At this point gene
to be copied from the other parent,regardlessof whether it coded for crossover at that point. Th
continues until a full child is created, and a second child is created as its complement.

This is equivalent to associating with each individual a tridiagonal linkage array, of the fo

(D27)

The values are subject to mutation at the same rate as the problem bits, which correspo
the generation of the random vector and the transforming of the arrays.

In order to define the linkage array,C, of the first offspring, it is useful to keep a running coun
of the number of times crossover has occurred so far during transcription. This will be denotedn,
and for brevity the parents’ linkage arrays will be subscripted by this value. If the parents areA and
B, thenAn,ij = Aij if mod(2,n) = 0, andBij if mod(2,n) = 1. The genome and linkage array inherited b
the first offspring are given by:

(D28)

Unfortunately this implementation did not preserve much linkage information from ei
parent: it was demonstrated in the original paper that it was possible for two parents with “med
numbers of crossover points to create two offspring, such that the linkage array attached to on
contained all the crossover points from both parents.

2.5. Linkage Evolving Genetic Operator
On the basis of the observations made in the previous sections, a number of properties

identified that a new recombination operator should possess:
1. The operator should be able to adapt its form to the landscape being searched rath

pursuing a fixed search strategy.
2. The operator should be able to traverse the whole space of recombination operators

should be able to vary both the bias it displays and its arity.
3. The operator should preserve as much linkage information as possible.
It was shown in Section 2.4 that both the N-point and Uniform families of Crossover Opera

can be defined in terms of linkage arrays, with the randomness in each instantiation capture
random vectorx. Similarly other adaptive operators can be defined in terms of linkage arrays,

Aij

0 i j– 1>
1 i j j 1+,=

0 1, i j 1–=





=

Cij

A0 ij, i 1=( ) j i 1+=( )∧

An ij, i 1>( ) j i 1+=( ) An ij, An 1+ ij,∧ ∧ ∧

An 1+ ij, i 1>( ) j i 1+=( ) An ij,¬ An 1+ ij,¬∨( )∧ ∧

1 i j j 1+,=

0 i j– 1>









=

Page 30



l and
ation

f the
ss of
etween
gether

ss of
rating
hich is

tation

sexual
nitions

rrays
to the
and

ion is
the

nked in
rithm
genes
ction,
s thus

ricted
ould

ked
n to
There

art
same
pend

erited

hich

s often
nly

are
owing
the random choice of parents and mutation taking the place ofx. It follows that one way of achieving
all of the goals listed above is to encode the linkage array within the genome of each individua
to use self adaptation to govern the growth of different linkage sets, and hence recombin
strategies.

In brief, the proposed operator will work by attaching a linkage array to each member o
population, which partitions the loci in that member into a number of linkage sets. The proce
recombination then consists of selecting a number of these sets from the population such that b
them all the loci of a new individual are exactly specified. The genes specified by those sets, to
with the relevant portions of the linkage array, are then copied into the offspring.

The Self Adaptation of the recombination strategies thus proceeds through a proce
rewarding successful strategies (by association with fitter members of the population), and gene
new strategies from them. New linkage arrays are generated by the recombination process (w
able to produce offspring with different arrays to their parents) and also by the application of mu
to the linkage arrays.

It was demonstrated in the previous section that standard recombination operators, and a
reproduction, can be expressed in terms of the effect that they have on linkage arrays. The defi
D16-20, 24, 25 completely specifyA’, and state that for two unlinked locii andj, A’ij andA’ji are both
false. In terms of which loci are inherited from
the parent, a sufficient condition for an equivalent implementation occurs if either one of
the two elements is false. This means that not only would an operator implementing linkage a
span a wide space of recombination operators, but there is a kind of neighbourhood structure
mapping from arrays to implementations i.e. similar arrays code for operators with similar arity
bias.

The proposed approach is similar to that of Schaffer and Morishima, but a tighter restrict
placed on linkage inheritance. In their algorithm, transcription will swap from one parent to
second if there is a crossover point encoded on the second, even if the equivalent genes are li
the first parent. This leads to problems with inherited linkage as noted on page 30. The algo
proposed here will only copy complete sets of linked genes from a parent. When the next set of
is chosen for copying, consistency of linkage sets is enforced. This is obviously a tighter restri
and so the whole population is searched for potential linkage sets. The arity of the operator i
undefined, and will depend on the sets chosen.

A number of questions immediately arise at this point, such as should the algorithm be rest
to tridiagonal arrays implementing only adjacent linkage (as per Schaffer & Morishima), and sh
symmetry be enforced on the array.

The first of these questions is by far the most important since it affects the kind of tightly lin
blocks that the model will be able to directly represent. At first it might appear that the restrictio
adjacent linkage could impose unacceptable constraints, and will tend to exhibit positional bias.
are three major reasons why it was decided to implement adjacent linkage only:

1. Although Tridiagonal arrays can only explicitly code for two loci to be linked if they are p
of the same block, it is also possible for two (or more) unlinked genes to be inherited from the
parent if both of the blocks containing them are selected. The likelihood of this happening will de
on the particular mix of arrays present in the population at any given time.

In the previous section it was shown that for most operators the sets of loci which are inh
together are determined by the arity and the choice of a set of random numbers, from whichx and
henceR andA’ are defined. In this case the element of randomness arises from the way in w
blocks are selected.

2. It has already been noted that learning linkage is a second order effect, and that there i
a problem with allele convergence preventing the algorithm from finding good “blocks”. By o

considering adjacent linkage, the size of the problem space is reduced fromO(l2) to O(l).
3. When the practical implementation is considered, problems of conflict resolution

immediately found with the use of non-adjacent linkage. These can be demonstrated by the foll
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simple example with a population of size 2, where for ease of illustration genes are being p
sequentially from left to right:

Figure 3:    Block Conflict with Non-Adjacent Linkage
In Figure 3 the shading represents the different linkage sets present in the two parents. If th

linkage set from the bottom parent is picked, followed by the second set from the top, loci 1 to
the offspring are specified. There is now a problem, since it is not possible to complete the offs
by selecting a gene for locus 5 without destroying a linkage set. This is because locus 5 is lin
locus 1 in the top parent and locus 4 in the bottom one. In this case, the problem will occur whe
sets from the two parents are mixed, i.e. 50% of the time. Furthermore, consideration shows t
same problems can arise regardless of the order of selecting genes

This means that implementing non-adjacent linkage, would require an arbitration proce
which would be decided the parts of the accrued linkage information to be ignored du
recombination. Although this is a trivial example, consideration shows that as the population siz
length are increased the problem is likely to get worse.

By contrast the restriction to adjacent linkage guarantees completion of any child. Conside
block of linked genes in any parent. Subsequent blocks in that parent will not contain links to g
at previous loci, by virtue of the adjacency constraint. Thus an individual can always be complet
selecting the remaining blocks from the same parent without fear of conflict.

Finally comes the question of whether symmetrical arrays should be maintained. Effec
doing this would mean only considering the lower half of the array. As noted above, Schaffe
Morishima reported that it was possible for the linkage information to be very unevenly inherite
this case. There are also other factors to be considered in deciding on a model.

The most obvious outcome of symmetry is to reduce by a factor of two the number of elem
available to be disrupted by mutation. If there is a probabilityp of mutating a value in the linkage

array, then the probability of a set of ordern surviving mutation is given bypsurvival(n) = (1-p)n for

the symmetrical case andpsurvival(n) = (1-p)2n in the asymmetrical case. This suggests that the act
of mutation is to enforce a greater distributional bias on the asymmetrical case, with gr
propensity to maintain smaller blocks.

However there is a balancing factor which acts in favour of larger blocks in the asymme
case. This is the fact that it is possible to build up blocks during recombination in a way whi
impossible for symmetric arrays. This is demonstrated by the following simple example.

Let the arrayA for a parenta define the linkage sets {1,2,3},{4,5},{6},{7,8,}... and let the array
B for parentb define the linkage sets {1},{2,3,4,5},{6,7}....

Imagine starting to create an offspringc by selecting the sets {1,2,3} and {4,5} froma and then
the set {6,7} fromb. Inspection of the linkage sets shows that one or both ofA56andA65must be false,
but in general there is a 1 in 3 chance thatA56 is true, which by definition of the operator holds fo
C56. A similar argument holds forB65and soC65. Taking these two together there is a 1 in 9 chan
that bothC56 andC65 are true, i.e. that the linkage sets ofC now look like {123},{4567}...

In practice the probability of blocks joining may be less than this. The sketch above ass
that unlinked loci have an equal distribution of cases of (0,1),(1,0) and (0,0) and that the probab
in A and B are independent. In a real population these assumptions start to become weake
evolutionary time, both as a result of the stochastic effects of a finite population and of the effe
convergence (see Appendix A).

?
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However, during the important early stages of the search, this ability to create longer bloc
juxtaposition acts in opposition to the pressure towards shorter blocks arising from the effe
mutation on the arrays. It makes it more possible for the algorithm to develop and maintain lo
blocks. This allows the asymmetrical algorithm to explore reproduction strategies with
recombination than is possible for the symmetrical case.

In practice mutation is applied with higher probability to the problem representation than
linkage arrays, and so identical linkage sets may contain different allele values in members
same population. As evolutionary time progresses the fitter instances will be selected, and sub
to mutation, and so more examples of individuals containing the same linkage sets with diff
allele values will be evaluated.

It is by this means that the competing schemata (defined over the partition corresponding
linkage set) are assessed by the GA. The ability to maintain and explore longer blocks i
asymmetrical version therefore allows the algorithm to search higher order schema, and redu
chances of falling prey to deception.

Finally, both the higher probability of mutation and the ability to create blocks by juxtaposi
mean that algorithms using asymmetrical arrays can undergo a much faster evolution of linkage
turns out to be a benefit since other authors working in the field have experienced problems
linkage evolving at a much slower rate than the problem encoding (see above).

2.6. Conclusions
In this chapter a description was given of recombination in genetic algorithms, an

formalisation was developed to describe various operators in terms of a “linkage array”. Based o
a description was formulated for a new adaptive operator which would combine the des
properties of self-adaptation with taking advantage of learned knowledge about linkage be
genes which many operators discard. The next chapter describes the implementation of this op
Page 33



on a
gated,

f each
ively.

for the

e
:

n be
or two
locus

cus,

the
t

nkage
ted to
will

r

Chapter Three
Implementation of the Lego Operator.
3. Introduction

In this chapter the implementation of the new recombination operator and its performance
suite of test problems is described. Its sensitivity to changes in other facets of the GA is investi
and an analysis made of the recombination strategies evolved on different problems.

3.1.  Representation
The Lego operator is implemented by adding two boolean arrays to the representation o

individual, denoting whether each locus is linked to its neighbour on the left and right respect
For the sake of clarity these arrays have lengthl, although in practice onlyl - 1 of the positions are
used since the problem representations are not toroidal. This gives an extended representation
population as

P t = (a1
t,... aµ

t) ∈ (I x I x I)µ (D29)

Denoting the three arrays coding for the problem, left linkage and right linkage asα, L andR

respectively, an individual comprises the 3-tupleai
t = (αi

t, Li
t, Ri

t). This will be referred to as the
genome of the individual, and a single gene at locusj consists of the relevant entries from all thre
arrays:ai, j = (αi, j, Li, j,Ri, j). The linkage arrayA(i) for the ith member of the population is given by

(D30)

The linkage criterion, (D14), for two genesj andk, (where without loss of generalityj < k) becomes
. (D31)

The operator is not restricted to selecting from only two parents, so the genome ca
considered as being comprised of a number of distinct linkage sets, or blocks. Unlike the case f
parent recombination, alternate blocks on the same parent are not linked. The linkage set of ai
is defined as the set of all linked loci i.e.:

(D32)

When an offspring is created, blocks are chosen sequentially from left to right. In the first lo
all blocks are eligible, so one is chosen according to the p.d.f.pr from a parent denotedp1. This block
is then copied whole, that is to say that every gene from the linkage set of genea1, 1, is copied into the
new individual.

If there ares1 = |S11| elements in this first set, then, by definition of the linkage set, in both
offspring anda1, ¬Linked(s1, s1+1). Providing thats1 < l there is now a new competition to selec
the next block.

Because the whole purpose of the new operator is to preserve information carried in the li
array, the selection of partial blocks is forbidden. Thus the selection of the next parent is restric
those with eligible blocks. If the selection of blocks from the population is fitness dependant this
involve a dynamic calculation ofpr. to yield a modified p.d.f.pr ′. The p.d.f. for parental selection fo
the next block will look like:

Ai jk,

0 j k– 1>
1 j k=

Ri j, j k 1–=

Li j, j k 1+=







=

Linked j k,( ) j k 1–=( ) Lk Rj∧ ∧≡

S i( ) j 1 … l, ,{ }∈ j i=( )
j i<( ) k∀ j … i 1–, ,{ }∈ Linked k k 1+,( )•∧( )
i j<( ) k∀ i … j 1–, ,{ }∈ Linked k k 1+,( )•∧( )

∨
∨

j•

{

}
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Having chosen a parentp2 the blockS2 (s1+1) is copied into the new individual and the proce
repeats until the offspring is fully specified. As noted above, it is guaranteed to be possib
complete an offspring.

The Lego recombination operator has the formR: (I x I x I)µ → I. UsingOi to denote theith
offspring produced andOi,j to denote thejth locus of that offspring, the full definition of the operato
is given by:

 1 ≤ j ≤ l, 1 ≤ k (D34)

where the parentsXk are selected from the population using the modified p.d.f.p"r (ak
t).

Since the linkage arraysLi andRi of the population define the recombination strategy, and
themselves potentially changed during both recombination and mutation, the transition functio
the recombination function   is given by R is defined by D34 and the effect o

mutation, M, on the linkage is given by:
(D35)

wherep is the mutation rate andxij  is a random number sampled afresh from [0,1].
The effect of enforcing eligibility on the selection pressure will depend on the implementation o
algorithm. With a Generational GA it is common to select into an intermediate population f
which parents can be chosen at random, but this will not be possible with a Steady State GA. In
to make the Lego operator consistent an intermediate population was not implemented, rath
fitnesses of competing blocks was taken into account during the selection part of recombinat
per (D33). The effect of enforcing eligibility is to create a niching effect at the block level as wil
seen later.

In practice, the new operator works by considering the population at any given time as a
pool comprised of blocks of linked genes defined over certain loci. These blocks potentially va
size from a single gene to an entire chromosome.

If all of the blocks are of unit length then this reduces to considering the problem as a s
separate populations of alleles (one for each locus) which is the basis of Syswerda's Bit Sim
Crossover.

However by allowing links to form between neighbouring genes, it should be possible for g
middle order building blocks to be preserved, allowing the preservation and exploitation of lo
schemata. This is shown schematically in Figure 4.

Initially the boolean values in the linkage arrays are set using a biassed random choice of
so as to create a range of different block sizes in the initial population, representing a varie
recombination strategies. It was found that using a bias value of around 80% probability (oftrue) gave
a good mix of block sizes in the population.

In order to implement the mutation scheme, there is a small probability of changing the v
of a link bit via the application of bit-flipping mutation at a low rate.

In Appendix A, the effects of iterated recombination and mutation are examined. It is sh
that for an infinite population, in the absence of any selection pressure with respect to linkag
system will rapidly evolve to a steady state. This steady state will retain all four combinations of
between two adjacent genes, and will thus retain the ability to adapt to changing circumstance

p''r ai
t( )

0 Linked ai s1,
t

ai s1 1+,
t,( )

p'r ai
t( ) Linked ai s1,

t
ai s1 1+,

t,( )¬




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=

Oi j,
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Xk j, Linked Xk j 1–, Xk j,,( )
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
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proportion of genes linked at the steady state is entirely independent of the starting conditions,
solely a function of the mutation rate applied. Thus any deviation from this pattern indica
selection pressure for or against linkage.

Figure 4: Lego Recombination Operator: 2nd Block Chosen

3.2.  Testing the Operator
Having designed the new recombination operator it was decided to test its performance

context of function optimisation, and compare it with a range of commonly used operators. For
purposes a suite of well studied test problems which displayed a range of epistasis and multi-m
were selected. All of the problems selected had known maximum values, and the algorithms
compared on the basis of the time taken to find the optimum. It should be recognised that ther
single commonly accepted method of comparison, and that very different results might be obta
a different performance criteria were used.

3.2.1. Experimental Conditions
The linkage evolving genetic operator (Lego) described above was compared against

recombination operators, which represent a diversity of strategies. The operators used were
crossover, uniform crossover (with 50% probability of selecting from either parent), BSC and
Asexual reproduction (i.e. mutation only).

A generational GA was used with a population of size 100 and selection was via a determ
tournament of size two. In each case the relevant algorithm was run until the problem's optimu
been reached, or a fixed number of evaluations had been done, and the results show the gene
which this occurred, averaged over fifty independent runs (the same sets of seeds were used f
of the algorithms tested).

The one-point, uniform and bit simulated crossover operators were applied with a
probability after preliminary experimentation to establish a reasonable application rate for
population size. Lego was applied with a 100% probability.

Experiments were run across a spread of (bit flipping) mutation rates in order to investiga
sensitivity of the various operators to this parameter. For all these experiments the link mu
probability was set to 0.5% per bit.

In addition the new operator was tested with a variety of link mutation rates in orde
determine the sensitivity of the operator to this parameter (again mutation here changed the v
a bit rather than picking at random).

