Upper Domination and Upper Irredundance Perfect Graphs

Gregory Gutin
Department of Mathematics and Statistics
Brunel University, Uxbridge
Middlesex UB8 3PH, U.K.

Vadim E. Zverovich*
Department II of Mathematics
RWTH Aachen, Aachen 52056
Germany

Abstract

Let $\beta(G), \Gamma(G)$ and $I R(G)$ be the independence number, the upper domination number and the upper irredundance number, respectively. A graph G is called Γ perfect if $\beta(H)=\Gamma(H)$, for every induced subgraph H of G. A graph G is called $I R$-perfect if $\Gamma(H)=I R(H)$, for every induced subgraph H of G. In this paper, we present a characterization of Γ-perfect graphs in terms of some family of forbidden induced subgraphs, and show that the class of Γ-perfect graphs is a subclass of $I R$-perfect graphs and that the class of absorbantly perfect graphs is a subclass of Γ-perfect graphs. These results imply a number of known theorems on Γ-perfect graphs and $I R$-perfect graphs. Moreover, we prove a sufficient condition for a graph to be Γ-perfect and $I R$-perfect which improves a known analogous result.

Discrete Math. 190 (1998), 95-105
Keywords: Independence number; Upper domination number; Upper irredundance number

1 Introduction

All graphs will be finite and undirected, without loops and multiple edges. If G is a graph, $V(G)$ denotes the set, and $|G|$ the number, of vertices in G. Let $N(x)$ denote the neighborhood of a vertex x, and let $\langle X\rangle$ denote the subgraph of G induced by $X \subseteq V(G)$. Also let $N(X)=\cup_{x \in X} N(x)$ and $N[X]=N(X) \cup X$. Denote by $\delta(G)$ the minimal degree of vertices in G.

A set X is called a dominating set if $N[X]=V(G)$. The independence number $\beta(G)$ is the maximum cardinality of an independent set, and the upper domination number $\Gamma(G)$ is the maximum cardinality of a minimal dominating set of G. A minimal dominating set of order $\Gamma(G)$ is called a Γ-set. A set X is irredundant if for every vertex $x \in X$,

$$
I(x, X)=N[x]-N[X-\{x\}] \neq \emptyset
$$

[^0]The maximum cardinality of an irredundant set is the upper irredundance number $\operatorname{IR}(G)$. It is well known [2] that for any graph G,

$$
\beta(G) \leq \Gamma(G) \leq I R(G)
$$

A graph G is called upper domination perfect (Γ-perfect) if $\beta(H)=\Gamma(H)$, for every induced subgraph H of G; G is minimal Γ-imperfect if G is not Γ-perfect and $\beta(H)=\Gamma(H)$, for every proper induced subgraph H of G. A graph G is called upper irredundance perfect (IR-perfect) if $\Gamma(H)=I R(H)$, for every induced subgraph H of G. The classes of Γ perfect graphs and $I R$-perfect graphs in a sense are dual to the well known classes of domination perfect graphs (for a short survey, see [10]) and irredundance perfect graphs [5], respectively.

In this paper, we present a characterization of Γ-perfect graphs in terms of some family of forbidden induced subgraphs, and show that the class of Γ-perfect graphs is a subclass of $I R$-perfect graphs. We also show that the class of absorbantly perfect graphs introduced by Hammer and Maffray [4] is a subclass of Γ-perfect graphs. These results imply a number of known theorems on the above classes of graphs, for example, the theorem of Cheston and Fricke [1] and Jacobson and Peters [6] that any strongly perfect graph is Γ-perfect and $I R$-perfect and the theorem of Golumbic and Laskar [3] that any circular arc graph is Γ-perfect and $I R$-perfect. Moreover, we prove a sufficient condition for a graph to be Γ-perfect and $I R$-perfect which essentially improves a sufficient condition for a graph to be $I R$-perfect of Cockayne, Favaron, Payan and Thomason [2].

2 Main Results

We say that the graph G belongs to the class \mathcal{W} if G is a connected graph, has $|G| \geq 10$ and $\delta(G) \geq 2$, and its vertex set $V(G)$ has a partition $V(G)=A \cup B$ such that $|A|=$ $|B|=\beta(G)+1$ and the only edges between A and B are a perfect matching.

Proposition 2.1 If $G \in \mathcal{W}$, then $\Gamma(G)=\beta(G)+1$.
Proof: Since A is a minimal dominating set, we have $\Gamma(G) \geq|A|$. Let X be a Γ-set of G. If x is a non-isolated vertex of $\langle X\rangle$, then there exists a vertex $y \notin X$ such that y is not adjacent to any vertex of $X-x$. If x is an isolated vertex of $\langle X\rangle$, then there is a vertex $y \notin X$ such that $x y$ is an edge of the perfect matching of G. Thus for each vertex of X we can indicate a vertex not in X and obviously different vertices of X result in different vertices of $V(G)-X$. Thus, $\Gamma(G) \leq \frac{1}{2}|G|=|A|$.

The class \mathcal{W} contains an infinite subclass consisting of minimal Γ-imperfect graphs. The graph $H(k, l, m)$ is constructed from two disjoint cycles $C=C_{4 k+1}(k \geq 1)$ and $C^{\prime}=C_{4 l+1}$ $(l \geq 1)$ by adding the chain $\left(v_{1}, v_{2}, \ldots, v_{2 m}\right)(m \geq 1)$ joining the vertex $v_{1} \in V(C)$ and $v_{2 m} \in V\left(C^{\prime}\right)$. Thus, $|H(k, l, m)|=4 k+4 l+2 m \geq 10$. It is not difficult to see that $H(k, l, m)$ belongs to the class \mathcal{W}. By Proposition 2.1, the graph $H(k, l, m)$ is not Γ perfect. Moreover, it is possible to show that $H(k, l, m)$ is minimal Γ-imperfect graph for any k, l, and m.

The following theorem gives a characterization of Γ-perfect graphs in terms of the forbidden induced graphs in Figure 1 and the graphs from the class \mathcal{W}.

Theorem 2.2 A graph G is Γ-perfect if and only if G does not contain the graphs $G_{1}-G_{15}$ in Figure 1 and any member of \mathcal{W} as induced subgraphs.

Proof: The necessity follows from Proposition 2.1 and the fact that $\beta\left(G_{i}\right)<\Gamma\left(G_{i}\right)$, $1 \leq i \leq 15$. The dotted edges in Figure 1 mean the following: G_{2} has none of the dotted edges, G_{3} has one of the dotted edges, G_{4} has both of the dotted edges, and so on. To prove the sufficiency, let F be a minimum counterexample, i.e., the graph F does not contain the graphs $G_{1}-G_{15}$ and any graph from the family \mathcal{W} as induced subgraphs, $\beta(F)<\Gamma(F)$, and F has minimum order. The graph F is connected, since otherwise one of the component F^{\prime} satisfies $\beta\left(F^{\prime}\right)<\Gamma\left(F^{\prime}\right)$, contrary to the minimality of F. Let X be a Γ-set of F such that the number of edges in $\langle X\rangle$ is minimum, and let $Y=V(F)-X$. Denote all isolated vertices of the graph $\langle X\rangle$ by X_{2} and let $X_{1}=X-X_{2}$. Since X is a minimal dominating set, it follows that $I(x, X) \neq \emptyset$ for any $x \in X$. If $x \in X_{1}$, then $I(x, X) \subset Y$. For each vertex $x \in X_{1}$, take one vertex from the set $I(x, X)$ and form the set $Y_{1} \subset Y$.

Suppose that $Y_{2}=V(F)-\left(X \cup Y_{1}\right) \neq \emptyset$ and consider the graph $F-Y_{2}$. We have

$$
\beta\left(F-Y_{2}\right) \leq \beta(F)<\Gamma(F) \leq \Gamma\left(F-Y_{2}\right),
$$

a contradiction, since the graph F is a minimum counterexample. Therefore $V(F)=X \cup Y_{1}$. Now suppose that there is a vertex $x \in X_{2}$. Since $Y=Y_{1}$ and Y_{1} consists of vertices from $I(x, X)$, it follows that x is an isolated vertex of F. This is a contradiction, since F is a connected graph and $F \neq K_{1}$.

Thus, the graph $\langle X\rangle$ does not contain isolated vertices and all edges between the sets X and Y form a perfect matching. If y is an isolated vertex of $\langle Y\rangle$, then form the set $(X-x) \cup\{y\}$, where x is the vertex from X adjacent to y. This set is a Γ-set and contains fewer edges than $\langle X\rangle$, contrary to hypothesis. Therefore, $\delta(F) \geq 2$.

Assume that $\beta(F)<|X|-1$ and let $u v$ be any edge of the perfect matching between X and Y. It is not difficult to see that

$$
\beta(F-\{u, v\}) \leq \beta(F)<|X|-1 \leq \Gamma(F-\{u, v\})
$$

contrary to the minimality of F. On the other hand, $\beta(F)<\Gamma(F)=|X|$. We get