Child

Parental

Eligible Blocks

Transcribed Genes

Already Copied

Gene Pool

Site of next

Competition
Page 36



ere as

ing
tion. It
ly.
nce
ffer's
s of

in this
st and
and

on
much
ted
oint
run.
s of
1,....1)
optima

The
more
ssible
oblem

and
e score
a sub-

order
on is
way
HC

turn
s are
This
,000

t the
tation
igure
ons to

rent.
single
oice of
3.2.2. The Test Suite
The problems were chosen to display varying amounts of epistasis and deception. They w

follows:
1. OneMax: This was run with a genome of length sixty four. This is a simple hill-climb

problem (the fitness of a phenotype is the number of bits set to one) with no epistasis or decep
should be ideally suited to Bit Simulated Crossover as each locus can be solved independent

2. Royal Road: This is a sixty four bit problem effectively identical (given the performa
measure) to the R1 function [Forrest and Mitchell, 1992], and similar to Eshelman and Scha
“plateau” functions [Schaffer and Eshelman, 1991]. It is comprised of eight contiguous block
eight bits, each of which scores 8 if all of the bits are set to one. Although there is no deception
problem there is an amount of epistasis. This problem was designed to be “ga-easy” but Forre
Mitchell reported that it had been solved faster by Random Mutation Hill-Climbing. Schaffer
Eshelman reported for their plateau function that“The crossover gene takes over and the populati
performance is about the same as with mutation alone but this performance level was reached
sooner”. With this relatively small population the time taken to solve the problem is heavily affec
by the number of the 8 building blocks present in the initial population, especially for the 1-p
crossover and so for the latter 500 runs were used. A maximum of 400,000 evaluations were 

3. Matching Bits: This is a twenty bit multi-optima problem where each pair of adjacent bit
the same parity contribute 1 point to the score. There are thus two maxima at (0,0...0) and (1,
which score 19. There are a large number of sub-optimal peaks: for example there are 34 sub-
scoring 18 at Hamming distances from one of the optima of between two and ten.

In addition to being multi-modal, this problem has high local epistasis of order two.
analysis in [Eshelman and Schaffer, 1993] suggests that the difficulty of the problem for the
disruptive operators will depend on the speed with which the search drops one of the two po
solutions. One point crossover would be expected to outperform the other operators on this pr
due to its high positional bias. A maximum 150,000 evaluations were run.

4. “Trap” function: This is based on Schaffer & Eshelman's Trap function [Eshelman
Schaffer, 1993] and is composed of ten contiguous sub-problems, each consisting of 5 bits. Th
is 2.0 for all five zeroes, 0.0 for a single one, and +0.25 for each subsequent one. There is thus
optima of 1.0 for each sub-problem. The epistasis in this problem is still local but is of a higher
than for the previous problem. Although there are fewer relatively fit sub-optima the decepti
higher than for the matching bits problem as for each sub-problem simple hill climbing will lead a
from the global optima. Results were given for two point, uniform and BSC when run with the C
algorithm, which show that two point crossover substantially outperforms uniform which in
outperforms BSC if the sub-problems are contiguous. However when the sub-problem
distributed the rank order changes from (two-point, uniform, BSC) to (uniform, BSC, two point).
is a natural outcome of the high positional bias of one or two point crossover. A maximum 400
evaluations were run.

3.3. Results

3.3.1. Comparison with other operators.
A summary of the results obtained showing the mean number of evaluations taken a

optimum mutation setting for each operator is given in Table 1. The figure in brackets is the mu
rate at which this performance was achieved. A “-” indicates that no runs found the optimum. F
5 shows the sensitivity of the operators to mutation rates by plotting mean number of generati
reach the optimum against bit mutation rate for each problem.

It should be noted that for each operator the optimal mutation rate is generally diffe
Equally, for each function, if the operators are ranked according to the performance at a
mutation rate (as it common practice) the rank orders obtained are highly dependant on the ch
Page 37
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OneMax: The algorithms using the BSC, Uniform Crossover and Lego find the optimum
faster than those using the other operators, and do so over a far broader range of mutation rat
results show that there is a correspondence between the speed of finding the solution at a
mutation rate and the ability of the operator to find a solution at high mutation rates. The two ope
with no inbuilt positional bias (Uniform Crossover and BSC), which have the potential to solve
problem as a parallel set of sub-problems, do so most efficiently in the absence of mutation, an
performance tails off slowly with increasing mutation rates. By contrast the Lego operator has to
to lose positional bias, and does not perform well with zero mutation. Inspection of the results sh
this was because on some runs with no mutation hitch-hiking caused premature converge
suboptimal alleles in a few loci.

Royal Road: 1 point crossover and Lego show very similar performance on this func
followed by BSC and Uniform crossover. The latter two only work well over a relatively small b
of mutation rates. As before the asexual reproduction is far slower and only works effectively ov
even narrower spread of low mutation rates.

Matching Bits: Here BSC and Uniform Crossover only perform well over a very tight band
mutation rates, and are not competitive. Again in the presence of mutation the performance o
and the optimal operator (1 Point Crossover in this case) are very similar. Asexual reproduc
competitive, but only over a tight band of mutation rates.

Trap function: As suggested above One Point crossover is far superior (both in terms of s
of finding a solution and stability in the face of different mutation rates) to the other operators in
format. Even so, good results were only obtained over a range of 1-3% probability. The algo
using no recombination only found the optimum occasionally, and at low mutation rates. The
algorithm performed better than all the others except 1 Point, but again only over a tight ba
mutation rates.

Experiments with the problem representation changed so that the sub-problems are inter
showed that the performance of the one point operator was dramatically worsened (as found
incremental version by Schaffer and Eshelman[11]) as was to a lesser extent the Lego operat
other operators were unaffected, since they show no positional bias.

Overall these results suggest that the Lego operator works well on uni-modal problems wh
their epistasis is zero(OneMax) or high (Royal Road), but less well on multi-modal ones.

Table 1: Generations to find optimum at optimal mutation rate

Recombination Operator (mutation rate%)

Function 1-point Uniform Lego Asexual BSC

OneMax 32.84 (0.4) 18.5 (0.0) 22.32 (0.6) 89.0 (0.6) 15.06 (0.0)

Royal Road 272.40 (1.2) 335.68(0.6) 275.40 (1.2) 699.0 (0.8) 342.08 (0.8)

Matching Bits 68.64 (5.0) 173.22 (7.0) 89.28 (8.0) 99.3 (5.0) 259.38 (8.0)

Trap 514.2 (0.25) - 1874.35 (2.5) 3250 (1.5) -
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Figure 5:    Generations to find Optimum vs. bit mutation rate (%)
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3.3.2. Analysis of Operation - Sensitivity to Parameters.
In order to test the sensitivity of the operator to the rate of link mutation it was run with rate

0%, 0.1%,0.5% and 1%. It was found that over the range of mutation rates there was little diffe
for the One Max, Matching Bits and Royal Road problems. However the results for the trap func
shown in Figure 6, are instructive.

Figure 6:    Effect of varying link mutation rate: 10 trap function
It can be seen that the performance is best with a small rate (0.1%) of link mutation but th

the rate increases above this the efficiency drops off.
In the previous section it was found above that this problem was best solved by One

Crossover, where the high positional bias enables the preservation of partial solutions. For the
reasons, it would be expected that the individuals with large amounts of linking would com
dominate the Lego population.

However for highly linked populations, the primary action of link mutation is to break lin
between genes. Therefore as the probability of mutation increases, so does the rate at wh
offspring created from a highly linked genepool are reduced by mutation into individuals with sm
inherited blocks. If these block boundaries lie within the sub-solutions, then they can
disrupted.This explains why lower rates of link mutation give a better performance.

The question of why the performance is not therefore best with no link mutation at all (whe
would be expected that an asexual reproduction strategy would be adopted) is more subtle, b
be explained with reference to Schaffer and Eshelman's findings in [Schaffer and Eshelman,
They found that for deceptive functions the sub-population with the gene for crossover enable
out during the initial stages of the search but later flourished when re-introduced by mutation.

Once the population has converged onto a sufficient number of the sub-solutions, then cro
will provide a much faster method of combining these partial solutions than mutation alone can
there is an initial selection pressure in favour of linkage, long blocks start to predominate the gen
and the mechanism effectively loses the ability to perform crossover. For zero link mutation th
no way of breaking links between blocks once they are established, and so a largely asexual s
persists. By contrast, with link mutation at a low level, its effect over time is to disrupt the l
blocks that build up, and effectively cause the re-introduction of crossover, allowing the mixin
sub-solutions

The alternative explanation is that there is no selective bias with respect to linkage, an
steady state situation in Appendix A holds. If this were the case the proportion of linked genes w
decay to less than 50%.

This can be examined by classifying each individual according to the proportion of its
which are linked (this is known as its “linkage rate”), and observing the proportion of the t
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population falling within various ranges of linkage as the search progresses. Figure 7 show
plots, as well as the performance of the best of the current generation (for which the maximum
is 100) for link mutation rates of 0% and 0.5%.

These results are the mean of twenty independent runs at a mutation rate of 2.5%.
The first point to note is that both plots show the majority of the population falling into clas

with mean linkage rates well above 50%, demonstrating that there must be a positive sel
pressure in favour of linkage on this problem.

Figure 7:     Population Analysis: Trap Function
The plot with no link mutation shows the highly linked population rapidly taking over

search. The search itself starts to stagnate as the safety ratio of mutation decreases and it beco
and less likely that mutation will create good new partial solutions to the problem without destro
existing ones.

In contrast, the plot for a link mutation rate of 0.5% shows that the sub-population with
linkage initially flourishes and there a very few individuals with low linkage survive. After ab
10,000 evaluations, individuals with linkage in the range 50-74% dominate the population, ma
which will have been created through the disruption of successfully evolving fully linked individu
The effect of link mutation is to introduce more and more crossover as the search progresses,
corresponding rise in the number of less linked individuals. This enables the highest found to ke
increasing, as partial solutions from different individuals (which may well be differently muta
versions of the same ancestor) are combined

Finally it should be noted from Figure 6 that the best performance with no link mutation oc
at a lower rate of bit mutation (i.e. at a lower but less risky rate of search) than when there is
crossover taking place (link mutation rates of 0.1% and 0.5%).

This confirms that recombination serves (at least) two functions. The first is to provide a m
of generating new search points via recombination between parents from different regions
genotypic landscape. The second is to provide a kind of “Repair Mechanism” via the recombin
of differently mutated offspring of the same parent. Both are commonly viewed by biologis
being potential pressures behind the evolution of sex (see page  23 for further discussion).
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3.3.3. Analysis of Operation - Strategy Adaptation
Classifying each member of the population by its mean linkage, and tracing the fortun

classes over time can also be used to investigate how the search adapts to different problem ty
proportions of the population falling into a number of aggregate linkage classes (e.g. 0-25% lin
were measured over the course of the search, and these were averaged over twenty independ
For each problem the optimal bit mutation rate (as established by experiments) for a link mutatio
of 0.5% was used. It was decided to show the proportions of linked genes in this manner rathe
just plot a mean linkage since it gives a better view of the range of strategies present.

In all cases once the problem is nearly solved, or the population has converged o
significant number of loci, then there is no longer any selective pressure on linking at those loc
so the amount of linkage will drift to equilibrium under mutation and recombination. From Appen
A we can see that the equilibrium linkage proportion for this link mutation rate is 45.3% For
reason the plots shown in Figure 8 only display the initial parts of the search during which
performance of the best member in the population is increasing significantly

It should be noted that the plots classify individuals according to the number of linked gen
opposed to the number of link bits set in the individuals, whereas the bias in the initialisation is m
on the number of link bits set. Thus although the individuals in the initial population h
approximately 80% of their link bits set, they will on average only be 64% linked i.e. those individ
shown with 75-99% linkage have arisen through a positive selective advantage in favour of li
(certain) adjacent bits.

i) For the One Max problem the sub-populations with 25-49% linkage rapidly take over, a
cost of the more highly linked sub-populations. Given a random initialisation, the starting popul
will have on average 50% of its bits correct, and so under selection alone mutation will on avera
deleterious in effect after the first generation. The most successful strategy is one which ada
utilise more recombination, so that each bit position can be solved separately. The speed at wh
happens shows that this is an evolutionary adaptation rather than drift under mutation.

ii) For the Royal Road the sub-population with 50-74% linkage initially dominates, then th
is a gradual takeover by individuals in the 25-49% class (although the 50-74% linked sub-popu
is still not extinct after 400 generations). This demonstrates an initial selective pressure for lin
which decreases over time as opposed to i) where there is strong pressure against and iii) and iv
there is pressure for linking.

The results in Table 1 show that strategies undergoing any type of recombination dras
outperform asexual reproduction in this setting. If the advantage of crossover was due to the
to combine separately evolved blocks of eight ones, then it would be expected that one point cro
(and by analogy a highly linked population) would be by far the best strategy, due to its posit
bias. However the good results for BSC over a range of mutation rates (see figure 5) sugge
benefits of crossover result as much from the “repair” mechanism suggested above, an
positional bias can cause deleterious hitch-hiking effects.

This ties in with Forrest & Mitchell's results that the problem was most efficiently solved
what they called “Random Mutation Hill-Climbing” (RMHC) rather than algorithms with crossov
RMHC is akin to (1+1) Evolutionary Strategies in which an individual is mutated and is replace
the resulting offspring only if the latter has equal or higher fitness. This highly conservative sele
mechanism avoids Muller’s Ratchet by not allowing deleterious mutations to accumulate. Its rep
success, compared to the poor results reported here for asexual reproduction, suggests that im
difference is the selection mechanism in RMHC.

iii) for the highly epistatic and multi-modal Matching Bits problem, individuals in the 50-74
linkage class initially dominate the search, indicating a selective pressure towards links betwee
Once the optimum has been found and the population starts to converge (~10,000 evaluation
mutational drift towards lower linkage accelerates slightly. The initial increase in the numbe
linked genes in the gene-pool effectively reduces the number of parents contributing to
individual so reducing the likelihood of joining material from a large number of different sub-opti
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iv) For the deceptive trap function the same effect occurs, although dominance of long b
in the genepool, as represented by the highly linked individuals is more pronounced. Around 3
40000 evaluations there is a plateau in the peak fitness, coincident with the genepool almost
consisting of highly linked individuals. This is followed by a rapid rise in the number of less lin
individuals, which is accompanied by a phase of periodic increases in the population’s best fi
This corresponds to the re-introduction of crossover by mutation (as discussed above) allowi
bringing together of sub-solutions from different parents.

During the first stages of the search the two predominant bands are 50-74 and 75-99% lin
Although calculation of the mean block length is complex, an upper bound can be set by consid
the first block in the chromosome. If it is assumed that the linkages are independent and have a
probability p, the mean length of the first block is given by

. For a linkage probability of 75%, this gives a

estimated mean block length of 4 bits, rising to 5 for 80% linkage and 6.67 for 85% linkage.
Calculating the mean length of blocks starting halfway along the genome yields equiv

values of 3.978, 4.887 and 6.12.
These values are close to the order(5) of the building blocks which need to be assem

Further analysis would be needed to determine whether the overall mean block size was less
leading to convergence onto deceptive blocks.

Figure 8:     Population Analysis: Test Suite.
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3.3.4. Summary of Generational Results
The results above show that in terms of the time taken to find an optimum the Lego ope

performs reasonably well. On both of the uni-modal problems used its performance is very sim
that of the best fixed strategy for that problem. This is despite the fact that the best fixed operato
very different for the two problems. For the zero epistasis OneMax problem, BSC shows the
performance, and the linkage analysis shows that the Lego populations adapts to “lose” linkag
adopt a very BSC like strategy with very low positional bias. By contrast the highly epistatic R
Road problem is better solved by One Point Crossover. This shows high positional bias, an
linkage plots show that there is a definite selective pressure in favour of linkage.

For the multi-modal problems the situation is less clear. Lego outperforms Asexual, BSC
Uniform Crossover on both problems, and is comparable to 1 Point Crossover on the Matchin
problem, but is worse on the Trap function. In both cases there is a strong evolution of highly l
populations, demonstrating a clear evolutionary pressure towards the keeping together of co-a
genes.

Interestingly other authors using multi-parental or co-evolutionary approaches have iden
problems with searching multi-modal landscapes.This may well be a result of the greater m
effect of multi-parental recombination leading to faster (premature) convergence onto one pe
[Eiben et al. 1994] it is suggested that poor performance may occur when the parents lie cl
different peaks and are not contributing information about the same region of space. The amo
mixing which occurs under these circumstances depends on the distributional bias, which fo
multi-parent operators increases with their arity. It has been noted that they work better in a S
than a GGA [Eiben et al. 1995]. Similarly Uniform Crossover and BSC, which both exh
distributional bias, are usually implemented in the less exploratory setting of a SSGA where th
more chance of a long schema being preserved.

It must be emphasised at this stage that the results presented above are for a relatively sm
suite, and that only one measure has been chosen as a basis for comparison. In fact using a
of speed of convergence rather than quality of converged solution should be detrimental t
adaptive algorithm since the space searched is larger, and there will be learning overheads im
by the adaptation.

The plotting of the results obtained over a wide range of bit mutation rates shows tha
operator is on the whole less sensitive to mutation rates than the other operators tested. As h
noted it would have been simple to choose a single mutation rate to report which showed a
flattering gloss. The recombination strategies which emerge are certainly comprehensible in th
of what is known about the structure of the landscapes searched, and appear to match wel
linkage patterns of the most successful “static” operator.

3.4. Steady State vs. Generational Performance
Following the testing of the Lego recombination operator in a Generational GA, and notin

observations above, the performance of the Lego operator was examined in a Steady State GA
as possible all the parameters of the GA were kept the same. As before a population of 100 wa
and the two-parent crossover operators were used with a 70% probability. Again parent (b
selection was by deterministic two-way tournament. Initially a “delete-oldest” (a.k.a. Fifo = Firs
First Out) strategy was used to determine the updating p.d.f.pu: this yields the same expected lifetim
as a generational GA. The same link mutation rate (0.5%) was applied. The results plotted in F
9 are the mean of twenty runs.
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Figure 9:    Performance Comparison: Steady State GA.
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The results show the relative performance of the Lego operator is improved in this setting
now the “fastest” operator on OneMax, Royal Road and Matching Bits problems, and show
sensitivity to the mutation rate, as long as it is non-zero.

The algorithm with 1 Point crossover is still the fastest at solving the 10-Trap problem
unlike the generational case, the Lego operator is able to solve the problem over a wider ra
mutation rates than 1 Point.

Figure 10 shows a comparison of the Lego algorithm’s performance in the setting of a GG
a SSGA using “delete-oldest” (FIFO) and “delete-worst” (WO). For both GGA and SSGA result
also presented using linear scaling relative to the current generation, according to the formula

 expected number of offspring = 1.0 + (fitness - average) / (average - worst)
The delete-worst strategy (WO) does not perform at all well on any but the simplest prob

This is due to the extra selection pressure leading to premature convergence.
When tournament selection is used, the results for the SSGA are always better than those

GGA, both in terms of the time taken to find the optimum for any given mutation rate, and of red
sensitivity to the value of the mutation rate.