$$
\beta(F)=|X|-1
$$

Now, if $|X| \geq 5$, then F is a member of \mathcal{W}, a contradiction. If $|X|=2$, then $\beta(F)=1$ and $F \cong K_{4}$ which is impossile. Consequently, $3 \leq|X| \leq 4$. Consider a maximum independent set U of the graph F. Clearly, U contains vertices in both X and Y, for otherwise some v has no neighbor in U. Since $\beta(F)<|X|$, there is an edge $x_{1} y_{1}$ of the perfect matching such that $x_{1}, y_{1} \notin U$. In what follows, x_{i} and y_{i} denote vertices from X and Y, respectively. The set U is maximum independent, and thus there exist vertices $x_{3} \in U$ and $y_{2} \in U$ such that x_{1} is adjacent to x_{3} and y_{1} is adjacent to y_{2}. Let $x_{2} y_{2}$ and $x_{3} y_{3}$ be edges of the perfect matching. Now consider the graph $F^{\prime}=\left\langle\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}\right\rangle$. The only edges of F^{\prime} whose existence is not known yet are $x_{1} x_{2}, x_{2} x_{3}, y_{1} y_{3}$ and $y_{2} y_{3}$. If all these edges are present in F, then F^{\prime} is isomorphic to G_{1}, a contradiction. Therefore, one of the above edges is absent and we have 15 possible graphs resulting from F^{\prime}. It is straightforward to check that each of the 15 graphs is isomorphic (with saving the
partition) to one of the 8 graphs resulting from F^{\prime} by taking any combination of only the three edges $x_{1} x_{2}, y_{1} y_{3}$ and $y_{2} y_{3}$. Hence we can suppose that $x_{2} x_{3} \notin E$, where E is the edge set of F. Thus, there are 8 cases to consider. Before considering these cases we derive some facts common to all the cases. As $\left\{y_{1}, x_{2}, x_{3}\right\}$ is independent in F and $\beta(F)+1=|X| \leq 4$, we have $|X|=4$, i.e., F contains one more edge $x_{4} y_{4}$ in the perfect matching. We shall often use the following simple but useful fact which will be called β-argument: if $x_{i} x_{j} \notin E$, then $y_{k} y_{t} \in E$ where $\{i, j, k, t\}=\{1,2,3,4\}$, for otherwise the set $\left\{x_{i}, x_{j}, y_{k}, y_{t}\right\}$ is independent which is impossible (and, analogously, if $y_{i} y_{j} \notin E$, then $x_{k} x_{t} \in E$ where $\left.\{i, j, k, t\}=\{1,2,3,4\}\right)$. Since $x_{2} x_{3} \notin E$, by β-argument we immediately conclude that $y_{1} y_{4} \in E$.

Case 1: $x_{1} x_{2}, y_{1} y_{3}, y_{2} y_{3} \notin E$. Since $\delta(F) \geq 2$, we get $y_{3} y_{4} \in E$. By β-argument, $x_{1} x_{4} \in E$ and $x_{2} x_{4} \in E$. If $x_{3} x_{4} \notin E$, then $F \cong G_{2}$ or G_{3} depending on the existence of the edge $y_{2} y_{4}$, a contradiction. Consequently, $x_{3} x_{4} \in E$ and we have $F \cong G_{3}$ if $y_{2} y_{4} \notin E$, and $F \cong G_{11}$ if $y_{2} y_{4} \in E$, which is impossible.

Case 2: $x_{1} x_{2} \in E$ and $y_{1} y_{3}, y_{2} y_{3} \notin E$. Analogously to Case $1, y_{3} y_{4} \in E$ and $x_{1} x_{4}, x_{2} x_{4} \in E$. We have $y_{2} y_{4} \notin E$, since otherwise $F-\left\{x_{3}, y_{3}\right\} \cong G_{1}$, a contradiction. Now, depending on the existence of $x_{3} x_{4}, F \cong G_{3}$ or G_{4}, a contradiction.

Case 3: $y_{1} y_{3} \in E$ and $x_{1} x_{2}, y_{2} y_{3} \notin E$. This case is similar to Case 2.
Case 4: $y_{2} y_{3} \in E$ and $x_{1} x_{2}, y_{1} y_{3} \notin E$. By β-argument, $x_{2} x_{4} \in E$ and $y_{3} y_{4} \in E$. Suppose $y_{2} y_{4} \notin E$. If $x_{1} x_{4}, x_{3} x_{4} \notin E$, then $F \cong G_{2}$ (note that G_{2} has two partitions $V\left(G_{2}\right)=A \cup B$ such that the only edges between A and B are a perfect matching). If only one edge from $\left\{x_{1} x_{4}, x_{3} x_{4}\right\}$ is present in F, then $F \cong G_{5}$. At last, $x_{1} x_{4}, x_{3} x_{4} \in E$ implies $F \cong G_{6}$. All cases yield a contradiction. Hence, $y_{2} y_{4} \in E$. Now

$$
x_{1} x_{4}, x_{3} x_{4} \notin E \Rightarrow F \cong G_{7}, \quad x_{1} x_{4}, x_{3} x_{4} \in E \Rightarrow F \cong G_{12} .
$$

If only one edge from $\left\{x_{1} x_{4}, x_{3} x_{4}\right\}$ is present, then $F \cong G_{9}$, which is impossible.
Case 5: $x_{1} x_{2}, y_{1} y_{3} \in E$ and $y_{2} y_{3} \notin E$. By β-argument, $x_{1} x_{4} \in E$. Also, the set $\left\{x_{1}, y_{2}, y_{3}, y_{4}\right\}$ cannot be independent, and therefore we may assume w.l.o.g. that $y_{3} y_{4} \in E$. We have, $x_{3} x_{4} \notin E$, since otherwise $F-\left\{x_{2}, y_{2}\right\} \cong G_{1}$. The set $\left\{x_{2}, x_{3}, x_{4}, y_{1}\right\}$ cannot be independent, so $x_{2} x_{4} \in E$. We get $F-\left\{x_{3}, y_{3}\right\} \cong G_{1}$ if $y_{2} y_{4} \in E$, and $F \cong G_{11}$ if $y_{2} y_{4} \notin E$, a contradiction.

Case 6: $x_{1} x_{2}, y_{2} y_{3} \in E$ and $y_{1} y_{3} \notin E$. By β-argument, $x_{2} x_{4} \in E$. Suppose $y_{2} y_{4} \in E$. Then $x_{1} x_{4} \notin E$, since otherwise $F-\left\{x_{3}, y_{3}\right\} \cong G_{1}$. We have

$$
x_{3} x_{4} \notin E \Rightarrow F \cong G_{3} \text { or } G_{9}, \quad x_{3} x_{4} \in E \Rightarrow F \cong G_{6} \text { or } G_{14} .
$$

This contradiction implies $y_{2} y_{4} \notin E$.
Now, if $y_{3} y_{4} \notin E$, then

$$
\begin{aligned}
& x_{1} x_{4}, x_{3} x_{4} \notin E \Rightarrow F \cong G_{2}, \quad x_{1} x_{4} \in E, x_{3} x_{4} \notin E \Rightarrow F \cong G_{3}, \\
& x_{1} x_{4}, x_{3} x_{4} \in E \Rightarrow F \cong G_{9}, \quad x_{1} x_{4} \notin E, x_{3} x_{4} \in E \Rightarrow F \cong G_{5} .
\end{aligned}
$$

If $y_{3} y_{4} \in E$, then

$$
x_{1} x_{4}, x_{3} x_{4} \notin E \Rightarrow F \cong G_{5}, \quad x_{1} x_{4} \in E, x_{3} x_{4} \notin E \Rightarrow F \cong G_{6},
$$

$$
x_{1} x_{4}, x_{3} x_{4} \in E \Rightarrow F \cong G_{14}, \quad x_{1} x_{4} \notin E, x_{3} x_{4} \in E \Rightarrow F \cong G_{13} .
$$

Both subcases yield a contradiction.
Case 7: $y_{1} y_{3}, y_{2} y_{3} \in E$ and $x_{1} x_{2} \notin E$. Since $\delta(F) \geq 2$, we have $x_{2} x_{4} \in E$. By β argument, $y_{3} y_{4} \in E$. Now $x_{1} x_{4}, x_{3} x_{4} \notin E$ implies $F \cong G_{7}$ or G_{8}. If only one edge from $\left\{x_{1} x_{4}, x_{3} x_{4}\right\}$ is present, then $F \cong G_{9}$ or G_{10}. At last, $x_{1} x_{4}, x_{3} x_{4} \in E$ implies $F-\left\{x_{2}, y_{2}\right\} \cong$ G_{1}, a contradiction.

Case 8: $x_{1} x_{2}, y_{1} y_{3}, y_{2} y_{3} \in E$. The set $\left\{x_{2}, x_{3}, x_{4}, y_{1}\right\}$ is not independent, and so w.l.o.g $x_{2} x_{4} \in E$. Suppose $y_{2} y_{4} \in E$. Since $F-\left\{x_{3}, y_{3}\right\} \not \approx G_{1}$, we have $x_{1} x_{4} \notin E$. Now, if $x_{3} x_{4} \notin E$, then $F \cong G_{4}$ or G_{10}, and if $x_{3} x_{4} \in E$, then $F \cong G_{14}$ or G_{15}. This contradiction implies $y_{2} y_{4} \notin E$.