When fitness proportionate selection is use with Linear Scaling, there is a less clear distin
between GGA and SSGA results. On the Royal Road and Matching Bits problems the results ar
similar, but the SSGA is better on the OneMax and Trap problems. In fact there will be a s
difference in the selection pressure due to the incremental selection of parents in the SSGA as o
to the selection of a whole population in the GGA. For the latter Baker’s SUS algorithm was
[Baker 1987]. As for the “roulette wheel” this assigns an expected number of members to
member of the population and then performs stochastic selection to create a parental gen
However the SUS algorithm performs selection without replacement, which gives a more acc
distribution. Because the SSGA performs incremental parental selection, it necessarily pe
selection with replacement, which will yield a distribution more skewed towards the fitter mem
and hence a slightly higher selection pressure.

Comparing the two different selection methods (tournament vs. Linear Scaling with S
shows that there is little difference other than on the OneMax problem, where the constant se
differential provided by the tournament is an advantage.

Overall there can be seen to be a clear improvement when Lego is implemented in a S
rather than a GGA, a result which mirrors reported findings with other multi-parent and o
disruptive recombination operators as discussed above
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Figure 10:    Performance Comparison SSGA vs. GGA, Lego Operator
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3.4.1. Population Analysis - Steady State
Figure 11 shows the evolution of the linkage strategies with a population of 100, Fifo dele

and link mutation at 0.5% probability, averaged over 20 runs

Figure 11:    Population Analysis: SSGA 0.5% Link Mutation
Again the same patterns emerge as for the GGA. The OneMax problem is solved by

evolution of a highly disruptive recombination strategy. The Royal Road problem initially supp
moderate linkage, but then a more successful strategy takes over with more recombination. Th
is true, but with a slower takeover by smaller blocks for the matching bits and trap functions.
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In Figure 12 the same experiments are run, but with a smaller (0.1%) probability of
mutation. Again the same patterns emerge, but the drift towards lower linkage once the popu
has started to converge is slower. This fits in with the results found in Appendix A for a single lo

Figure 12:    Population Analysis: SSGA 0.1% Link Mutation
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3.4.2. Varying the Population Size
The final parameter which might be expected to affect the algorithm is the population siz

Figure 13 the linkage analysis is plotted for twenty runs of a SSGA using a population of 500
other parameters are as for the previous section.

Figure 13:    Population Analysis: Size 500, Fifo deletion, Link Mutation 0.1%
These plots demonstrate the same behaviour as before, but the patterns are far clear

larger population allows a better estimate to be made of the value of a particular strategy, sinc
are more likely to be several examples in the population.

This means that there is less chance of a successful strategy being “lost” because the
array happens to be attached to a less fit individual. Looking through the plots in the order One
Matching Bits -Royal Road- Trap shows an tendency towards the evolution of more highly li
individuals. This represents an increasing evolutionary pressure towards recombination stra
which are less disruptive of schema and show more positional bias.
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3.5. Conclusions
In this chapter the implementation and testing of the new Lego operator was described.

the performance metric chosen, its behaviour was shown to be comparable to the optimal oper
a set of test problems, although the optimal operator for each problem was not the same.
decrease in performance was noted on the multi-modal problems, particularly the deceptive
function, when compared to One Point Crossover. It was noted that the metric chosen would b
helpful to adaptive algorithms due to the overheads of learning search strategies. Despite this
tested in a SSGA, the Lego operator gave the best performance on three of the four problems

Further investigations into the effects of changing the selection and updating methods rev
that the Lego operator worked better in a steady state setting than generational, especially
tournament selection was used. It was noted that other authors working with multi-p
recombination operators have observed improved performance in a SSGA compared to a GG
that those operators which exhibit more distributional bias against the preservation of schem
long defining lengths (e.g. Uniform Crossover) are more usually implemented in SSGAs.

An analysis of the behaviour of the algorithm was made by classifying individuals accor
to their mean linkage, and observing the numbers falling into various categories over time.
experiments showed the operator to be relatively insensitive to changes in other details of th
Comparisons with the theoretical behaviour of the linkage in the absence of any selective pr
confirms that some kind of adaptation is indeed taking place.

In order to investigate the phenomenon more fully, and to provide a more systematic bas
change between problems, it was decide to implement Kauffman’s NK landscapes and obse
behaviour of the algorithm. This work is described in the next chapter.
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Chapter Four
Analysis of Evolution of Linkage Strategies
4. Introduction

In the previous chapter the Linkage Evolving Genetic Operator (Lego) was introduced, a
performance compared to that of a range of common recombination operators in the cont
function optimisation. It was found that this potentially disruptive mechanism works better
“steady state” setting, a result which was also found in work on other multi-parent recombin
techniques [Eiben et al., 1995]. This chapter concentrates on analysing how the nature of the
adapts to different types of landscapes.

In the performance comparisons a test suite of well known problems was used, but alth
they offered a range of different problem difficulties, they did not provide a good basis for system
examination of the algorithm’s performance. In this chapter Kauffman’s NK model is used to pro
a means of creating and characterising the landscapes searched in terms of the amount of int
between loci (epistasis). This is described in the next section.

4.1. The NK Landscape Model
Kauffman’s NK model of fitness landscapes has been used by a number of research

investigate properties of the genetic algorithm e.g. [Hordijk and Manderick, 1995, Manderick e
1991]. The abstract family of landscapes defined can be shown to be generic members of the
class of combinatorial optimisation landscapes. The reader is directed to [Kauffman, 1993] for a
description.

In brief the fitness of an individual is considered to be the average of the fitness contribu
of its N loci. The contribution from each locus is dependent on the value of the allele at that locu
K other loci, and this “epistasis” is considered to be so complex that it is modelled by creating a

up table of random fitnesses. This table has an entry for each of the 2K+1 possible combinations of
values (assuming a binary representation) of bits in that locus and the K other loci on wh

depends. Each landscape is thus defined by a lookup table of size N* 2K+1. In the model used here
the value in each cell of the table was an integer drawn with a uniform distribution from [0,100

For K=0, there is no epistasis and only one optimum, as there is a single optimal allele a
locus independently. As K is increased changes in the allele value of one locus affect the fitnes
more and more other loci, and the landscape becomes more and more rugged with increasing n
of lower optima and decreasing correlation between the fitness of neighbouring points i
landscape. At the limit of K = N -1 the landscape is entirely uncorrelated.

A further refinement can be made by considering the nature of the epistatic interactions.
can beadjacent(i.e. the K bits to the right of the locus are considered) orrandom(i.e. for each locus
K values are initially defined at random as being the epistatic loci for that position). Note that fo
adjacent epistasis the chromosome is considered to be a circle for this purpose, and that whe
or K = N-1, the two types of epistasis are the same.

Some general features of this class of landscapes are listed below:
1. The mean fitness of the optima in a landscape is a function of the degree of epistasis (

of the string length N. This appears to hold as long as K is not O(N), and is a more general resu
simply being the natural outcome of normalising the fitness contributions from each locus.

2. For K= 0, rank order statistics show that the mean value of the optima is 66% of the maxi
possible. Kauffman reports this to hold whatever the distribution used to generate the random v

3. As K increases, the value of the optima initially increases above the value for K = 0. How
above moderate values of K (i.e. ~8-15) the value starts to fall again as a “complexity catastr
sets in. Kauffman suggests that there are two regimes, one where K is small with respect to N
O(1)) and another where K grows with N (K~O(N)). This appears to hold whether the epistasis is
or random.
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4. Another measure of landscape ruggedness is the “mean walk length” i.e the average n
of steps to a local optimum via one-mutant neighbours (Hamming neighbours). For K= 0, a rand
selected point on the landscape will on average differ in half of its loci from the allele values a
optimum.Thus the mean walk length is N/2 steps. As the number of optima increases, a ran
chosen point will necessarily be nearer to it’s local optimum. Thus for static N, the mean le
decreases as K increases, reaching ~ln(N) for K = N - 1.

However for static K, the mean length increases as N increases. This is a result of the fa
the number of sub-optima is predominantly a function of the epistasis, and so increasing the s
the landscape increases their separation.

5. Analysis into the use of fitness-distance correlation as a measure of problem difficult
GA’s [Jones and Forrest, 1995] shows that the correlation between fitness and distance drops
with increasing epistasis, from -1.0 at K= 0 to 0.0 at K = N -1. In [Weinberger, 1990] an examina
was made of the autocorrelation between the fitness of pairs of points and their Hamming dista
was found that this decreased exponentially, and the logarithm of the rate of change, “the corre
length”, was suggested as a measure of landscape structure. The correlation length decrease
with increasing K. In [Manderick et al. 1991] the correlation length of a landscape is defined prec
as the distanceh where the autocorrelation functionρ(h) = 0.5.

Kauffman provides an empirical investigation of the structure of fitness landscapes by plo
the relative fitness of local optima against their Hamming distance from the fittest found optim
the value of N = 96. He summarises the results as“for K small - for instance, K = 2- thehighest optima
are nearest one another. Further, optima at successively greater Hamming distances from the h
optimum are successively less fit.... our landscape here possesses a kind of Massif Central,
region, of genotype space where all the good optima are located. As K increases this correlatio
away, more rapidly for K random than for K adjacent”(Kauffman, 1993 pp61-62).

4.2. Experimental Conditions: Analysis
In order to investigate the behaviour of the algorithm the population was scanned after eve

evaluations, and each individual assigned to one of the nominal classes (0-24%, 25-49%, 50-74
75+%) according to the proportion of its genes which were linked. It was felt that using this wa
displaying the population’s linkage would provide more graphical illustration than simply plotting
mean population linkage.

The algorithm was run for 10,000 evaluations with both interaction models. The landsc
used string lengths (N) of 16 and 32, and values for K of 0,2, 4, 8 and 15. For each value of
averages of 20 runs were made, each run with a different landscape.

Following the results in the previous chapter, a SSGA with deterministic tournament sele
FIFO replacement, and a population of 100 was used. Both problem representation and linkage
were subjected to (value flipping) mutation at a rate of 0.1% probability per locus.

4.3. Population Analysis

4.3.1. Adjacent Epistasis
Figures 14 and 15 show the behaviour of the algorithm on landscapes with adjacent intera

for four values of K on landscapes with N = 16 and 32respectively. As can be seen the linkag
patterns are very similar for the different values of N, the principal difference being that the
scales for adaptation are longer in the larger search spaces.
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Figure 14:    Linkage Evolution with Adjacent Epistasis: N = 16
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Figure 15:    Linkage Evolution with Adjacent Epistasis: N = 32

0 2500 5000 7500 10000

Evaluations

0

20

40

60

80

100

%
 o

f P
op

ul
at

io
n 

in
 C

la
ss

c: K = 8

0-24% 25-49% 50-74% 75%+

0 2500 5000 7500 10000
Evaluations

0

20

40

60

80

100
d: K = 15

0 2500 5000 7500 10000
0

20

40

60

80

100
b: K = 4

Mean Linkage:

0 2000 4000 6000 8000 10000
0

20

40

60

80

100
a: K=0
Page 55



(the

K =0),
l is
letely
hitch-

have
timal
y with
gainst

nature
higher
creation
be
r this

ted by
tible
ceeds
related
comes

iverse
so the
for the
ing a
rsely
mean

of the

y the
ay from
with K,

ing
scape
ever
tances
i.e. the

hich
, the

sis. It
del no
hows
. fitness-
In each case there is a slight initial “spike” in the number of highly linked chromosomes
75+% population), as a result of the “free” links joining together

However, as can be seen from Figures 14a and 15a, for the smooth unimodal problem (
the population is taken over rapidly by individuals with very low linkage, i.e. the gene poo
dominated by small blocks as the problems of optimising the fitness at each loci are comp
separable.The decline in the number of long blocks can be explained by the concept of genetic
hiking discussed earlier. Even for blocks which are initially composed of genes which all
optimal allele values, the effect of mutation over time will be to reduce some of these to sub-op
values. The probability that a block of optimal genes survives mutation decreases exponentiall
the length of the block.Thus the hitch-hiking effect is enough to create a selective pressure a
linkage.

For the value of K = 4, (Figures 14b and 15b) where the landscape is more rugged, the
of the population has changed, and the snapshots reveal far more individuals falling into the
linkage classes. This represents a gene pool composed of longer blocks. This means that the
of a new individual will involve the recombination of “information” from fewer parents, and will
more likely to preserve long schemata. However recombination still provides an advantage fo
type of landscape.

For the very rugged problems with K = 8 (Figures 14c and 15c) and K = 15 (Figures 14d and
15d) the trend of increasing linkage is even more pronounced. The populations become domina
individuals composed of very long blocks (75+% linkage). Many of these blocks will be incompa
with each other, giving a much reduced, or zero probability of recombination i.e. the search pro
mainly via mutation. This happens because the landscapes contain so many optima in uncor
positions that the chance of the successful juxtaposition of sub-solutions via recombination be
very small.

To paraphrase Kauffman, the peaks “spread out” as K increases. For a relatively d
population, there will be potential parents from several peaks. As the “massif central” diverges,
mean Hamming distance between selected parents from different peaks will increase. Ignoring
moment incompatibilities between competing blocks in the genepool, (or alternatively assum
large enough population) the number of parents contributing blocks to a new individual is inve
related to its linkage. Thus, in a diverse population, the linkage in the genepool determines the
Hamming distance of a new individual generated by the recombination mechanism from any
points previously sampled by the algorithm.

In short, the more highly linked the population, the less explorative the p.d.f. generated b
recombination operator, and the shorter the “steps” that the operator takes on the landscape aw
the parents. However as was noted above, the correlation length of the landscape decreases
so this ties in well. At low K, lower linkage enables more mixing to occur, effectively creat
children further from the parents. This is a viable strategy since the correlation length of the land
is relatively long, and so this explorative p.d.f. is likely to generate a point of good fitness. How
as the correlation distance falls, then strategies which generate individuals at high Hamming dis
from the parents are less likely to be successful compared to those which take smaller steps,
linkage increases on average.

It should be noted that these arguments only hold for relatively diverse populations in w
more than one optima are being explored. As the populations converge to a single optimum
linkage becomes irrelevant in preserving schemata, and drifts to an equilibrium.

4.3.2. Random Epistasis
Figure 16 shows the population analysis with random epistasis on landscapes with N = 16 and

varying K. The pattern of increasing linkage with K is the same as in the case of adjacent epista
should be noted that this holds despite the fact that the nature of the blocks in the Lego mo
longer maps directly onto the groups of linked genes defining the blocks of high fitness. This s
that the adaptation is occurring as a response to a more general feature of the landscape, e.g
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Figure 16:    Linkage Evolution with Varying Random Epistasis: N = 16
The second part of the statement quoted from Kauffman was that he observed the corre

between peaks to fall away more rapidly for random interactions than adjacent. The results
show that on both types of landscapes, as the correlation length decreases, so there is an in
selection pressure in favour of linkage. This leads to a decrease in the numbers of small blocks
genepool as represented by individuals in the lower linkage classes.
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If Kauffman’s hypothesis is correct, it should translate into a faster decline in the fortunes o
smaller blocks in the gene pool with random epistasis than with adjacent epistasis. If so for any
value of K between 2 and 15, there would be a noticeable difference between the results for th
different types of interactions. Figure 17 compares the behaviour of the algorithm with the two
of interaction for K 2,4 and 8.

For the K=2 landscapes, (Figures 17a and 17b) the linkage evolution is very similar for
types of epistasis, although there is more linkage preserved in the first 2-3000 evaluations
random-K landscapes.

As K is increased to 4, the random interactions (Figure 17d) show populations with consis
higher linkage than adjacent interactions (Figure 17c). Unlike the populations on the adjac
landscape, those on the random-K landscape show a virtually zero incidence of individuals exh
low gene linkage (0-24%). This shows that recombination has proved comparatively less succ
on the random-K landscape as a result of the greater distance between peaks. This would fit
the hypothesis that the peaks are further spread on the random landscape.

For the very rugged landscapes (K = 8, Figures 17e and 17f), both searches are in
dominated by highly linked individuals (long blocks). On the adjacent-K landscape, this propo
peaks at about 80% of the population before remaining consistent at around 60%, before de
rapidly after about 4000 evaluations, with a rise in the proportion of individuals in the 25-49% link
class to around 30% of the population

By comparison, the highly linked sub-population on the random-K landscapes shows a st
decline after the initial phase. For much of first 5000 evaluations there is lower (~50%) domin
by the most highly linked class After this the takeover is by individuals from the next lower (50-7
linkage class. However, the proportion of individuals falling into the lowest linkage class is far lo
for the random-K landscapes than for the adjacent-K landscapes throughout most of the time
shown.

Overall then, then results obtained back up Kauffman’s observations for the cases K=2 a
but are inconclusive for the case K=8.

In fact Kauffman’s observations are based on a sample of points taken for N=96, w
exhaustive testing was not done. He also present results on the mean walk length to a local opt
landscapes of varying N and K and both random and adjacent epistasis. These show that th
walk length (from a random starting position) is always lower on adjacent-K landscapes for
which suggests that the local optima are in fact more uniformly distributed over the search spa
adjacent than random epistasis.
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Figure 17:    Linkage Evolution: Random vs. Adjacent Epistasis
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4.3.3. The Effects of Convergence
In order to investigate the behaviour of the algorithm on the two types of landscapes more

the experiments were repeated, but this time the number of parents contributing blocks to the
up of each new individual was measured as an average over each period of 20 evaluation
provides an alternative measure of the evolving search strategies since there are two scen
which the degree of linkage can be misleading. The first is the case of a highly converged popu
The second is the opposite case where an individual may be reproduced whole due to a l
competition at each of its block boundaries. In this case even a moderately linked population
preserve discrete niches through lack of inter-niche recombination.

In Figure 18, the absolute (total) and distinct (ignoring identical copies) numbers of paren
plotted for K values of 2,4 and 8.