If $y_{3} y_{4} \in E$, then

$$
\begin{array}{ll}
x_{1} x_{4}, x_{3} x_{4} \notin E \Rightarrow F \cong G_{9}, & x_{1} x_{4} \in E, x_{3} x_{4} \notin E \Rightarrow F \cong G_{12}, \\
x_{1} x_{4}, x_{3} x_{4} \in E \Rightarrow F-\left\{x_{2}, y_{2}\right\} \cong G_{1}, & x_{1} x_{4} \notin E, x_{3} x_{4} \in E \Rightarrow F \cong G_{14} .
\end{array}
$$

If $y_{3} y_{4} \notin E$, then

$$
\begin{array}{ll}
x_{1} x_{4}, x_{3} x_{4} \notin E F \cong G_{3}, & x_{1} x_{4} \in E, x_{3} x_{4} \notin E \Rightarrow F \cong G_{11}, \\
x_{1} x_{4}, x_{3} x_{4} \in E \Rightarrow F \cong G_{12}, & x_{1} x_{4} \notin E, x_{3} x_{4} \in E \Rightarrow F \cong G_{6} .
\end{array}
$$

This contradiction completes the proof of Theorem 2.2.
It turns out that the class of Γ-perfect graphs is a subclass of $I R$-perfect graphs.
Theorem 2.3 Any Γ-perfect graph is IR-perfect.
Proof: Let G be a Γ-perfect graph and let H be arbitrary induced subgraph of the graph G. Clearly, H is also a Γ-perfect graph. Let X be a maximum irredundant set of the graph H. Consider the induced subgraph $F=\langle N[X]\rangle$ of the graph H. Obviously, the set X is a dominating set of the graph F. The set X is an irredundant set of H, therefore $I(x, X) \neq \emptyset$ for each vertex $x \in X$ in H. Since $I(x, X) \subseteq N[X]$ for all $x \in X$ in H, we see that $I(x, X) \neq \emptyset$ for each vertex $x \in X$ in the graph F, i.e., the set X is an irredundant set in F. Consequently, X is a minimal dominating set of the graph F. Thus,

$$
\Gamma(F) \geq|X|=I R(H)
$$

Since H is a Γ-perfect graph, we have

$$
\beta(H)=\Gamma(H) \quad \text { and } \quad \beta(F)=\Gamma(F) .
$$

We get

$$
I R(H) \leq \Gamma(F)=\beta(F) \leq \beta(H)=\Gamma(H) \leq I R(H)
$$

Therefore, $\Gamma(H)=I R(H)$. Thus, the graph G is an $I R$-perfect graph. The proof is complete.

Theorem 2.2 implies a characterization of Γ-perfect graphs in terms of Property A defined below. Two vertex subsets A, B of a graph independently match each other if $A \cap B=\emptyset,|A|=|B|$, and all edges between A and B in $\langle A \cup B\rangle$ form a perfect matching. We say that a graph G satisfies Property A if for any vertex subsets $A, B \subset V(G)$ that independently match each other, the graph $\langle A \cup B\rangle$ has an independent set of order $|A|$.

Corollary 2.4 A graph G is Γ-perfect if and only if G satisfies Property A.
Proof: Let A and B be vertex subsets of a Γ-perfect graph G independently matching each other. Since A is a minimal dominating set of the graph $F=\langle A \cup B\rangle$, we have $\beta(F)=\Gamma(F) \geq|A|$, i.e., G satisfies Property A.

Let G possess Property A. The graphs $G_{1}-G_{15}$ in Figure 1 and the graphs from \mathcal{W} do not satisfy Property A, and so they cannot be induced subgraphs of the graph G. By Theorem 2.2, the graph G is Γ-perfect.

Jacobson and Peters [6] considered the class of graphs G such that $\beta(H)=I R(H)$ for all induced subgraphs H of G. Clearly, this class is the intersection of Γ-perfect graphs and $I R$-perfect graphs. The next result follows directly from Theorem 2.3 and Corollary 2.4 .

Corollary 2.5 (Jacobson and Peters [6]) A graph G is both Γ-perfect and IR-perfect if and only if G satisfies Property A.

We complete this section with the next simple observations following immediately from Theorem 2.2 and the definition of \mathcal{W}.

Corollary 2.6 Let m be fixed. The class of Γ-perfect graphs having $\beta(G) \leq m$ can be characterized in terms of a finite number of forbidden induced subgraphs.

As an illustration of Corollary 2.6, we have the following result.
Corollary 2.7 $A \bar{K}_{4}$-free graph is Γ-perfect if and only if it does not contain the graphs $G_{1}-G_{15}$ in Figure 1 as induced subgraphs.

3 Subclasses of Γ-perfect and $I R$-perfect graphs

A number of well known classes of graphs are subclasses of Γ-perfect and $I R$-perfect graphs. Hammer and Maffray [4] define a graph G to be absorbantly perfect if every induced subgraph H of G contains a minimal dominating set that meets all maximal cliques of H.