Figure 18:    Mean Number of Parents per Offspring
From these plots the following observations can be made:
i) For both types of landscape the absolute amount of recombination decreases with incr

K - i.e. as K increases so longer linked blocks of co-adapted genes dominate the genepool a
above.

ii) In all but one case (the exception being K = 2 Random Epistasis) the effect of conver
(sub) populations is that the distinct number of parents is reduced to one i.e. as Hordijk & Mand
noted the second phase of the search is mutation led.

iii) For both types of landscapes the rate at which this happens increases with K.
These observations tie in with the first part of Kauffman’s findings on the structure of

landscape and observation (iii) ties in with the theoretical result that the mean walk length to a
optima decreases as K increases since this implies that populations using an asexual strategy
able to locate and explore local optima more quickly.

iv) For K= 2 the absolute number of parents involved in recombination is lower on the rand
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K landscapes (i.e. there is more gene linkage as noted above) but the distinct number is higher,
after 2000 evaluations to 2 parents as opposed to 1 on the adjacent-K landscape. Despite
“mean score” curves (not shown) are very similar. This shows that on the random-K landsca
algorithm has maintained sub-populations on at least two optima. This ties in with Hordij
Manderick’s findings that in fact the “central massif” for the case of K = 2 contains more peaks
similar height close to the global optima in the random case than in the adjacent case.

The higher linkage in the random case indicates that there are more larger blocks
genepool, which increases the probability of incompatible recombination strategies, and allow
maintenance of diverse solutions for longer. This effect is a kind of “implicit niching”, and is the re
of the enforcement of maintaining block consistency.

v) For K = 4 the absolute number of parents involved in recombination is again consist
lower in the populations adapting on random landscapes, i.e. the amount of gene linkage is
higher. However this difference is much lessened.

vi) For K = 8 there is a different situation. The numbers of distinct parents involved are v
similar in the two cases, falling rapidly to 2 and then declining slowly as the population converge
both cases the absolute number of parents (inversely related to mean block size) falls rapidly, b
climbs once the population has converged. However for this value of K the absolute number of p
climbs to a higher value for “random” than “adjacent” landscapes. This means that althoug
recombination mechanism evolved in each case is effectively sampling the same number of p
the number of blocks picked is greater for random epistasis. This means that in terms of schem
analysis [Eshelman et al., 1989] the recombination strategies which evolve via gene linkage sho
positional bias for random epistasis than for adjacent epistasis.

Although clarity prohibits the display of the mean scores of the algorithm running on the
different types of landscapes, they are very similar, and the mean fitnesses after 2000 evaluati
not significantly different (using Student’s t-test at the 5% level).

These experiments have been repeated with a variety of selection mechanisms and very
results have been obtained in each case. As noted in the previous chapter, comparisons on th
within a function optimisation setting showed it to be fairly insensitive to changes in mutation 

4.4. Performance Comparison with Fixed Operators
Having investigated the evolving behaviour of the Lego operator, on NK landscapes, it

decided to run some performance tests against fixed recombination operators. One reason fo
that the evolution of “appropriate” strategies is of little consequence if the search is ineffe
compared to fixed operators. By using a standard set of landscapes and seeds, comparisons
will) later be made to find the relative significance of, and interactions between, different oper

For the two landscape sizes N = 16 and 32, 10landscapes each were created for the K values
4, 8 and 15. On each landscape 10 runs were made with different seeds, giving 100 runs p
combination. Early experimentation showed a mutation rate of 1/len to provide good results for
the operators tested, which were Lego, 1-point Crossover and Uniform Crossover. A populat
100 was used with deterministic two-way tournament selection and elitist FIFO replacement.

As the optimum value is not known for a randomly created landscape (and is in genera
known for many optimisation tasks) the principal performance measure used was the best value
in a fixed time. This was set at 20,000 evaluations for N = 16 and 100,000 for N = 32, which
most of the runs time to converge.

For each run the value of the best member in the final population was noted and the me
these values, along with the F values obtained by a 1 way Analysis of Variance are shown in T
below. The F value for 95% confidence of a significant difference between groups is 3.00 in this
so the differences in performance between the three operators are only significant for the N 32
landscapes.

For the cases where N = 16, an exhaustive search was made of each landscape in ord
discover the global optima. The number of runs in which this was discovered is shown in brac
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The N=32, K=15 landscapes has very high epistasis, and will be characterised by lots o
optima and low fitness-distance correlation, which were identified in the previous chapter as ca
difficulties for lego and other multi-parental operators. The performance ranking between One
and Uniform crossover suggests that the linkage evolves sufficiently to allow the preservation of
high order schemata, but that in some partitions convergence to lower order sub-optimal s
occurs before the linkage strategy has evolved.

Inspection of the number of times the optima is found on the N=16 landscapes shows
difference between the three operators, and a clear pattern of decreasing frequency as K increa
K= 0 the optima is always found, and for K=4 it is found with about 90% reliability. In fact even
N =16, K=15, which are a set of random uncorrelated landscapes, the global optima is still found
often (~31% of runs) than would be expected by a random search (26.3%). When the Lego alg
was allowed to run for a further 20,000 evaluations, the number of times the optima was f
increased to (100, 95,64,48) for K = (0,4,8,15) respectively. The relatively low increases tie in
Hordijk’s observation that the latter stages of the search are mutation led.

It should be emphasised that the GA used was not “tuned” in any way for this perform
comparison, and that only one mutation rate was investigated. Many authors have suggested m
such as prevention of duplicates, and the use of higher selection pressures coupled with
mutation rates. These might yield improved performance, especially on the highly com
landscapes where the more exploitative p.d.f.s associated with higher mutation rates will pro
more thorough search of the space. However, the results demonstrate that in the setting of
standard GA, for all but one of the problems the choice of recombination operator make
significant difference in terms of the quality of solution found.

4.5. Conclusions & Discussion
The analysis of the behaviour of the algorithm shows that the recombination strategies

evolve using this model correspond closely to what would be expected from theoretical and em
investigation into the structure of the fitness landscapes concerned. In general it can be seen
the degree of correlation of the fitness landscape decreases, so there is an increasing tende
longer blocks of linked genes to take over the genepool. Since individuals created from large b
will necessarily involve fewer (absolute) parents than those created from smaller blocks, they w
less likely to combine information from a number of different peaks. In terms of schemata, ther
reduced distributional bias against high-order schemata as the linkage increases. Conversely
is low epistasis and high fitness correlation then smaller blocks will take over the genepo
individuals created from these are less likely to suffer from the deleterious effects of ge

Table 2: Recombination Comparison: Mean of Best Values Found

Recombination
Operator

N = 16 N = 32

 K = 4 K = 8 K = 15 K = 4 K = 8 K = 15

1-Point 750.48
(95)

784.34
(54)

775.80
(31)

762.87 782.46 746.25

Uniform 750.08
(89)

783.00
(55)

776.77
(33)

766.64 783.06 725.08

Lego 749.721
(88)

784.355
(56)

777.34.
(31)

762.37 780.22 730.48

F-value 0.0109 0.2478 1.6098 0.4051 0.9824 51.2889
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However analysis of the strategies evolved over the course of the search also demonstra

the most successful recombination strategy is not simply a function of the landscape being se
but of the distribution of the population over that landscape.

For a relatively diverse population, the amount of distributional and positional bias exhibite
the recombination operator vary according to the degree of linkage. However as the popu
converges (or niches) such that most offspring are created by recombination of material from
few different parents, then the distributional bias becomes independent of the degree of linka
this situation the linkage evolves to reflect the success of strategies showing different amou
positional bias.

An obvious potential criticism of this model is that it is geared around links between adja
bits, and that on problem representations which do not follow this pattern it may perform poorly
be unable to adapt to the structure of the landscape. However the results obtained with ra
interactions show that this is not the case. This shows that the adaptation of recombination str
is triggered by something more than simply identifying and keeping together co-adapted gene

It has been suggested that this is an adaptation to match the mean Hamming dista
individuals from their parents to the correlation length of the landscape. This reflects a view o
search in terms of the p.d.f. governing the sampling of new points in the space.

An alternative perspective, in terms of schema theory, is that the degree of positiona
distributional bias exhibited by Lego varies according to the linkage of the genepool. The evol
of high linkage reduces the distributional bias of the operator, and allows the algorithm to pre
and discriminate between higher order schemata.

On problems where the restriction to adjacent linkage would be expected to be a problem
high K) successful individuals are created without the extra overhead of a mechanism to allow
between any two loci. This is because with a nearly converged population the gene linkage is a
adapt according to the utility of positional bias in recombination. This illustrates the relation
between the recombination function R and the updating functionU.

Comparisons with other crossover operators showed that the differences in performance (
metric of best value found) were not significant on any but the most complex landscapes.

An advantage to using the new algorithm is that the evolved linkages can be viewed as an
source of information about the search space. Examination of the evolution of linkage (with e
type of epistasis) shows that there are distinct patterns which can be used to give a guide to the
of the landscape on which evolution is taking place. The evolution of recombination strategies
low linkage suggests a highly correlated landscape, and high linkage implies a relatively uncorr
landscape. This “evolutionary feedback” on the nature of the search space will be discussed fur
a later chapter.
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Chapter Five
Self Adaptation of Mutation Rates
5. Introduction

In this chapter an investigation is made of the use of self-adaptation of mutation rates in a S
State Genetic Algorithm. The rationale behind the use of Self-Adaptation was discussed in th
chapter.

There are two major reasons for investigating the use of a SSGA. The first of these is th
overall plan is to incorporate the various operators developed, and it was found that the Lego op
worked better in a Steady State setting (although “standard” crossover operators are used thro
this chapter). Secondly, part of the reasoning behind the development of self-adaptive techniq
to facilitate the use of Evolutionary Algorithms on real problems. In practice the real world
constantly changing environment, and a major class of these problems can be characteri
temporal variations in the fitness landscape. It has been shown on a number of problems that S
are far better than GGAs at tracking moving optima [Vavak and Fogarty, 1996], hence
concentration on SSGAs. As will be seen, although self-adaptive mutation has been succe
incorporated into GGAs, its use in an incremental setting requires the addition of an inner GA, w
forms a useful way of adding local search to the GA.

5.1. Background.
Mutation has long been regarded as a vital ingredient in evolutionary algorithms, and

paradigms e.g. both Evolutionary Strategies and Evolutionary Programming [Fogel et al. 1966]
as their principal search mechanism. Within the field of Genetic Algorithms there has been
work, both practical e.g. [Schaffer et al., 1989] and theoretical e.g. [Spears, 1992] on the re
merits of mutation as a search mechanism. As has been discussed earlier, much of the work h
concerned with finding suitable values for the rate of mutation to apply as a global constant d
the search. There have also been a number of approaches suggested for changing the muta
on-line.

This issue has been tackled successfully within both Evolutionary Strategies and Evoluti
Programming by encoding the mutation step applied within the representation of each solution
approach also means that the mutation rate is now governed by a distributed rather than a glo
(see [Hoffmeister and Bäck, 1991], or [Bäck et al. 1996, Section C 7.1.] for a good overview o
issues tackled and approaches taken). These ideas have been applied to a generational GA b
a further 20 bits to the problem representation, which were used to encode for the mutatio
[Bäck, 1992b]. The results showed that the mechanism proved competitive with a genetic algo
using a fixed (optimal) mutation rate, provided that a high selection pressure was maintained
most successful method used createdλ (> µ) offspring from the fittestµ parents (such that otherλ-µ
less fit members of the population have zero probability of being selected as parents) and is re
to as (µ, λ) “extinctive” selection.

In this chapter an investigation is made of the issues confronted when this paradig
implemented within the setting of a SSGA, where the methods used in Evolutionary Strategi
updating the population are not suitable. The class of landscapes chosen to investigate the be
of the algorithm is the well-studied NK family of landscapes, as described in Section 4.1. For the
reasons as before, the measure chosen to study the performance of the algorithm in various f
is the best value found, averaged over a number of runs and landscapes.

The performance of the preferred version of the operator is also compared to that of othe
identical algorithms using a number of fixed mutation rates which are widely quoted
recommended in GA literature.

5.2. The Algorithm
The SSGA is different to the generational models used by Bäck in that there is typically a s
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new member inserted to the population at any one time, which according to the standa
nomenclature would correspond to a (µ+1) strategy. However it has been shown empirically (a
theoretically for certain simple problems [Schwefel, 1981]) that to optimise the convergence ve
within a (1+1) ES mutation step sizes should be adapted so that there is an “acceptance” r
approximately 1:5.

This heuristic means that one individual should be incorporated into the population for e
five created and is achieved by increasing/decreasing the mutation step size according to whe
proportion of successful offspring created is more/less than 1:5.Similarly Bäck found it necess
use “extinctive selection” in his GGA implementation, whereby only the fittest fifth of ea
generation were used as parents.

The need for extra selection pressure can be explained by considering repeated mutati
single individual as a form of local search. In [Bull and Fogarty, 1994] a (1+1) non-adaptive l
search mechanism was added to the GA and found to improve performance on a number of pro
Since the adaptive algorithm is effectively performing two parallel searches (one in problem
and one in algorithmic space) it can be readily seen why this might be beneficial. The use of just
parents (a result of the high selective pressure) effectively allows the updating mechanism to
direct comparisons amongst mutation strategies, by comparing many offspring generated fro
same parent.

As a simple example of this, imagine a (1,λ) algorithm climbing a unimodal landscape. Whe
the phenotype initially reaches the top of the hill, it will have a non-zero mutation probability. O
λ offspring created at the next time step, there will (allowing for stochastic variations) be a correl
between the encoded mutation rates and the distance moved from the summit.Thus the m
selected to form the next generation is likely to be the one with the smallest mutation rate, an
process will continue until a zero (or close to zero) mutation rate is reached.

However, there is a trade off between this local search and global search (eithe
recombination or simply by considering other members of the population) which will affect both
convergence velocity and (possibly) the quality of the final solution. The optimal value for this t
off will depend on the relative ability of the different reproductive operators to generate fit
offspring. This will be a factor of (among other things) the correlation length of the landscape.

The approach taken here is to encode the single mutation rate to be applied to each ind
within its genetic material, using a binary string of lengthl’ . The algorithm works by creating a single
individual via recombination and then “cloning” that individual a number of times. The transi
function is then applied to the mutation rate encoded in each of these offspring. The offspring
undergo the mutation process and are evaluated before one is selected (according to some pol
inserted into the population (according to the deletion strategy used). Effectively this inner loo
be thought of as a (1,λ) generational GA, and the algorithm may be formalised as:

GA = (P0, δ0, O,µ, λ, l, l’ , F, R´, M,Γ, pr, ps) where (D36)

P0 = (a1
0,...,aµ

0, m1
0,..., mµ

0) ∈ Iµ x I´ µ Initial Population (D37)

I’ =  {0,1}l’ Mutation Encoding (D38)

Ot  = (a1
t,..., aλ

t, m1
t,..., mλ

t) ∈ Iλ x I´ λ Offspring. (D39)

R’ : (I x I’ ) µ x δ → (I x I‘) λ (D40)
R’ is the modified version of the recombination operatorR, which creates one offspring by

recombination from the population and then copies it, i.e.

(D41)

The transition functionΓ works by decoding each of the mutation ratesmi to get a value in the
range [0,1] and then applying bit-wise mutation to each of the elements in the encoding with

probability. A functionD: {0,1}l’ → ℜ+ is used to do the decoding.

i 1 … λ, ,{ }∈∀ Oi
t

R' P
t δt,( )

R P
t δt,( ) i 1=

O1
t

2 i λ≤ ≤



= =•
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O í = Γ(Oi) = (ai 1,...,ai l, m í 1,...,m í l’ ) where (D42)

X is drawn from [0,1] separately for eachj, using a uniform random distribution.
This transition function forms the basis of the self-adaptation, since there are nowλ offspring

with identical problem encodings, but with different mutation rates attached. The mutation ope
M is now applied to each of the offspring individually.

O´ í = M(O í) = (a í 1,...,a í l , m í 1,...,m í l’ ) where andX is defined

exactly as before. (D43)
The two functionsΓ and M are effectively the same, only applied to different parts of t

individuals. Because they are applied sequentially the values used to decide whether to bit-flip (D(mi)
and D(m’i)) are potentially different.

Setting all these operators together defines an iteration of the algorithm as:

; (D44)
where the updating function U is given by the p.d.f.ps, which will depend in part on the resul

of applying the fitness function to each of the new offspring.
It can be seen from the above that the following parameters will affect the algorithm:
1) Deletion Policy: Two standard policies are frequently used with steady state GA’s, na

Delete-Worst and Delete-Oldest. In addition there is the issue of whether a member of the popu
should be replaced only if it is less fit than the offspring which would replace it (Conditio
Replacement) or always (Unconditional Replacement).

2) Selection Policy: Parental selection (pr) is via two way deterministic tournament. Selectio
of an individual from the offspring to enter the population can use the same mechanism
deterministic, i.e. the best offspring is always picked.

The combination of deletion policy and offspring selection policy will define the p.d.f.pu which
governs the updating functionU.

3) Recombination Policy: What type of crossover is used, and should the mutation encod
subject to crossover?

4) Mutation Decoding Function (D): The genotypically encoded mutation rate must be decod
and then scaled onto the range 0-100%. Three types of encoding are used, namely binary, g
exponential. In the latter (suggested in [Kaneko and Ikegami, 1992]) the mutation encoding i

binary decoded to give a value j and then the mutation ratem is given bymj = maxposs * 2(j - jmax)

(wherejmax is the largest number allowed by the binary encoding).
5) Number of offspring (λ): This will affect the balance between local search and global sea

in the early stages of the run before the population has converged.

5.3. Implementation Details
In order to test the effects of the above factors a set of standard values had to be adopted

could be kept constant during the testing of other factors. Since empirically derived standards (e
1/5 heuristic) existed for some of the factors, and Bäck’s previous work in a generational settin
shown that the selection pressure was probably the most important factor, experiments were ru
order shown above, with the optimal (or most robust) combination of parameters from one
experiments being carried through to the next set.

All experiments were run using a population of 100 on NK landscapes with N = 16, an
values of 0, 4, 8 and 15 to represent a spread of problems with increasing complexity from a s
unimodal hill (K = 0) to a randomly coupled landscape (K = 15). All experiments were averaged
fifty runs, each run being on a different landscape. For equivalence the same fifty seed

m'ij
1 m– ij X D mi( )≤

mij X D mi( )>



=

a'ij
1 a– ij X D m'i( )≤

aij X D m'i( )>



=

O''i
t

MΓR' P
t δt,( )= i 1 … λ, ,{ }∈∀ P

t 1+
U P

t
O''

t∪( )=
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landscapes were used with each of the alternatives under comparison. The runs were contin
20,000 evaluations.

5.4. Results

5.4.1. Selection/Deletion policies
A variety of policies for determining the insertion of new individuals into the population w

tested, using one point crossover (at 70% probability), 16 bit gray encoding for the mutation rate
a λ of 5.