Theorem 3.1 An absorbantly perfect graph is Γ-perfect and IR-perfect.
Proof: Let G be an absorbantly perfect graph and suppose that the sets $A, B \subset V(G)$ independently match each other. The graph $H=\langle A \cup B\rangle$ contains a minimal dominating set X that meets all maximal cliques of H. Since all the edges of the perfect matching P of H are maximal cliques, we have $|X| \geq|A|$, and for any edge $a b$ of the perfect matching P at least one of the vertices a, b belongs to X. Let Z denote all isolated vertices in $\langle X\rangle$ and $Y=X-Z$. Since X is a minimal dominating set of H, we have $I(y, X) \neq \emptyset$ for any vertex $y \in Y$. Denote $I=\cup_{y \in Y} I(y, X)$. Suppose that there is an edge $u v$ such that $u \in Y$, $v \in I$ and $u v$ is not an edge of P. Then there exists an edge $v w$ of P such that $w \in X$, contrary to the definition of $I(u, X)$. Thus, the edges between Y and I are edges of P, and $|I|=|Y|$. By the definition of I, there are no edges between I and Z. Suppose now
that the set I is not independent, i.e., there is an edge e in $\langle I\rangle$, and consider the maximal clique C containing e. The set X meets all maximal cliques, so $X \cap C \neq \emptyset$. Consequently, a vertex $x \in X \cap C$ is incident to e, contrary to the definition of I. Thus, the set $I \cup Z$ is an independent set and

$$
|I \cup Z|=|I|+|Z|=|Y|+|Z|=|X| \geq|A| .
$$

Therefore, G satisfies Property A and the result now follows from Corollary 2.4 and Theorem 2.3.

A set of vertices S in a graph G is called a stable transversal if $|S \cap C|=1$ for any maximal clique C of G. Obviously, a stable transversal is a maximal independent set. A graph G is strongly perfect if every induced subgraph of G has a stable transversal. Since any maximal independent set is a minimal dominating set, strongly perfect graphs form a subclass of absorbantly perfect graphs, and the inclusion is strict (see [4]). A graph G is called strongly Γ-perfect if G is both perfect and Γ-perfect. It is proved in [4] that every absorbantly perfect graph is perfect. Using Theorem 3.1 we get that absorbantly perfect graphs form a subclass of strongly Γ-perfect graphs. Take the graph G_{1} in Figure 1 and make a subdivision by two vertices of an edge not belonging to a C_{3}. The resulting graph shows that the above inclusion is strict. By the definition, strongly Γ-perfect graphs are a subclass of Γ-perfect graphs and this inclusion is strict, since C_{5} is Γ-perfect but not strongly Γ-perfect. Using Theorem 2.3 and taking into account that G_{1} in Figure 1 is $I R$-perfect and is not Γ-perfect, we get the following chain of strict inclusions:
$\{$ Strongly perfect graphs $\} \subset\{$ Absorbantly perfect graphs $\} \subset$
$\{$ Strongly Γ-perfect graphs $\} \subset\{\Gamma$-perfect graphs $\} \subset\{I R$-perfect graphs $\}$.
Corollary 3.2 (Cheston and Fricke [1], Jacobson and Peters [6]) A strongly perfect graph is Γ-perfect and IR-perfect.

The same result is valid for bipartite graphs [2] and chordal graphs [7], since they are strongly perfect. Moreover, the class of strongly perfect graphs contains perfectly orderable graphs, comparability graphs, peripheral graphs, complements of chordal graphs, Meyniel graphs, parity graphs, i-triangulated graphs, cographs, permutation graphs, and thus graphs in all these classes are Γ-perfect and $I R$-perfect.

Recall that a graph G is called circular arc if G can be represented as the intersection graph of arcs on a circle.

Corollary 3.3 (Golumbic and Laskar [3]) A circular arc graph is Γ-perfect and IRperfect.

Proof: Let G be a minimal Γ-imperfect graph and suppose that G is a circular arc graph. By Theorem 2.2, $G \in \mathcal{W}$ or $G \cong G_{i}, 1 \leq i \leq 15$. In both cases there is a partition $V(G)=A \cup B$ as in the definition of \mathcal{W}. The graph G contains an induced odd cycle C_{m}, since otherwise G is a bipartite graph and hence $\beta(G)=|A|$, a contradiction. The cycle C_{m} is odd, and hence C_{m} contains consecutive vertices u, v, w such that $\{u, v, w\} \subset A$ (w.l.o.g). Let I_{u}, I_{v} and I_{w} be circular arcs corresponding to u, v, w. Assume that $m \geq 5$.