The results of the more successful methods are shown in Figure 19. Not shown are the
for the combination of a delete-oldest policy with unconditional acceptance of an offspring, w
showed very erratic behaviour and failed to reach optima on any but the simplest problem (K
The following observations can be drawn from the plots:

1. The combination of “delete-worst” with deterministic offspring selection (WC-B / WU-Be
performs well on the simpler problems, and there seems to be little effect whether the offspr
accepted conditionally or unconditionally. However the search stagnates on the most co
landscape at a level below that found by other policies with a less intense selection pressur
indicates that the higher selection pressure is causing premature convergence to sub-optimal

2. The combination of “delete-worst” with stochastic offspring selection (WC-FP) perfo
worse than the deterministic selection policy. The use of stochastic offspring selection reduc
selection pressure in the algorithm, which explains the relatively slower growth curves, but notic
the runs also converge to lower optima as the complexity of the search space increases (i.e
increases - this is especially clear for K = 8). The reduced offspring selection pressure allow
introduction of greater diversity via mutation, but this is not enough to counteract the twin conve
effects of recombination and high replacement selection pressure.

3. The use of a “delete-oldest” policy is only successful if the insertion of an individua
conditional on its being better than the member it replaces. Even with the conditional accep
policy, the overall selection pressure in the algorithm is much less than for the “delete-worst” p
and this is reflected in reduced growth curves. The relaxation of the selection pressure also hig
the difference between the stochastic (OC-FP) and deterministic (OC-Best) selection policies
the former showing very slow improvements, although the searches do not stagnate on the
complex problems as the algorithms with “delete-worst” policies do.

4 Overall the best policy is replacement of the oldest of the population with the fittest o
offspring, conditional on the latter being the fitter of the two (OC-B). This is effectively a tournam
of sizeλ+1 between the offspring and the oldest in the population.

This policy shows growth curves comparable with the other policies on the simpler prob
(K = 0,4,8), but on the most complex problem it significantly outperforms all others, reaching m
higher optima.
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Figure 19:    Replacement Policy Comparison
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5.4.2. Recombination Policy
The standard algorithm above was run with every combination of 1point/uniform crosso

applied at 70% / 100% to the whole chromosome / problem representation only. The perform
curves showed no clear pattern, with all of the variants showing similar performance in terms o
of progress and the values of the fittest individual at the end of the run. The mean best fitnesses
and the off-line performance (running mean of best individual seen so far) are given in Table
can be seen, there are very slight differences in performance compared to the large difference
above. This shows that either the algorithm is highly tolerant of crossover mechanism, or th
nature of the selection pressure is such that the algorithm proceeds via mutation - based sear
fits in with the results reported in the previous chapter.

In order to test this a set of experiments was run using no crossover. These are shown as t
row in the table. For K = 4, the results are very similar, but above this the results are noticeably in
to any of the algorithms employing recombination.This indicates that although the type of cros
used is not important, it does have a value in enabling the population to reach different optima

This finding that better results are obtained with the use of a crossover operator than w
would appear at first to run counter to the findings of other researchers who have studied the r
utility of crossover and mutation on NK landscapes with high K [Hordijk & Manderick, 1995, Eib
& Schippers, 1996] where it was found that the utility of crossover decreased as the amou
epistasis was increased. The results presented in those two papers use a fixed mutation rate (0
1/len respectively), and the analysis concentrated on the ability of recombination operators to ge
useful new points in the search space. However it was noted in Chapter 3 that there is a sign
relationship between the crossover and mutation operators such that for many problems the “op
recombination function is dependant on the choice of mutation rate.

In Figure 20 the evolution of mutation rates is plotted over time on N = 16landscapes for two
values of K (8 and 15) with asexual reproduction, uniform crossover and 1 Point crossover.
curves clearly show that higher mutation rates are evolved by algorithms employing crossove
further to this, that there is more difference between the rates evolved for different K in the pre
of crossover. These results can be explained from the “Repair Mechanism” view of recombina

Both the papers quoted above suggest that recombination will be an unreliable mea
generating new individuals if there is no correlation between the positions of the optima in the s

Table 3: Recombination Policy Comparison

Crossover Applied to
Mutation

Encoding?

Best Value Found Off-line performance

Operator Rate K = 4 K = 8 K = 15 K = 4 K = 8 K = 15

1 Point 70% No 763.78 775.6 770.92 757.66 765.83 755.08

1 Point 70% Yes 762.86 774.94 772.62 757.38 765.44 755.08

Uniform 70% No 763.72 780.36 769.66 756.59 768.71 756.56

Uniform 70% Yes 762.72 776.26 768.48 755.48 763. 99 756.27

1 Point 100% No 763.58 774.86 767.66 756.93 762.27 755.92

1 Point 100% Yes 763.28 777.26 771.82 757.89 765.93 757.08

Uniform 100% No 763.18 778.82 772.98 755.21 763.91 757.24

Uniform 100% Yes 762.58 776.5 773.78 755.26 764.09 760.55

Asexual n/a n/a 762.66 766.54 744.4 757.76 757.56 737.05
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space. This was backed up by the results in the previous chapter, where with fixed mutation rat
recombinatory strategies evolved at high K.However if mutation is considered as the primary s
mechanism, then there is a different role for recombination, which is to recombine offspring cr
from the same peak, allowing the search to avoid Muller’s ratchet. Thus in the presence of cro
the algorithm is able to sustain higher mutation rates and perform a more effective search w
losing track of the good points discovered.

Figure 20:    Evolved Mutation Rates with Different Recombination Operators
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5.4.3. Mutation Encoding
Following the results of the last section, a set of experiments were run using 1 Point Cros

at a rate of 70%, with no crossover on the mutation encoding. The replacement was via (λ + oldest)
tournament. The mean value of the fittest individual found, and the off-line performance are s
in Table 4.

Of the three different encodings investigated, the Gray coding and Binary encoding sh
similar performance, both substantially outperforming the exponential encoding according to
measure. This was most noticeable on the more complex landscapes.

The use of 16 bits as opposed to 8 for the representation provides a slight advantage w
more noticeable on the more rugged landscapes, but the difference is small.

Also tested was the importance of the maximum value which the decoded mutation rat

take. This was done using 16-bit gray coding for the mutation rate, and simply changing
multiplication of the decoded value. The results are shown in Table 5.

Clearly there is a trade-off between retaining the ability to learn large mutation rates w
enable escape from sub-optima on less correlated landscapes, and the time taken to “learn”
mutation rates on smooth landscapes. However the maximum value of 25% leads to th
performance on all but the random landscapes

Whether the encoding be Binary or Gray, there is always a single bit which when mu

Table 4: Mutation Encoding Comparisons

Mutation
Encoding

Best Value Found Off-line Performance

Code Length K = 0 K = 4 K = 8 K = 15 K = 0 K = 4 K = 8 K = 15

Binary 8 671.12 763.4 776.36 767.82 669.43 757.12 765.63 756.22

Binary 16 671.12 763.78 779.64 770.08 669.48 757.44 769.21 756.63

Gray 8 671.12 763.86 775.46 767.74 669.42 757.67 765.46 755.45

Gray 16 671.12 763.78 775.6 770.92 669.6 757.66 765.83 755.08

Exp. 8 668.68 751.4 747.88 735.54 663.81 740.76 736.75 726.34

Exp. 16 668.76 749.24 751.04 736.26 663.2 738.14 736.6 723.09

Table 5: Effect of Changing Maximum Decoded Mutation Rate

Maximu
m

Decoded
Value
(%)

Best Value Found Off-line Performance

K = 0 K = 4 K = 8 K = 15 K = 0 K = 4 K = 8 K = 15

0 668.76 749.24 751.04 736.26 663.2 738.14 736.60 723.09

10 671.12 763.58 771.90 762.08 669.21 757.46 760.35 748.48

25 671.12 763.78 775.60 770.92 669.60 757.66 765.83 755.08

50 671.12 763.32 774.78 773.90 669.05 756.48 762.86 759.64

100 671.12 762.48 775.06 776.38 668.66 754.85 761.79 761.97
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causes a large change in the decoded value, and it is this effect which can allow escape fro
optima even when the mutation rate has evolved to a low value. The potential scale of this ch
and hence the size of the basin of attraction from which the algorithm can escape via mutatio
depend on the range of values the decoded mutation rate can take. This effect is most obviou
figures for the best value reached on complex landscapes (K = 15).

The disadvantage of having a wide range of rates available to the algorithm is that it can
longer to learn a suitable rate, especially in the final stages of the run when the rate is being mini
This shows up especially in the off-line results on the low epistasis problems.

However it must be emphasised that these effects are tiny compared to those of selecti
the size of the inner GA. This is good since the aim of self-adaptation is to build robust algorit
and there would be little point if the choice of decoding range etc. became critical to succe
appears from these results that if nothing is known about the landscape to which the mechanis
be applied, initialising the population at random over the range of 0-25% represents a
compromise.

5.4.4. Size of the Inner GA
The next set of runs used the values above (with a mutation range of 0-25%) and varie

value of λ. These results are shown in Figure 21. and offer strong empirical support for the
acceptance heuristic referred to above.

For low epistasis, (Figures 21a and b) there is no difference in the levels of fitness achieve
there is a clear pattern that the speed of reaching the peaks is inversely related to the num
offspring created. In the previous chapter it was shown that recombination is a good strategy o
type of landscape, i.e. that many of the offspring created will be at least as fit as their pa
However, for every iteration only a single new member is added to the population, so the otheλ - 1
evaluations are wasted from the algorithm’s point of view.

This can be demonstrated by considering the time taken to achieve the optimum for the s
problem, K = 0. This was a mean of 5800 evaluations with 5 offspring and 9900 with 10. This n
doubling of time to converge is also reflected in the time taken to reach lesser values such as 9
the maximum (1300 evaluations vs. 2000) and 95% of the optimum (200 evaluations vs. 400)

As the amount of epistasis increases, and the landscape becomes less correlated, the s
changes for three reasons:

Firstly, the original offspring pre-mutation has a decreasing chance of being fitter tha
parents. This was reflected in the previous chapter by the decreasing evolutionary success of
recombinatory search strategies. The decrease in the safety ratio of recombination puts an in
emphasis on the mutation strategy.

Secondly, as the fitness-distance correlation decreases, so the region around any point ge
by recombination contains a greater range of fitnesses. The local search mechanism is gen
points which sample this region, and the more samples taken, the higher the chance of finding
solution.

The third factor is the fact that as well as searching the problem space, the algorithm is
learning mutation rates, and having a larger number of offspring means that more strategies
tried in parallel. Equally, as the mutation rate in the transition functionΓ decreases, so it is more likely
that several of the offspring will have the same mutation rate. Since mutation is applied separa
each locus, there will on average bemi x l alleles changed. However this is a stochastic process,
it is quite possible for an individual with a large mutation rate to only change in a very few positi
giving a false impression of the utility of the strategy. Thus increasingλ, and taking a larger sample
should aid the learning process.
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Figure 21:    Comparison of Different Values ofλ
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For these reasons, as K increases so the curves forλ = 1 show stagnation and reach lower value
than those incorporating more local search. However the improvements in maximum fitness ob
do not scale linearly withλ and from the plots above, the mean fitnesses reached withλ = 5 are higher
than those forλ = 10.

In order to test this a single landscape and fifty populations were created for each value
Experiments were run usingλ values of 1,2 5 and 10, and the fitness of the highest individual recor
for each run of 20,000 evaluations.These results are summarised in Table 6 below, where
values are significantly different using Student’s t-test at the 5% confidence level. As can be
there is a significant advantage to using the local search mechanism, and the optimal value foλ (in
terms of speed and values) reached is 5, in agreement with the 1:5 heuristic.

5.5. Comparison with Standard Fixed Mutation Rates

5.5.1. Conditional Replacement
The optimal set of parameters and policies identified above were tested against a SSGA

a normal mutation mechanism with the same recombination parameters, population size and
selection mechanism as the adaptive algorithm. The replacement policy was also to delete the
member of the population if its fitness was worse than that of the new individual.

The algorithms were compared using several metrics. These were the performance of th
of the current population, tested every 200 evaluations, the mean highest fitness reached, and
N 16 landscapes) the number of runs in which the global optimum was discovered. The experi
were run 10 times each on 10 different landscapes for each combination of K= {4,8,15} with N =
32. Each run was allowed to continue for 20,000 (N=16) or 100,000 (N=32) evaluations.

A variety of authors have attempted to determine fixed values for the mutation rate which
yield good results across a range of problems, and a number of these common settings were
including;

pm= 0.001 [DeJong, 1975],
pm= 0.01 [Grefenstette, 1986],
pm= 1/l = 0.0625 / 0.03125, (wherel is the length of the problem representation)
pm = 1.75 / (√l * µ) = 0.0044 / 0.0031- this comes from [Bäck, 1992b] as an empiri

formulation of a result from [Schaffer et al.,1989].
Following initial experiments, which showed that higher mutation rates gave the

performance, a rate ofpm= 2/l was also tested.
Figure 22 shows plots of the current best in the population against time. Table 7 shows the

value found for each rate, along with the number of runs in which the optima was found for the
16 problems. For each problem class the 1-way Anova F value is given, (a value of 3.06 is sign
with 99% confidence).

Table 6:  Final Fitness Comparison: Varyingλ

λ
Mean Maximum Fitness

K = 4 K = 8 K = 15

1 791.48* 755.28* 751.18*

2 796.12* 754.84* 763.14

5 799.26 767.2 766.68

10 798.42 763.6 764.8
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As the amount of epistasis in the problem increases the adaptive policy shows a marked
to continue to improve the fitness of the population compared with the fixed rate versions. The
clear pattern of increasing performance with increasing fixed mutation rate, with the best o
performance coming from the value of 2/l, and most of the recommended rates demonstrating p
performance.

In Figure 22 the fixed mutation rate algorithms show curves which either stagnate or show
slow improvements, indicating that on most if not all of the runs the search had become trappe
local optimum. As can be seen, the number and frequency of jumps in the performance c
increases with the mutation rate, suggesting that the discovery of new optima is mutation led

In contrast the adaptive mutation algorithm always shows continuing improvement. Th
because there is always a chance that changing a single bit in a low mutation rate encoding will
an individual with a high mutation rate, providing a means of escaping local optima. The costs o
improvement are the overheads of the learning process. Even though the adaptive algorithm r
similar values (except N = 32, K = 15) to the algorithm using a fixed rate of 2/l, it usually takes longer
to do so, and the curves for the adaptive algorithm are often still climbing after the others
stagnated. Possibly allowing more evaluations would have favoured the adaptive algorithm.

Table 7: Best Value Found: Conditional Replacement, Standard GAs

Mutatio
n

Rate

N = 16 N = 32

K = 4 K = 8 K =15 K =4 K =8 K =15

Adap-
tive

749.101
(93)

778.337
(43)

762.106
(22)

757.306 774.088 731.648

DeJong 739.966
(49)

756.317
(16)

710.244
(1)

741.353 740.101 694.556

Schaffer 741.819
(53)

756.863
(15)

713.791
(2)

747.840 745.456 709.947

Gref. 741.799
(53)

760.008
(21)

718.616
(2)

750.999 751.375 715.639

1/len 748.751
(91)

773.014
(40)

744.284
(7)

758.730 764.333 729.257

2/len 750.161
(98)

780.632
(55)

762.519
(15)

760.101 775.467 738.318

F Value 5.517 29.414 110.468 12.762 58.491 76.710
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Figure 22:    Adaptive vs. Standard GAs: Conditional Replacement
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5.5.2. Elitist Replacement
In the previous section it was noted that many of the runs with fixed mutation rates got stu

local optima, and that the higher the mutation rate the greater the chance of escaping. In order
this, it was decided to run a further set of tests using a lower selection pressure. The selection p
for all the algorithms was reduced by changing the replacement strategy so that the oldest m
was always replaced by the new offspring unless it was the sole copy of the fittest in the popul
and was fitter than the new offspring The results of these experiments are given in Table 8 and
23. Again a F-value of 3.06 or above indicates a significant differences between groups.

Comparing the results in Tables 7 and 8 shows that the relaxation of selection pressure
little difference to the lowest rates, which still give poor performance, but improves the perform
of the higher rates significantly both in terms of values found and the reliability of finding the opt
The relative ranking of 1/l and 2/l is reversed (although both benefit from the relaxation in pressu
and the adaptive algorithm gives the best performance. Figure 23 shows that the fixed rate algo
now display a slower search but do not stagnate as they did before.

Table 8:  Best Value Found: Elitist Replacement, Standard GAs

Mutatio
n

Rate

N = 16 N = 32

K = 4 K = 8 K =15 K =4 K =8 K =15

Adap-
tive

749.96
(97)

786.41
(73)

779.13
(41)

762.94 788.80 746.80

DeJong 737.34
(43)

745.40
(10)

716.73
(1)

739.56 732.37 700.29

Schaffer 738.11
(44)

750.12
(11)

716.20
(3)

746.57 742.44 705.93

Gref. 740.24
(54)

755.05
(17)

724.84
(2)

749.71 756.23 720.16

1/len 750.48
(99)

784.34
(66)

775.80
(37)

762.87 782.46 746.25

2/len 750.61
(100)

784.25
(63)

777.62
(38)

761.2 778.14 729.99

F Value 10.15 98.97 219.77 26.80 174.97 131.54
Page 77



.
Figure 23:    Adaptive vs. Standard GAs: Elitist Replacement
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5.5.3. Conditional Replacement and Local Search
After noting that the version of the algorithm with 5 offspring is noticably better on the m

complex problems than the single offspring version, further experiments were run in ord
determine whether the improvements noted above were the result of adaptive mutation rates or
the result of adding a form of local search to the GA.

These experiments used the same suite of fixed mutation rates as above, but this time in e
the same algorithm as the adaptive mechanism.The results of running the Hybrid GA’s
conditional replacement are shown in Figure 24 and Table 9. The fixed rate algorithms a

improved by the addition of local search in that the problem of premature convergence to a
optimum is ameliorated. However, all of the commonly recommended values still display stagn
there is still a pattern of increased performance with higher rates, and the adaptive algo
outperforms all but the highest rate (which it beats for N = 16, K = 15). Again there is a time penalty
associated with the adaptation.

Table 9:  Best Value Found: Conditional Replacement, Hybrid GAs

Mutatio
n

Rate

N 16 N 32

K = 4 K =8 K =15 K =4 K =8 K = 15

Adaptive 749.101
(93)

778.337
(43)

762.106
(22)

757.306 774.088 731.648

DeJong 742.171
(58)

751.412
(7)

719.122
(3)

743.216 741.085 700.360

Schaffer 743.77
(63)

752.779
(8)

720.886
(2)

750.166 751.474 702.129

Gref. 746.601
(80)

761.631
(17)

728.948
(5)

754.611 759.032 717.579

1/l 749.696
(94)

774.103
(40)

746.24
(6)

759.032 768.044 732.547

2/l 750.042
(97)

781.652
(58)

760.229
(17)

760.801 778.348 741.557

F-value 2.648 49.819 71.294 10.444 49.347 76.411
Page 79



Figure 24:    Adaptive vs. Hybrid GA’s: Conditional Replacement
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5.5.4. Elitist Replacement and Local Search
The results for the Hybrid GAs with elitist replacement are shown in Figure 25 and Table

Comparing these with the previous tables shows that for most of the fixed rates these are th
results, suggesting that both if the changes helped the search to avoid becoming trapped i
optima. The same broad patterns are visible in these results as the others, but this time a fixed
2/l provides better performance than 1/l.

The best performance comes from the adaptive mutation mechanism, and the lea
overheads are less noticeable on all but the most complex problems.

Table 10:  Best Value Found: Elitist Replacement, Hybrid GAs

Mutatio
n

Rate

N 16 N 32

K = 4 K =8 K =15 K =4 K =8 K = 15

Adaptive 749.96
(97)

786.41
(73)

779.13
(41)

762.94 788.80 746.80

DeJong 737.83
(45)

749.43
(12)

719.66
(2)

737.82 741.23 698.97

Gref. 742.12
(64)

762.17
(18)

735.56
(7)

753.76 760.07 720.72

Schaffer. 739.64
(58)

755.82
(15)

730.6
(5)

744.89 748.87 712.94

1/len. 749.05
(93)

776.43
(44)

761.70
(17)

758.38 773.20 735.59

2/len 750.57
(99)

784.99
(65)

775.36
(31)

762.00 784.74 755.03

F-value 7.85 58.92 120.69 25.11 108.63 169.68
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Figure 25:    Comparison of Adaptive GA with Hybrid GAs: Elitist
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5.5.5. Summary of Comparison Results
Table summarises the results above, showing the mutation rate which provided the h

mean value obtained for each landscape class.

Although the fixed rate of 2/l yielded the best performance on the N = 16, K = 4 landscapes, the
adaptive algorithm and the fixed rate of 1/l both yielded results which were not statisticall
significantly different in any of the four experiments.

As the problem complexity is increased, some clear patterns emerge. Firstly, there is a ten
for the fixed rate algorithms to get stuck in local optima, so that the searches stagnate for peri
time. In the previous chapter it was shown that mutation was the more effective search mechan
K increased, and this is confirmed by these results. As Figures 22 -25 show, there is a
relationship between the ability to escape from local optima (as indicated by the numbe
frequency of “jumps” in the value of the best in the current population, ending periods of stagna
and the size of the mutation rate.

Of the four “standard” rates tested, the value of 1/l gave the best results, and when the ext
value 2/l was tested it did better still (although not in all configurations). It is possible that an e
higher rate would have performed even better on these landscapes. although the change in
when the selection pressure was reduced, suggests that the value is close to optimal (recallin
Chapter Three that the performance curves vs. mutation had a parabolic form for most o
algorithms on most of the problems tested).

The problem of getting stuck in sub-optima was shown to be ameliorated by both the ad
of local search, and a reduction in the selection pressure. Both of these also helped the perfo
of the adaptive algorithm (the local search was shown in section 5.4.4 to be crucial), and on f
the six landscape classes, the best results came from the adaptive algorithm. There was a no
slowing in the rate of progress, which can be attributed partially to the overheads of learning
information, and partially to the cost of evaluatingλ individuals for every 1 incorporated into the
population. The latter factor is most important on the less epistatic landscapes, when recomb
is more useful as a means of producing fit individuals (and of course is not relevant when com
to the Hybrid GAs).

5.6. Analysis of Evolved Mutation Rates
In order to observe the behaviour of the algorithm, 10 landscapes were created for each

standard K values used above, with N = 16. For each landscape 10 runs of 100,000 evaluation
made, with the mean mutation rate in the population observed every 50 evaluations. The resu
shown in Figure 26 forλ =5.

From these plots the following observations can be made:
1. Since the genepool is randomly initialised the initial mean rate encoded will be hal

maximum value allowed, but there is a high initial variance. During the first phase of the search

Table 11: Best Algorithm for each Problem Class

N = 16 N = 32

K=
4

K=8 K = 15 K = 4 K = 8
K =
15

Rate 2/l Adap-
tive

Adap-
tive

Adap-
tive

Adap-
tive

2/l

Elitism? Yes Yes Yes Yes Yes Yes

Local Search? N Yes Yes Yes Yes Yes
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is a period of rapid decline in the mean rate as individuals with higher mutation rate are select
of the population. Given that all new individuals created using One Point Crossover, the spe
which individuals with higher mutation rates are removed by selection will reflect the relative v
of recombination vs. mutation on the landscapes at a given stage of the search.The observat
high mutation rates are removed less quickly with increasing epistasis fits in with the previously
results on the efficacy of recombination on epistatic landscapes.

2. In the second phase of the search, the mutation rate enters a stage of a far more gradua
as the population converges. At this stage there is still a noticeable relationship between the K
of the landscapes and the evolved mutation rate, with populations searching on more co
landscapes maintaining higher mutation rates.

3. After between 10,000 and 20,000 evaluations (depending on K) the populations be
converge and the encoded mutation rates drop towards zero. The rate of decline in this final s
slight. The later stages of the plots are not shown (for reasons of clarity), but there is little diffe
between the different values of K after around 20,000 evaluations. The mutation rates evolve
from about 1% at 20,000 evaluations to around 0.65% after 100,000 evaluations. (The mean rat
the last 10,000 evaluations measured varied between 0.56% for K = 4 to 0.75% for K = 15).

Figure 26:    Evolved Mutation Rates vs. Number of Evaluations,λ = 5
This last feature of a very slow decline in the mutation rate towards zero is despite the eff

selection, which is to reduce the number of mutations likely in the production of a copy of
converged solution.

It can be shown that the mutation rates will eventually converge towards zero using a Ma
Chain analysis. This was done in [Bäck, 1992b], but a simple version is sketched her
completeness. The reader is referred to e.g [Hoel et al.,1972] for a full discussion of the conver
of Markov Chains.

A converged population is assumed, so that the effects of selection and recombination c
ignored, allowing the proof to concentrate on the encoding of the mutation rates in a single indiv
Since a finite sized binary representation is used, there are a finite number of values over the in
[0,25%] that the mutation rate can take. The value that the rate takes at the next time step is gi
applyingΓ to the encoding at the current step as defined above (D42). The mutation rate at an
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step is thus a state in a Markov chain, with the corresponding transition matrixΓ´ being defined by
the probability of mutation from one state to another.

Some properties of this matrix can immediately be stated, based on a physical interpre
The first of these is that for the state 0 (i.e no mutation encoded for) there is a probability of 1
remaining in that state and 0.0 of moving to any other, i.e this is an absorbing state:

(D45)

The second of these is that all other elements in the matrix are non zero. Even for a pair of
(a, b) represented by binary complementary patterns there is a finite chance of mutating alll’ bits i.e.

∀ a ≠ 0, Γ´(a, b) =pa
l’ > 0.0 (wherepa is the decoded mutation probability in statea andl’ is the length

of the representation). Specifically, this means thatΓ´(a,0) > 0.0∀ a.
Combining the fact that state 0 can be reached from all states, with the fact that once ent

cannot be left, tells us that all other states must be transient, and 0 is the only recurrent state
system.

If Xn denotes the state of the system at time stepn, then as a property of Markov chains:

(3)

Since all items in the summation on the right hand side will always be positive,P(Xn = 0) must
be increasing withn, hence the system will converge to a state of zero mutation.■

As was noted, this sketched proof ignores the effects of selection and recombination o
population. It was reported in Section 5.4.4 that a major factor affecting the performance o
algorithm was the size of the inner GA, given by the valueλ. It was found that there was a
significantly improved performance on more epistatic problems when a degree of local searc
allowed. This ties in with Bäck’s findings that a significantly higher degree of selection pressure
desirable with self adaptation, which follows naturally from the fact that the algorithm is searc
the problem space and the space of different mutation strategies simultaneously.

In order to test the effect of the extra selection pressure, evolved mutation rates were no
different values ofλ over the same set of problems as above. These results are plotted in Figu
for K = 4. The results for all other values of K were very similar. In this figure the x-axis denotes
number of generations rather than the number of evaluations, and the scale is logarithmic.

The plots withλ = 5 and 10 are virtually identical until the final phase, and during the first ph
the mutation rates fall slightly faster than forλ = 1. This is because the larger sample size gives a be
estimate of the value of a particular strategy. As the population converges to a solution ther
dramatic switch: the curve forλ= 1 continues to fall steadily towards zero as would be expected,
the other two flatten out and show the marked decrease in rate of change noted above, lea
“residual” mutation.

It is the differences in the mutation rates evolved at the end of the runs which set the plots
and which hold the key to the improved performance of the algorithm with increasedλ. As the size
of the inner GA is increased, so there is a corresponding increase in the value of the mutation
which the population settles. The value of this residual mutation, which does not get selected
that it provides a means of avoiding becoming trapped in local optima. This explains the fact th
adaptive GA does not stagnate.

Γ' 0 a,( ) 1.0 a 0=
0.0 a 0≠




=

P Xn 1+ 0=( ) P Xn 0=( ) P Xn a=( ) Γ' a 0,( )×
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∑+=
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Figure 27:    Evolution of Mutation Rate: Varying Lambda, K = 4
The residual mutation can be explained as a function of selection within the inner G

follows:
For any copy of the current best string, with a mutation ratepm, the probability that it survives

both the transition function and mutation of its problem encoding intact is:

P(survival)= (1 -pm)l’  x (1 -pm)l = (1 -pm)l+l’ (4)
The probability that an individual is altered by mutation is simply the complement of this,

so for a set of offspring, the probability that at least one of them survives the mutation process int

P(At least One Intact)= 1 - P(AllMutated)= 1 -P(OneMutated)λ (5)

= 1 - (1 -P(survival))λ (6)

∴ (7)

In Figure 28a curves are plotted showing the probability of at least one individual survi
against mutation rate, for different values ofλ and for two different length strings (16 and 64- in bot
casesl = l’ for clarity). These clearly demonstrate the fact that since the negative term on the
hand side of Equation 7 goes with the powerλ, so increasing this value has a dramatic effect on t
probability that mutation at any given rate will have no effect.

Equation 7 was used to calculate the value of the mutation rate at which there is a fifty pe
chance of maintaining an individual, and the values obtained are plotted in Figure 28b.

These values demonstrate that although increasingλ from 1 to 5 increases the sustainab
mutation rate threefold, there is only a slight further increase as the size of the inner GA is incr
to 10, which explains the empirical confirmation of the 1:5 rule noted above.
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Figure 28:    Survival Rates under Mutation

5.7. Conclusions
A mechanism has been presented which allows the incorporation within the SSGA of a

Adaptive mutation rate. This mechanism also incorporates some local search as a by-produc
means whereby it learns good mutation rates. The nature of the mechanism is such that it pro
form of distributed control for the GA whereby individuals in different parts of the search space
have different mutation rates.

Experiments with a variety of parameters have shown that the mechanism is robust in th
of major changes such as choice of crossover, mutation rate encoding, etc.

On the most complex, uncorrelated landscapes, Gray coding worked significantly bette
binary coding. This is not surprising as Gray coding provides a much smoother landscape f
system to learn mutation rates, and as the landscapes become less correlated, so mutation
more important to the search process. This is why differences in performance generally becom
noticable at higher values of K.

The most sensitive choice is which member of the population to replace, and with w
offspring. The combination of a Delete-Worst policy with selection of the fittest offspring works w
on all but the most complex problems, but overall the best performance came from using a D
Oldest policy. This has the advantage of being computationally simpler as it does not require t
ordering of the population.

When the results from the performance comparisons (where the replacement pressu
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relaxed still further to a simple elitist FIFO policy), are taken in conjunction with the analytical
experimental results on the dependence of the evolved mutation rates on lambda, a more c
picture of selection pressure materialises. In previous work using generational models [Bäck, 1
it was found that a very high selection pressure was needed. By creating approximately 5 tim
many offspring as parents are used, multiple strategies can be evaluated at different points
search space.

However the results here demonstrate that by separating the two phases of selection, so
inner GA selects for strategies, a more relaxed selection pressure can be used in the main G
the benefit from a more diverse population that the search is less likely to become trapped in
optima.

Analysis of the effects of changing the size of the inner GA showed that values greater tha
allow the maintenance of an amount of “residual” mutation, with the population at a low rate. T
coupled with the chance of the transition function occasionally producing an offspring with a
mutation rate, is enough to allow escape from local optima and prevent stagnation of the sea
Markov Chain analysis was sketched to illustrate why, with a single offspring, the population
tend to converge to a state of no mutation, and probabalistic reasons were given why the
convergence to zero is much slower when more than one offspring is cloned. These also pr
some support for the empirical 1:5 heuristic.

The comparisons with GAs using fixed rate operators (with or without local learning) sho
two results. Firstly, for all non-trivial problems the inclusion of a form of local search can impr
performance. Secondly the addition of the adaptive mutation mechanism significantly improve
performance of the Genetic Algorithm, as well as removing a parameter from the set of dec
faced by the operator.

It is possible that an extended search through fixed mutation rates might have yielded f
improvements but this was not thought to be productive, as any such results would be entirely pr
dependant, and the aim was to compare the performance of the adaptive algorithm with that
most commonly recommended set of values. As discussed above, it is expected that for any
problem there will be a set of fixed operator values and parameters which outperforms an ad
algorithm, (especially when the performance metric is time dependant) since the latter suffers
the learning overhead of adapting suitable strategies
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Chapter Six:
Combining Self-Adaptation of Recombination and Mutation
6. Introduction

In previous chapters representations and operators have been proposed and investiga
achieving the Self Adaptation of recombination strategies and mutation rates within a SSGA. I
chapter two possible methods of combining the two algorithms developed previously are investi
The resultant algorithms are compared to a suite of “standard” GAs which use common operato
settings, and are found to exhibit superior performance as measured via a range of metrics on
landscapes.

6.1. Description
In Chapters 2-4 a recombination algorithm was developed which was able to self adapt so

preserve partitions within the genepool, thus achieving a degree of implicit problem decompos
It was noted that there was a degree of sensitivity of the algorithm to the probability of muta
although less so than the other recombination operators tested. In the work on adaptive mutatio
only a single rate was evolved. However in [Bäck, 1992b] it was found that for certain type
problems there was an advantage in having separate rates encoded for each subcompon
problem being suitable identification of the sub-components. In this chapter two possible meth
combining the adaptive mutation and recombination algorithms will be investigated, one
individual level adaption of mutating rates and one with component level.

6.1.1. Single Mutation Rate: Individual Level Adaption
Initially a straightforward approach is taken and the two approaches are mixed with a s

adaptive mutation rate added to the Lego representation for each individual. This is done as
coded binary string of the same length as the problem representation.

One offspring is created by Lego recombination, followed by an inner GA - mutation loo
per the last chapter. During the second phase, when mutation is applied to the problem represe
it is also applied at the same rate to the encoded linkage. This enables self adaption of bo
mutation rate and the linkage.

Although conceptually very simple, there are a number of possible drawbacks to this appr
Firstly, as was noted above, for some problems there may be an advantage in having ind
mutation rates for different subcomponents. Secondly, the relative contribution of a block of ge
the mutation rate will depend on its position, as well as the number of loci spanned, since the
gray encoded. In practice this means that the most important mutation genes are those in the l
loci. This would be far more serious if simple binary coding was used.

6.1.2. Multiple Mutation Rates: Component Level Adaption
Another solution to these problems is to combine the ideas of adaptive mutation with the

algorithm by learning useful blocks of linked genes along with a suitable mutation rate for each b
This provides a means of automatically decomposing the representation into a suitable number
strings and mutation rates, since there are as many mutation rates in a given individual as th
discrete blocks of genes in it.

The fact that block definitions evolve over time immediately raises several questions, su
what rate should be given to the two blocks formed by the mutation of a larger one, or to the s
block resulting from the linking over two smaller ones.

The simplest solution, which is used here, is to encode a distinct mutation valuemi,j for each
genej in each individuali in the population. The probability of mutation within a block is then som
function of the values attached to its constituent genes. Possible functions include using the low
the mean of the rates in the block. Here the mean is used, for the reason that this will be more
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as the length of the blocks increases.
For reasons of size and scalability the mutation rate for each gene is encoded as a singl

rather than as a binary string, and this necessitates a small change to the transition funct
mutationΓm. The approach used here is the one from Evolutionary Strategies, namely to pertu
values by a random factor drawn from a Gaussian distribution with mean 0. This ensures that m
the search will be concentrated around previously successful mutation values whilst not prec
occasional large jumps (which were seen earlier to be of value in enabling escape from local op

6.2. Representation and Definition
Referring to the two algorithms discussed above as Adapt1 and AdaptM respectively, the

formalised as:

GA = (P0, δ0, O,µ, λ, l, F, R, M,ΓR,ΓM , pr, ps) (D46)

where each member ofPt, Ot is of type:

ai = (αi, Li, Ri, mi) ∈ I x I x I xℜl for the multiple rate case (AdaptM) (D47
ai = (αi, Li, Ri, mi) ∈ I x I x I x I for the single rate case (Adapt1) (D48

A single gene at locusj in the ith member of the population is thus defined by the 4-tupleai,j = {αi,j,
Li,j, Ri,j, mi,j}

The recombination operator,R, is the Lego operator defined earlier in (D34) with th
corresponding transition functionΓR, and this defines the linkage sets in the offspring. Again t
necessary selection pressure for self-adaptation of the mutation rates is provided by using a
GA, with λ members cloned from a single recombination event as per (D41).