Clearly, the arcs of C_{m} cover the circle and $I_{u} \nsubseteq I_{v}, I_{w} \nsubseteq I_{v}$. By the definition of \mathcal{W}, v is adjacent to $b \in B$ not adjacent to u and w, so $I_{b} \subseteq I_{v}$. This is a contradiction, since $\delta(G) \geq 2$ and b is adjacent to $b^{\prime} \in B$ not adjacent to v. It remains to consider the case when $m=3$ and the arcs of C_{m} do not cover the circle, i.e., $I_{u} \cap I_{v} \cap I_{w} \neq \emptyset$. Clearly, one of the arcs, say I_{v}, is contained in $I_{u} \cup I_{w}$. This is a contradiction, since v is adjacent to $b \in B$ not adjacent to u and w.

Volkmann [9] generalized the above mentioned result from [2] that every bipartite graph is Γ-perfect and $I R$-perfect, and also the result of Topp [8] that each unicycle graph is Γ perfect and $I R$-perfect.

Corollary 3.4 (Volkmann [9]) If G is a graph such that all cycles of odd length contain a common vertex, then G is Γ-perfect and IR-perfect.

Proof: Suppose that $A, B \subset V(G)$ independently match each other. If $H=\langle A \cup B\rangle$ is bipartite, then H has an independent set of order $|A|$. If H is not bipartite, then it contains a vertex v, a common vertex of all odd cycles. Now the graph $H^{\prime}=H-\{v\}$ is bipartite and we have

$$
\beta(H) \geq \beta\left(H^{\prime}\right) \geq \frac{1}{2}(|V(H)|-1)=|A|-\frac{1}{2} .
$$

Thus, G satisfies Property A and the result follows from Corollary 2.4 and Theorem 2.3.
Let \mathcal{P} be a family of connected graphs of Figure 2 having independence number four.
Theorem 3.5 If a graph G does not contain the graphs $G_{1}-G_{15}$ in Figure 1 and any member of \mathcal{P} as induced subgraphs, then G is Γ-perfect and IR-perfect.

Proof: Let G not contain the graphs $G_{1}-G_{15}$ and any member of \mathcal{P} as an induced subgraph. Suppose that G contains a graph $H \in \mathcal{W}$ as an induced subgraph, and consider a maximum independent set U of the graph H. By the definition of $\mathcal{W}, \beta(H)<|A|=|B|$, and therefore there is an edge $a_{1} b_{1}$ of the perfect matching $\left(a_{1} \in A, b_{1} \in B\right)$ such that $a_{1} \notin U$ and $b_{1} \notin U$. The set U is maximum independent, and thus there exist vertices $a_{2} \in U \cap A$ and $b_{3} \in U \cap B$ such that a_{1} is adjacent to a_{2} and b_{1} is adjacent to b_{3}. Let $a_{2} b_{2}$ and $a_{3} b_{3}$ be edges of the perfect matching. Now consider the graph $H^{\prime}=\left\langle\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}\right\rangle$. The only edges whose existence is not known yet are $a_{1} a_{3}, a_{2} a_{3}, b_{1} b_{2}$ and $b_{2} b_{3}$. If all these edges are present in H, then $H^{\prime} \cong G_{1}$, a contradiction. Using the same argument as in the proof of Theorem 2.2, we can suppose that $a_{2} a_{3} \notin E(H)$. Since $H \in \mathcal{W}$, we have $|H| \geq 10$, and H is a connected graph. Hence there is the edge $a_{4} b_{4}$ of the perfect matching, and $a_{4} b_{4}$ is not an isolated edge in the graph $F=\left\langle\left\{a_{i}, b_{i}: 1 \leq i \leq 4\right\}\right\rangle$. Clearly, $\Gamma(F)=4$ and F is a connected graph. If $\beta(F)<4$, then F is not Γ-perfect, and by Theorem 2.2, F contains an induced subgraph from $G_{1}-G_{15}$, a contradiction. Therefore, $\beta(F)=4$ and $F \in \mathcal{P}$, a contradiction. Thus, G does not contain any member of \mathcal{W} as an induced subgraph and also does not have the induced $G_{1}-G_{15}$. By Theorems 2.2 and $2.3, G$ is Γ-perfect and $I R$-perfect.

Theorem 3.5 essentially improves the known sufficient condition for a graph to be $I R$ perfect (Corollary 3.7). To show this, we weaken the conditions of Theorem 3.5:

Corollary 3.6 If G does not contain the graphs P_{5} and G_{1} in Figure 1 as induced subgraphs, then G is Γ-perfect and IR-perfect.