The next step is to apply the mutation transition functionΓm to the mutation rate of each gen
in the offspring:

O í = Γm(Oi) = (ai, 1,...,ai, l, Li,1,...,Li,l, Ri,1,...,Ri,l, m í, 1,...,m í, l) (D49)
For Adapt1 the transition functionΓm works by applying the decoding function,D to each of

the mutation ratesmi to get a value in the range [0,1] and then applying bit-wise mutation to eac
the elements in the encoding with that probability:

(D50)

whereX is drawn uniformly from [0,1] for each positionj.
For AdaptM, with real-valuedmi, the transition functionΓm works by generating a random

factor for each locus which is used to perturb the encoded rate:

(D51)

whereN(0,1)represents a random variable drawn separately for each locus from a distribution
mean 0 and std. deviation 1.

Finally value flipping mutation is applied to each element of the linkage and problem encod
Li,j Ri,j andαi,j at a ratep’m(i,j) , which is given by

(D52)

whereS(i,j) is the linkage set of locusj in offspringi for the AdaptM algorithm.
Following on from the results in the previous Chapter, the population updating p.d.f. is de

via a tournament between theλ members of the inner GA, the winner replacing the oldest in t
current population, provided that the latter is not the sole copy of the current fittest popul
member.

m'i j,

1 m– i j, X D mi( )≤

mi j, X D mi( )>



=

m'i j, Γm mi j,( ) mi j, e
N 0 1,( )×= =

pm' i j,( )
1

S i j,( )
----------------- m'i j,S i j,( )∑ AdaptM

D mi( ) Adapt1





=
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6.3. Experimental Details
In order to test the effectiveness of the algorithms a series of experiments were run usin

same sets of NK landscapes as before (10 runs were done on each landscape, giving 100 runs
combination). The same seeds were used so as to allow direct comparison of results with
obtained previously.

Again the approach taken was to compare the fittest member of the population after a
number of evaluations. Runs were continued for 20,000 evaluations on the 16 bit landscap
100,000 evaluations on the 32 bit landscapes, using a population of 100.

In the light of the results from previous sections, the two Adapt algorithms were compared
a range of combinations of operators which were found to be successful, namely 1-point, Unifor
Lego recombination together with the five fixed mutation rates specified in the previous chapte
the hybrid adaptive mutation algorithm from Chapter 5 with 1-point crossover. All other details o
SSGA were kept the same.

6.4. Comparison Results
In Table 12 the mean value of the best value found is given for all fifteen algorithms, along

the number of times the optima was found (in braces) for the N = 16landscapes. The results for K =
0 are not shown as all algorithms managed to reach the global optima on each run. The final c
in the table shows the performance of each algorithm averaged over all combinations of N and
the table. The bottom row of values is the 1-way Anova F value, which always exceeds the va
2.34 required for 99% confidence in their significance.

The term for the interaction between algorithm and landscape is also significant (F val
23.43). In fact calculating this interaction term for the fixed algorithms only shows it to be
significant (F = 19.39), which is further empirical evidence for the arguments in favour of adap
algorithms.

On all the NK combinations the mean best performance is shown by one of the ada
algorithms. For the N = 16 landscapes this is always the Adapt1 algorithm, whereas for N = 3
always the 1pt-Adaptive-Mutation algorithm.

The performance of algorithms using Lego with fixed mutation rates are also better on th
16 landscapes than with N = 32, especially as the epistasis increases. This suggests that on th
landscapes the adaptive recombination mechanism is unable to adapt sufficiently quickly to a s
with high positional bias. One possible way of avoiding this would be to alter the way in which
population is initialised so that the mean initial block size was related to the length of
representation.

As shown by the final column, the two most successful algorithms are Adapt1, and 1-P
Adaptive-Mutation. Of the static algorithms, the ones withpm = 1/l provide notably better
performance than any of the other commonly used values, and than the extra value of 2/l which was
also tested. This is mainly due to the differences in performance on the N=32, K = 15 landsca

At the outset it was suggested that the self-adaptive mechanism was designed to pro
robust algorithm which would perform reasonably well on a range of problem types, rather tha
tuning it to do well on a particular sub-set of problems and suffering from poor performance on
subsets (as would be suggested by the “No Free Lunch” theorem [Wolpert and Macready, 1
However given the metric under consideration the adaptive algorithms, especially Adapt1
superior across the suite of problems tested.

It must be stressed that these results relate to a particular performance metric, namely th
value found in a given (reasonably long) time. Comparisons using other metrics such as o
performance, or shortening the time allowed for each run, would probably show a very diff
picture, as the adaptive algorithms are all quite exploratory in nature.
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Using a second common metric, the number of evaluations to reach the optimum, the sit
with K = 0 (a simple unimodal problem) might be expected to show up the deficiencies o
algorithms for the following reasons:

1. Only one individual is incorporated into the population for every five evaluated, so o

Table 12: Performance Comparison: Best Values Found

Operators
N = 16 N = 32

Overall
K 4  K 8 K 15  K 4  K 8 K 15

Adapt1 750.69
(100)

789.59
(91)

791.67
(80)

762.19 786.19 744.63 770.83

AdaptM 748.20
(85)

783.04
(62)

787.56
(63)

758.70 778.45 737.59 765.59

1pt-adaptive 749.96
(97)

786.41
(73)

779.13
(41)

762.94 788.80 746.80 769.00

Lego - 2/l 749.62
(96)

780.45
(53)

779.68
(42)

760.22 764.79 718.77 758.92

Lego-1/l 750.26
(98)

784.30
(63)

772.38
(31)

762.37 780.22 730.47 763.33

1pt -2/l 750.61
(100)

784.25
(63)

777.62
(38)

761.20 778.13 729.99 763.63

1pt-1/ l 750.48
(99)

784.34
(66)

775.80
(37)

762.87 782.46 746.25 767.03

1pt- 0.001 737.34
(43)

745.40
(10)

716.73
(1)

739.56 732.36 700.29 728.62

1pt-0.01 740.24
(54)

755.05
(17)

724.84
(2)

749.71 756.23 720.16 741.04

1pt-1.75/(µ√l) 738.11
(44)

750.12
(11)

716.20
(3)

746.57 742.44 705.94 733.23

Uniform 2/l 749.70
(93)

779.68
(46)

777.09
(36)

757.88 761.58 720.90 757.81

Uniform-1/ l 750.08
(95)

783.00
(67)

776.77
(43)

760.64 783.06 725.08 763.10

Uni.-0.001 737.78
(48)

750.22
(11)

728.74
(2)

738.42 737.00 696.21 731.40

Uni-0.01 741.44
(56)

755.44
(15)

737.67
(4)

750.05 758.28 723.05 744.32

Uni-1.75/(µ√l) 739.91
(54)

752.03
(16)

732.14
(5)

743.29 747.39 710.03 737.46

F-value 7.98 79.74 186.49 21.67 108.51 94.65 211.00
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simple problem there is a delay in taking advantage of good schema.
2 There is an additional overhead of learning suitable block sizes and mutation rates.
However this is not borne out by the results from the experiments, where the time at whic

optima was reached was noted. Since every run was successful, this is effectively the longe
taken to solve the problem. The number of evaluations taken is shown in Table 13 below.

The best performance comes with low mutation rates. This is to some extent dependa
selection - a higher selection pressure allows the use of more exploratory algorithms (i.e. h
mutation rates) as was noted earlier in the experiments using a Delete-Worst strategy e.g
MaxOne problem (Figure 10 on p. 47) and with adaptive mutation (Figure 19 on p. 68). There
obvious trade-off here - the rates which solve the zero epistasis problems (K = 0) quickly ar
sufficiently explorative to escape from local optima on the more complex problems.

More surprising is the result of the adaptive algorithms, which did not appear to suffer too b
from the expected time-penalties of learning extra genes. The Lego operator is among the fas
both problems. The dependency of finding suitable parameters for fixed operators is espe
obvious on the larger problems.

Comparing the solution times for the four adaptive algorithms, there is clearly an advanta
adaptation of the recombination strategies, and an overhead to learning mutation rates. On the
landscapes AdaptM is faster than Adapt1, and linkage analysis shows that this is because it is
at adapting to a lower linkage.This order reverses for N = 32. For low linkage the number of b
will approximately equal the length of the problem, so the size of the AdaptM algorithm’s se
space is increasing rapidly compared to that of Adapt1 which only learns one mutation rate.

Table 13: Longest time to Solve Unimodal (K = 0) Problem

Recombination Mutation N = 16 N = 32

Adapt1 2000 5600

AdaptM 700 8200

1pt Adaptive 2500 6000

Lego 0.01 1000 1900

Lego 1 /l 1700 4000

1 Point 2/l 5300 45200

1 Point 1 /l 2200 7300

1 Point 0.001 3300 6200

1 Point 0.01 1200 2300

1 Point 1.75/ (µ *√l) 1600 3000

Uniform 2/l 5400 48600

Uniform 1 / l 1300 3600

Uniform 0.001 2500 6600

Uniform 0.01 700 1800

Uniform 1.75/ (µ *√l) 1300 2100
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6.5. Analysis of Evolved Behaviour
During the performance comparison runs for Adapt1 and AdaptM, the mean linkage in

population was noted, as was the mean mutation rate and the mutation rate of the best indivi
the population. These are plotted in Figures 29 and 30.

6.5.1. Adapt1 Algorithm
The Adapt1 algorithm shows patterns for the evolution of both linkage and mutation rates w

are very similar to those observed when the two were considered in isolation.
In summary, both the mutation rate and the degree of linkage increase with the amou

epistasis in the problem, largely independent of problem size. There is a peak at around K=8 b
which this smooth progression of evolved strategies stops, which ties in with Kauffman’s obs
“Complexity Catastrophe”. Above this point the predominant factor in the rate of discovery of “go
new points is simply the rate of sampling new points in the search space as evidenced by th
values for the evolved mutation rates.

The two facets of the evolving search strategies complement each other well: for low epi
the mutation rate decreases and the amount of linkage dwindles to zero, allowing a very BS
strategy. Similarly at high epistasis, where high linkage means that recombination is having lit
any effect, population diversity and the generation of new points in the search space is maintai
higher rates of mutation.

It must be emphasized that this is not a case of recombination and mutation strategies ev
separately and “happening” to work well together. The nature of the Self Adaptive mechanism i
the strategies are co-evolving. The mutation rates which emerge as “successful” by being ass
with relatively fitter offspring, have done soin the contextof the reproductive strategy encoded withi
that offspring, and vice-versa. Although not shown (for reasons of clarity) there is initially a w
range of both mutation and linkage rates, and it is the selection mechanism which ra
discriminates between the multitude of reproduction strategies on the basis of quality of so
obtained.

6.5.2. AdaptM Algorithm
The evolved behaviour for the AdaptM algorithm (Figure 30) is very different. Although

pattern of increased linkage with increasing epistasis is still present, the size of the variation is fa
and even for the K=8 case the mean linkage only reaches around 40%.

The reason for this is the extremely high mutation rates which evolve, which will hav
tendency to destroy large blocks. The mutation rates are much higher than for the Adapt1 algo
both for the mean and the best in the population. The same pattern is present as observed be
the evolved rates increase with the degree of epistasis in the landscapes.

These high mutation rates, coupled with a vigorous evolved recombination strategy, c
algorithms that will be highly destructive of higher order schemata.This helps to explain
(relatively) poorer performance of AdaptM on the more complex (K = 8) landscapes.

Despite this bias against longer schemata, the algorithm fares well in the perform
comparison, which is evidence of the power of mutation as a search algorithm, when coupled
suitable selection mechanism.

The mutation rates applied to the linkage bits were artificially reduced, and few trial
showed patterns of strategy evolution far more like the Adapt1 algorithm, but there was a redu
in the performance. Inspection showed this to be the result of the formation of “greedy” blocks,
very low mutation rates which took over certain portions of the representations. Although
probably possible to discover a separate mutation rate for the links which creates a happy m
between the two extremes, it was not felt fruitful to investigate this since such a value wou
contrary to the spirit of the algorithm, and more importantly would almost certainly be prob
dependent.
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Figure 29:    Evolved Behaviour: Adapt1 Algorithm
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Figure 30:    Evolved Behaviour AdaptM Algorithm
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6.6. Conclusions
Two methods of combining the self adaptive algorithms developed previously have

investigated in the setting of a SSGA. The outcome of the performance comparisons showed
both to produce results which were significantly better than algorithms using a wide range of
operators.

The more successful of the two was the Adapt1 algorithm, which combined the L
recombination mechanism with the Self-Adaptation of a single mutation rate. Plotting the evol
of the recombination and mutation strategies for different levels of problem complexity showed
the behaviours were very similar to what has been described before. Both the linkage (increasin
the amount of epistasis) and the mutation (ditto) strategies which emerge can be exp
individually using the same arguments as were given in earlier chapters. What is interesting
these emerge via co-evolution and yield significantly superior performance. This can be viewe
synergy: the mutation operator evolves a more explorative p.d.f. as that of the recombination op
becomes more exploitative and vice versa.

Altering the algorithm to evolve a separate mutation rate for each block (AdaptM) prod
results which were not quite as good as Adapt1, although still better than all but one the
algorithms. Investigation of the evolved behaviour showed extremely high mutation rates,
consequently low mean linkages, although there was still a pattern of increased linkage and m
with increasing problem complexity. The overhead of learning a greater number of mutation rate
caused a slower search on the unimodal problems

Overall it would appear that the Adapt1 algorithm represents the more robust of the
approaches.These results demonstrate the effectiveness of the algorithm as a function optimis
its ability to adapt to display different behaviours on different types of search space. Importan
does not seem to suffer from a great “learning overhead” on simple problems as demonstrated
competitive times to reach maxima on the unimodal problems, and on more complex functi
discovers significantly higher optima than the majority of other algorithms tested. This can attrib
to the synergistic effects of simultaneously adapting both recombination strategy and mutation

The original intention of combining the two Self Adaptive mechanisms was to find an algor
which would perform “reasonably” well on all landscapes, and it was expected that on any g
landscape one of the variants of the standard SGA used would outperform it. Surprisingly this h
proved to be the case, the performance being better than expected as a result of the synergy b
the two types of self-adaptation.
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Conclusions and Discussion
The use of Genetic Algorithms as search algorithms, especially for function optimisatio

now well established in many different application areas. However, it has been shown by a nu
of authors that the quality of fitness values obtained can depend severely on the particular op
and parameter settings chosen.

In Chapter One the Genetic Algorithm was introduced and a formalisation presented. So
the theoretical and practical results motivating research into adaptive GAs were discussed, a
concept of an “algorithmic space” was introduced within which all variants of the GA can be pla
In this context adaptation becomes a traversal of this algorithmic space under the influenc
Transition Function. Building on the formalisation a framework was developed to categorise ada
algorithms, based on several complementary criteria.

The first criterion is what features of the algorithm are susceptible to adaptation. These
from the probabilities of applying specific operators (e.g. variable mutation rates) to the param
they use (e.g. the “population size” parameter in selection algorithms) through to the form th
operators take. Into the latter category fall algorithms such as Schaffer and Morishima’s “Punc
Crossover” mechanism, where the form of recombination can adapt between the extremes of a
reproduction (i.e. no crossover) andl/2 - point crossover (i.e. crossing over at every locus).

The second criteria is the granularity at which changes are effected. The terminolog
[Angeline, 1995] was adopted, which divides algorithms into population, individual and compo
level adaptation.

The most important distinction was drawn according to the nature of the Transition Fun
governing the adaptation. This can be divided into two separate parts, the first being the ev
considered by the function, and the second being the form of the function itself.

A major distinction can be drawn between those algorithms which monitor the rela
performance of several search strategies concurrently, and change probabilities of appl
according to the relative fitness of the offspring produced, and those that make changes on th
of any other evidence.

Algorithms falling into the latter category necessarily use externally provided rules to m
changes, even though these may be based on feedback from the search (such as degree of con
etc.). In many cases these strategies are based on theoretical reasoning, but given the incompl
of GA theory, this must be at best an inexact science.

The class of algorithms based on relative performance can be further sub-divided accord
the form of the transition function. In [Spears, 1995] a useful distinction is made between “tig
coupled” and “uncoupled” algorithms according to whether the genetic operators themselves fo
transition function or whether other externally defined functions guide the search. A more com
usage than “tightly coupled” algorithms is the term Self Adaptation.

The three classes of algorithms distinguished on the basis of the transition function
significantly from those of [Hinterding et al., 1997], who agree on the category of Self Adapta
but split all other adaptive algorithms into two classes according to whether they utilise any fee
(of any kind) from the GA or not. Into the latter category (“Deterministic Adaption”) fall on
algorithms which change strategies according to evolutionary time, and all other algorithm
lumped together into an “Adaptive” category.

The framework proposed in this thesis differs in discriminating between those algorithms w
test several strategies concurrently and use as feedback their relative performance of strateg
those which base the transitions on other feedback, often only employing a single strategy at an
time.

As noted, Self-Adaption was defined as a means of accomplishing adaptation by embedd
parameters, or even definition of their operators within the representation and using the proc
evolution itself to define their adaptation. All the arguments used in favour of using GAs to solve
problems apply equally to the search of the space of possible algorithms, which motivated this
of Self Adaptation in GAs
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In chapter two a description was given of previous work on recombination in gen
algorithms, and the concept of Gene Linkage was introduced. Under the definition given, a
genes are said to be linked if they are not separated by a recombination operator. Preserving
between genes allows the propagation of blocks of co-adapted genes over evolutionary time. A
the problem encoding is mutated faster than the block definitions change, then the preserva
blocks of loci from the destructive effects of crossover allows the testing of competing sche
within the partitions defined by those blocks.

A formalisation of this concept was developed to describe various operators in terms
“linkage array”. Based on this a specification was derived for a new multi-parental adaptive ope
based on adjacent linkage arrays. This Linkage Evolving Genetic Operator (Lego) combine
desirable properties of self-adaptation with taking advantage of learned knowledge about li
between genes which many operators discard.