Proof: All the graphs $G_{2}-G_{15}$ in Figure 1 contain P_{5} as an induced subgraph. Let us show that any graph of the family \mathcal{P} contains induced P_{5}. In fact, the family \mathcal{P} is determined by the connected graph F in the proof of Theorem 3.5. Suppose that F does not contain induced P_{5}. We know that $a_{2} a_{3} \notin E(F)$. If $a_{1} a_{3} \notin E(F)$, then $\left\langle\left\{a_{2}, a_{1}, b_{1}, b_{3}, a_{3}\right\}\right\rangle \cong P_{5}$, and hence $a_{1} a_{3} \in E(F)$. We have $b_{2} b_{3} \in E(F)$, for otherwise $\left\langle\left\{b_{2}, a_{2}, a_{1}, a_{3}, b_{3}\right\}\right\rangle \cong P_{5}$. Now $b_{3} b_{4} \notin E(F)$, for otherwise $\left\langle\left\{a_{2}, a_{1}, a_{3}, b_{3}, b_{4}\right\}\right\rangle \cong P_{5}$, and $b_{2} b_{4} \notin E(F)$, for otherwise $\left\langle\left\{a_{3}, a_{1}, a_{2}, b_{2}, b_{4}\right\}\right\rangle \cong P_{5}$. Also, $\left\langle\left\{b_{2}, b_{3}, a_{3}, a_{4}, b_{4}\right\}\right\rangle \not \equiv P_{5}$ implies $a_{3} a_{4} \notin E(F),\left\langle\left\{b_{3}, b_{2}, a_{2}, a_{4}, b_{4}\right\}\right\rangle \not \approx P_{5}$ implies $a_{2} a_{4} \notin E(F),\left\langle\left\{b_{2}, b_{3}, a_{3}, a_{1}, a_{4}\right\}\right\rangle \not \equiv P_{5}$ implies $a_{1} a_{4} \notin E(F)$, and $\left\langle\left\{a_{4}, b_{4}, b_{1}, b_{3}, a_{3}\right\}\right\rangle \not \not P_{5}$ implies $b_{1} b_{4} \notin E(F)$. Hence the edge $a_{4} b_{4}$ is isolated in F, a contradiction. Thus, if G does not contain induced P_{5}, then G also does not contain the graphs $G_{2}-G_{15}$ and any member of \mathcal{P} as induced subgraphs. The result now follows by Theorem 3.5.

Corollary 3.7 (Cockayne, Favaron, Payan and Thomason [2]) If G does not contain $P_{5}, C_{5}, G_{1}-v$ and the 5-vertex graph with edge set $\{a b, b c, c d, d e, b d\}$ as induced subgraphs, then G is IR-perfect.

Proof: This follows directly from Corollary 3.6.
Notice that the list of forbidden subgraphs in Corollary 3.7 consists of four Γ-perfect graphs while Corollary 3.6 contains only one Γ-perfect graph from this list and one minimal Γ-imperfect graph.

Acknowledgment A part of the paper was written when both authors were visiting Department of Mathematics and CS, Odense University, Denmark, whose hospitality is very much appreciated. Research of the second author (V.E. Zverovich) was supported by an award from the Alexander von Humboldt Foundation. The authors also thank Prof. Dr. Lutz Volkmann for useful discussion of the paper, and the referees for helpful comments.

References

[1] G.A. Cheston and G. Fricke, Classes of graphs for which upper fractional domination equals independence, upper domination, and upper irredundance. Discrete Appl. Math. 55 (1994) 241-258.
[2] E.J. Cockayne, O. Favaron, C. Payan and A.G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs. Discrete Math. 33 (1981) 249-258.
[3] M.C. Golumbic and R.C. Laskar, Irredundancy in circular arc graphs. Discrete Appl. Math. 44 (1993) 79-89.
[4] P.L. Hammer and F. Maffray, Preperfect graphs. Combinatorica 13 (1993) 199-208.
[5] M.A. Henning, Irredundance perfect graphs. Discrete Math. 142 (1995) 107-120.
[6] M.S. Jacobson and K. Peters, A note on graphs which have upper irredundance equal to independence. Discrete Appl. Math. 44 (1993) 91-97.
[7] M.S. Jacobson and K. Peters, Chordal graphs and upper irredundance, upper domination and independence. Discrete Math. 86 (1990) 59-69.
[8] J. Topp, Domination, independence and irredundance in graphs. Dissertationes Math. 342 (1995) 99 pp.
[9] L. Volkmann, private communication.
[10] I.E. Zverovich and V.E. Zverovich, An induced subgraph characterization of domination perfect graphs. J. Graph Theory 20 (1995) 375-395.
G.Gutin and V.Zverovich

G_{1}

G_{2}, G_{3}, G_{4}

G_{5}, G_{6}

G_{7}, G_{8}

G_{9}, G_{10}

G_{11}, G_{12}

G_{13}, G_{14}, G_{15}

FIGURE 1. Minimal Γ-imperfect graphs $G_{1}-G_{15}$

FIGURE 2

[^0]: *On leave from Faculty of Mechanics and Mathematics, Belarus State University, Minsk 220050, Belarus.