In chapter three the implementation and testing of the Lego operator was described usin
of widely known test functions. For these problems the performance metric used was the time
to reach the optimum. Despite the learning overheads associated with adaption, its behavio
shown to be comparable to the optimal operator on a set of test problems, although the o
operator for each problem was not the same. Some decrease in performance was noted on th
modal problems, particularly the deceptive Trap function, when compared to One Point Cros
Experiments showed the operator to be relatively insensitive to changes in other details of th
such as mutation rate and population size. It was found that the Lego operator worked bette
steady state setting, provided that a delete-oldest rather than delete-worst replacement strate
used. On three of the four problems it provided the fastest solution times in the steady state s

An analysis of the behaviour of the algorithm was made by classifying individuals accordin
their mean linkage, and observing the numbers falling into various categories over time. Compa
with the theoretical model of the linkage in the absence of any selective pressure shows that som
of adaptation is indeed taking place. A clear pattern was noted that the degree of linkage ev
increased with problem complexity. This was explained in terms of the safety ratios of recombin
and mutation on different types of landscape.

In order to investigate the phenomenon more fully, and to provide a more systematic bas
change between problems, Kauffman’s NK landscapes were implemented. These are a well
family of landscapes with tunable epistasis which allow control over the ruggedness of the s
landscape.

In chapter four the linkage evolution was investigated over a range of these problem
analysis of the behaviour of the algorithm shows that the recombination strategies which evolv
be explained in two complementary ways, based on different views of the search. The first view
is based on fitness-distance correlation and the distribution of optima for the fitness lands
concerned. In general it can be seen that as the degree of correlation of the fitness landscape de
and the optima diverge, so there is an increasing tendency for longer blocks of linked genes t
over the genepool. Since individuals created from large blocks will necessarily involve fewer pa
than those created from smaller blocks, they will be less likely to combine information from a nu
of different peaks. Conversely if there is low epistasis and high fitness correlation, then smaller b
will take over the genepool as individuals created from these are less likely to suffer from
deleterious effects of genetic hitchhiking.

The second viewpoint is that of schema disruption, and the changes in distributiona
positional bias exhibited by the operator as the linkage and convergence of the population e
From this perspective, increasing linkage in a diverse population causes a reduction i
distributional bias towards low order schemata. This enables the algorithm to preserve
discriminate between schemata occupying higher order partitions of the search space.

An obvious potential criticism of this model is that is geared around links between adjacen
and that on problem representations which do not follow this pattern it will perform poorly, an
unable to adapt to the structure of the landscape. However the results obtained with ra
interactions show that this is not the case. This confirms that the adaptation of recombin
Page 99



ith co-
ferent

ge of
(for the

A of
means
orm of
pace

d the
rk far
ental

n one
This
is was
te of
rates)

pirical
imilar
when

ning,
can
antly
set of

usly
results

self-
ation
very
lain this
ynergy
ly as a

uced
thms.
ly low
asing

two
to very
ccess.
the
have

1996d]

rying
strategies is triggered by something more than identifying and simple keeping together genes w
adapted allele values. Two possible reasons for the differential evolutionary success of dif
linkage strategies according to the problem type have been identified above.

Performance comparisons with other crossover operators were carried out on a ran
landscapes with varying size and epistasis. These showed that the differences in performance
metric of best value found) were not significant on any but the N = 32, K = 15 landscapes.

In chapter five a mechanism was presented which allows the incorporation within the SSG
a self-adaptive mutation rate. This incorporates some local search as a by-product of the
whereby it learns good mutation rates. The nature of the mechanism is such that it provides a f
distributed control for the genetic algorithm whereby individuals in different parts of the search s
may have different mutation rates.

Experiments with a variety of parameters showed that only the size of the inner GA an
replacement policy appeared to be important. As before a delete oldest policy was found to wo
better than delete-worst, as it allows escape from local optima. This is believed to be a fundam
rule for self adaptation in GAs.

Analysis of the effects of changing the size of the inner GA showed that values greater tha
allow the maintenance of an amount of “residual” mutation with the population at a low rate.
allows escape from local optima and prevents stagnation of the search. A Markov Chain analys
sketched to illustrate why, with a single offspring, the population will tend to converge to a sta
no mutation, and probabalistic reasons were given why the speed of convergence (of mutation
is much less when more than one offspring is cloned. These also provided support for the em
1:5 heuristic. Although it was considered beyond the scope of this thesis, it is believed that a s
Markovian proof for the convergence of mutation rates to zero holds in this general case, even
the effects of selection and recombination are allowed for.

Performance comparisons with GAs using fixed rate operators, with or without local lear
showed two results. Firstly, for all non-trivial problems the inclusion of a form of local search
improve performance. Secondly the addition of the adaptive mutation mechanism signific
improves the performance of the Genetic Algorithm, as well as removing a parameter from the
decisions faced by the operator.

In chapter six, two methods of combining the self adaptive algorithms developed previo
were investigated. The outcome of the performance comparisons showed these both to produce
which were significantly better than algorithms using a wide range of static operators.

The more successful of the two was the Adapt1 algorithm, which combined Lego with the
adaptation of a single mutation rate. Plotting the evolution of the recombination and mut
strategies for different levels of problem complexity showed that the behaviour of both was
similar to what has been described above. The same arguments as before can be used to exp
behaviour, and why it gives superior search performance. It was noted that there was a strong s
between the two forms of adapted behaviour, and it must be emphasised that this arises pure
result of the co-evolution of recombination and mutation strategies by Self Adaption.

Altering the algorithm to evolve a separate mutation rate for each block (AdaptM) prod
results which were not quite as good as Adapt1, although still better than the static algori
Investigation of the evolved behaviour showed extremely high mutation rates, with consequent
mean linkages, although there was still a pattern of increased linkage and mutation with incre
problem complexity.

In conclusion therefore the Adapt1 algorithm, is the more robust way of combining the
reproductive operators developed earlier. It demonstrates the ability to adapt search strategies
different forms according to the nature of the landscape, and does so with remarkable su
Certainly if quality of solution found is the most important criteria, then it outperformed any of
combinations of widely used operators tested. Algorithms implementing these techniques
successfully been applied to problems such as Software Test Generation [Smith and Fogarty
and Microprocessor Design Verification [Smith, et al. 1997].

Initial experiments have also been carried out on the use of this algorithm in the time-va
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environments used in [Cobb and Grefenstette, 1993] with various rates and magnitud
environmental change. These indicate that the Adapt1 algorithm is able to track changes
position of the global optima without the use of trigger mechanisms. Analysis of the behaviour s
an increase in the mutation rates following a change in the position of the optima, as more explo
strategies are successful. If the rate of environmental change is slow enough, then the mutatio
can be seen to decay back to a low rate as the population establishes itself on the new op
position.

Unfortunately, although the off-line performance appears to compare very favourably with
of an algorithm using Triggered Hypermutation [Cobb and Grefenstette, 1993], the on
performance is inferior. This is a result of the cost of learning suitable mutation rates.Fu
experimentation would be required to see if this problem could be overcome, so as to pr
algorithms suitable for on-line control.

In the first chapter it was suggested that the Genetic Algorithm can be viewed as the ite
application of two processes, namely Generating new sample points in the search space, and U
the working memory (population) of the algorithm. The operators developed here all address th
process, and do so with notable success, via Self Adaptation.

What this thesis does not tackle directly is the issue of achieving adaptation of the Upd
processes, namely the selection pressure and population size. In practice these (especi
selection pressure) are influenced by degree to which the reproductive operators’ p.d.f
exploitative (e.g. low mutation rates, high linkage) rather than explorative. However there is an
reason for not tackling them here. Self Adaption relies on selection rewarding the success of stra
relative to one another in the same population, i.e. population-level Self Adaptation is a contrad
in terms. Evidently it is not possible to compare the relative success of two different population
within the same population. Equally, even when a distributed mechanism such as tourn
selection is used, encoding and comparing different selection pressures would involve the coll
of more global statistics and could not truly be called Self Adaptation.

However it is believed that there is considerable scope for developing heuristic ada
algorithms based on observations of the evolving self-adaptive behaviour.

In previous chapters, the evolution of linkage was observed on a range of NK problem
differing complexities, with epistatic interactions between both adjacent and random loci. Despi
fact that the Lego operator utilises component level adaptation, and mean linkage is a populatio
statistic, there is a clear pattern that during the principal search phase, the mean population
stabilises at a level which increases in a manner roughly proportional to the complexity o
problem. This is a direct result of an increasing selectional advantage in keeping together blo
genes as non-linearity in the problem increases.

As the linkage increases, so does the size of the blocks of linked loci in the genepool. Ea
these blocks defines a partition over the search space, which in turn defines a class of relations
exist in that partition. In order to solve a problem it is necessary to make informed decisions be
relations and their instances (schemata). It has been shown that the size of the population ne
solve a problem increases with the order of the highest relations that must be chosen e.g. [Go
et al., 1992], [Kargupta and Goldberg, 1994]

Hence if the mean population linkage increases, implying a selective advantage tow
preserving longer blocks, so will the order and number of possible schemata that
can inhabit them. In order to obtain a better estimate of their relative fitness, a larger populat
preferable.

Equally, if the degree of linkage in a population is decreasing, this shows that a strategy of
disruptive recombination is proving successful, which corresponds to more mixing of building blo
This process will be facilitated by a smaller population as there is a higher chance of the juxtapo
of two building blocks due to the faster turnover of members

On the basis of these observations there is believed to be considerable scope for future w
developing algorithms which adapt their population size in response to observed linkages.
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In summary a new framework for classifying adaptive algorithms has been proposed
mechanisms have been investigated for achieving self adaption of the reproductive operators
a genetic algorithm, and a means of combining them was investigated. These reduce the need
designer of an algorithm to select appropriate
choices of operators and parameters, and were shown to produce significantly better results th
of the combinations of fixed operators tested, across a range of problem types. It was sugges
observation of the nature of the evolving search strategy on an unknown landscape could
information about its structure.

It is hoped that this work will aid designers of evolutionary algorithms for the “real world” a
provide a contribution towards the topic of adaptation and self-adaption.
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Appendices
 A.  Model of Linkage Evolution

1.1. Notation
In order to model the evolution of linkage within the population we will initially restri

ourselves to considering the proportions of linkage bits in different states between a single p
adjacent genesi andi+1 within an infinite population. There are four possible states that the link
can be in, according to whether the bitsRi andLi+1 have the valuetrue (1) or false(0). We will refer
to these as the ordered pairs [0,0], [0,1], [1,0] and [1,1] and will use the following notation:

a ∈ ℜ Proportion of the population with links [0,0] at time t. (D53
b ∈ ℜ Proportion of the population with links [0,1] at time t. (D54
c ∈ ℜ Proportion of the population with links [1,0] at time t. (D55
d ∈ ℜ Proportion of the population with links [1,1] at time t (D56
a’ ,b’, c’, d’∈ℜ Proportions of the population after recombination. (D5
a ’’, b’’, c’’, d’’ ∈ℜ Proportions of the population after mutation. (D5

1.2. Proportions after Recombination.
Given that we insist that recombination respects linkage, and noting that the juxtapositi

two genes may result in their becoming linked (see page 32) we can construct the proportion
recombination as below, where # is used as a wildcard “don’t care” symbol.

a’ = P(0, #) * P( #,0 | recombination occurs) (D59
b’ = P(0, #) * P( #,1) | recombination occurs) (D60
c’ = P(1, 0) * P( #,0 | recombination occurs) (D61
d’ = P(1,1) + (P(1, 0) * P( #,1 | recombination occurs) ) (D6

Evaluating these gives
a’ = (a+b) * (a+c) / (a+b+c) (8)
b’ = (a+b) * (b) / (a+b+c) (9)
c’ = (c) * (a+c) / (a+b+c) (10)
d’ = d + (c) * (b) / (a+b+c) (11)

1.3. Proportions after Mutation
For the purposes of analysis we assume value-flipping mutation with probabilityp. This gives

us the following proportions after mutation:

a’’ = (1-p) 2 a’’ + p(1-p)(b’ + c’) + p 2 d’ (12)

b’’ = (1-p) 2 b’’ + p(1-p)(a’ + d’) + p 2 c’ (13)

c’’ = (1-p) 2 c’’ + p(1-p)(a’ + d’) + p 2 b’ (14)

d’’ = (1-p) 2 d’’ + p(1-p)(b’ + c’) + p 2 a’ (15)
Concentrating on the proportion of genes that are linked after recombination and mutation

taken place, and substitute equations (8) to (11)into (15) gives:

(D63)

(D64)
recognising that(a+b+c) = (1-d), and re-arranging yields

(16)

If we now do the same for the other proportions we get the following results:

d'' 1 p–( )2
d

bc
a b c+ +
---------------------– 

  p 1 p–( ) b a b+( ) c a c+( )+
a b c+ +

---------------------------------------------- 
  p

2
a b+( ) a c+( )
a b c+ +

----------------------------------------+ +=

d''˙ d 1 p–( )2 ap b+( ) ap c+( ) p 1 p–( ) b c–( )2
+

1 d–
----------------------------------------------------------------------------------------+=
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This can be re-arranged and factorised to yield

(D66)
Similarly

(D67)

which yields

(D68)
and

(D69)

which gives

(D70)
These recurrence relationships mean that given the starting proportions of the va

combinations of link bit values we can plot the evolution of linkage in the absence of sele
pressure. The algorithm is implemented by initialising the population so that each link bit is setrue
with a biassed probabilityB. In Figure 31 the evolution of the proportion of linked genes is shown
a variety of values ofp andB. The curves in this graph use the equations derived above and each
run for 10,000 iterations. Each iteration corresponds to one generation of a GGA with an in
population.

As can be seen the linkage evolves to a steady state at which the rate of destruction of
genes by mutation is equalled by the rate of production by recombination. Interestingly the s
state towards which the system evolves is determined solely by the mutation rate, independen
starting conditions. The steady state concentration appears to approach 0.5 from below in the
p -> 0. These values reached are given in Table 14.

Table 14: Steady State Proportions of Linked Genes

Mutation Probability Steady State Proportion

0.001 0.47815

0.005 0.45255

0.01 0.43442

0.05 0.36782

0.1 0.32815

a'' 1 p–( )2 a b+( ) a c+( )
1 d–( )

---------------------------------- p 1 p–( ) b a b+( ) c a c+( )+( )
1 d–( )

--------------------------------------------------- p
2

d
bc

1 d–( )
-----------------+ 

 + +=

a'' 1 d–( ) a 1 d–( ) 1 p–( ) a
2
p 1 p–( )– bc p

2
d 1 d–( ) p 1 p–( ) b c–( )2

+ + +=

b'' 1 p–( )2b a b+( )
1 d–( )

-------------------- p 1 p–( ) a b+( ) a c+( ) d 1 d–( ) bc++
1 d–

------------------------------------------------------------------------- 
  p

2
c a c+( )
1 d–( )

--------------------------+ +=

b'' 1 d–( ) b a b+( ) p 1 p–( ) a
2

d 1 d–( )+( ) p
2

b c–( )2
p a 2b+( ) b c–( )–+ +=

c'' 1 p–( )2
c a c+( )

1 d–( )
---------------------------------------- p 1 p–( ) a b+( ) a c+( ) d 1 d–( ) bc++

1 d–
------------------------------------------------------------------------- 

  1 p–( )2
b a b+( )

1 d–( )
----------------------------------------+ +=

c'' 1 d–( ) c a c+( ) p 1 p–( ) d 1 d–( ) a
2

+( ) p
2

b c–( )2
a 2c+( ) p b c–( )+ + +=
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Figure 31:    Evolution of Linkage in Absence of Selective Pressure
In the light of this apparent insensitivity to initial conditions, it was decided to do another

with more random initial conditions. The first evaluations represented the case where there w
selection pressure for or against linkage at any stage after initialisation, and therefore we kne
relative proportions ofa, b andc . This second experiment mirrors the situation where, there is
initial selection pressure for or against linkage, which disappears as the population in these tw
converges to the values for the problem representationαι and.αι+1. In this case we do not know the
values ofa, band c so we generate them, at random such that (a+b+c) = (1-d).

Figure 32 shows the results of performing 20 runs of the recurrence relations. As before
run continued for 10,00 evaluations, but a steady state was quickly reached. The values reache
the same as those in Table 14. As can be seen, after the initial variation the standard deviation
linkage rapidly disappears, again more rapidly for increasing mutation.
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Figure 32:    Evolution of linkage - random starting proportions
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1.4. Derivation of Steady State Proportions
From the analytical results in the previous section we can see that a steady state is achieved a
these proportions will remain constant. If we set b’’ = b and c’’ = c, and then substitute (D70) f
(D68) we get the following result.

(b-c)(1-d) = ab +b2 - ac -c2 -p(a + 2b + a + 2c) (D71)
= a(b - c) +(b+c)(b-c) - 2 p (a + b + c) (D72)
= (1-d)(b-c)(1-2p) (D73)

Since we have not made any assumptions about the mutation rate, we can say that in genera
p ≠ 0.5. Since we also know thata+b+c+d = 1, setting either of the two remaining terms to ze
reduces to:

b = c (17)

This result makes sense since it preserves a natural symmetry, and holds regardless of
conditions, providing a steady state is reached.

Substituting this equality into (1368), and noting thata = (1-2b -d)gives us:

b(1-d) = b(1 -d -b) +p(1-p)(a2 + d(1-d)) (D74)
which gives

(18)

From (1266) , substitutingbc = b2, we get

a(1-d) = a(1-d)(1-p) - a2p(1-p) + p(1-p)(a2 +d(1-d)) + p2d(1-d) (D75)
∴ 0 = -pa(1-d) + pd(1-d) (D76)
As noted above, we have made no assumptions about the mutation rate, and we know that for
zero mutation rate there will be a constant stochastic production of link bits set tofalse,so d cannot
take the value unity. Therefore the equation above demonstrates the symmetrical property th

a= d (19)
This result means that the value of bothaanddmust lie in the range 0.0-0.5 since all of the proportio
derived are non-zero.
Finally substituting all of these expressions into the sum of proportions to unity yields an e
expression for the steady state proportion of linked genes in the absence of selection pressur
against linkage

1  = a+b+c+d (D77)
∴ 0 = d + √dp(1-p) - 0.5 (D78)

Solving for the roots of a quadratic equation, and noting that we are looking for real values
between 0.0 and 0.5, so we must take the positive second term, we get

(20)

Substituting values of p into this expression gives (to within 6 significant figures - the precision o
experiments) exactly the same results are were found empirically in the two runs.

b
2

c
2

p 1 p–( ) a
2

d 1 d–( )+( )= =

d
2 p 1 p–( )+ p 1 p–( )–

2
------------------------------------------------------------------ 

 
2

=
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