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Abstract

Let β(G), Γ(G) and IR(G) be the independence number, the upper domination
number and the upper irredundance number, respectively. A graph G is called Γ-
perfect if β(H) = Γ(H), for every induced subgraph H of G. A graph G is called
IR-perfect if Γ(H) = IR(H), for every induced subgraph H of G. In this paper, we
present a characterization of Γ-perfect graphs in terms of some family of forbidden
induced subgraphs, and show that the class of Γ-perfect graphs is a subclass of
IR-perfect graphs and that the class of absorbantly perfect graphs is a subclass of
Γ-perfect graphs. These results imply a number of known theorems on Γ-perfect
graphs and IR-perfect graphs. Moreover, we prove a sufficient condition for a graph
to be Γ-perfect and IR-perfect which improves a known analogous result.
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1 Introduction

All graphs will be finite and undirected, without loops and multiple edges. If G is a
graph, V (G) denotes the set, and |G| the number, of vertices in G. Let N(x) denote the
neighborhood of a vertex x, and let 〈X〉 denote the subgraph of G induced by X ⊆ V (G).
Also let N(X) = ∪x∈XN(x) and N [X] = N(X) ∪X. Denote by δ(G) the minimal degree
of vertices in G.

A set X is called a dominating set if N [X] = V (G). The independence number β(G) is
the maximum cardinality of an independent set, and the upper domination number Γ(G)
is the maximum cardinality of a minimal dominating set of G. A minimal dominating set
of order Γ(G) is called a Γ-set. A set X is irredundant if for every vertex x ∈ X,

I(x, X) = N [x]−N [X − {x}] 6= ∅.
∗On leave from Faculty of Mechanics and Mathematics, Belarus State University, Minsk 220050, Belarus.
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The maximum cardinality of an irredundant set is the upper irredundance number IR(G).
It is well known [2] that for any graph G,

β(G) ≤ Γ(G) ≤ IR(G).

A graph G is called upper domination perfect (Γ-perfect) if β(H) = Γ(H), for every induced
subgraph H of G; G is minimal Γ-imperfect if G is not Γ-perfect and β(H) = Γ(H), for
every proper induced subgraph H of G. A graph G is called upper irredundance perfect
(IR-perfect) if Γ(H) = IR(H), for every induced subgraph H of G. The classes of Γ-
perfect graphs and IR-perfect graphs in a sense are dual to the well known classes of
domination perfect graphs (for a short survey, see [10]) and irredundance perfect graphs
[5], respectively.

In this paper, we present a characterization of Γ-perfect graphs in terms of some family
of forbidden induced subgraphs, and show that the class of Γ-perfect graphs is a subclass
of IR-perfect graphs. We also show that the class of absorbantly perfect graphs introduced
by Hammer and Maffray [4] is a subclass of Γ-perfect graphs. These results imply a number
of known theorems on the above classes of graphs, for example, the theorem of Cheston
and Fricke [1] and Jacobson and Peters [6] that any strongly perfect graph is Γ-perfect
and IR-perfect and the theorem of Golumbic and Laskar [3] that any circular arc graph
is Γ-perfect and IR-perfect. Moreover, we prove a sufficient condition for a graph to be
Γ-perfect and IR-perfect which essentially improves a sufficient condition for a graph to
be IR-perfect of Cockayne, Favaron, Payan and Thomason [2].

2 Main Results

We say that the graph G belongs to the class W if G is a connected graph, has |G| ≥ 10
and δ(G) ≥ 2, and its vertex set V (G) has a partition V (G) = A ∪ B such that |A| =
|B| = β(G) + 1 and the only edges between A and B are a perfect matching.

Proposition 2.1 If G ∈ W, then Γ(G) = β(G) + 1.

Proof: Since A is a minimal dominating set, we have Γ(G) ≥ |A|. Let X be a Γ-set of G.
If x is a non-isolated vertex of 〈X〉, then there exists a vertex y 6∈ X such that y is not
adjacent to any vertex of X − x. If x is an isolated vertex of 〈X〉, then there is a vertex
y 6∈ X such that xy is an edge of the perfect matching of G. Thus for each vertex of X
we can indicate a vertex not in X and obviously different vertices of X result in different
vertices of V (G)−X. Thus, Γ(G) ≤ 1

2
|G| = |A|.

The classW contains an infinite subclass consisting of minimal Γ-imperfect graphs. The
graph H(k, l, m) is constructed from two disjoint cycles C = C4k+1 (k ≥ 1) and C ′ = C4l+1

(l ≥ 1) by adding the chain (v1, v2, ..., v2m) (m ≥ 1) joining the vertex v1 ∈ V (C) and
v2m ∈ V (C ′). Thus, |H(k, l, m)| = 4k + 4l + 2m ≥ 10. It is not difficult to see that
H(k, l, m) belongs to the class W . By Proposition 2.1, the graph H(k, l, m) is not Γ-
perfect. Moreover, it is possible to show that H(k, l, m) is minimal Γ-imperfect graph for
any k, l, and m.

The following theorem gives a characterization of Γ-perfect graphs in terms of the
forbidden induced graphs in Figure 1 and the graphs from the class W .
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Theorem 2.2 A graph G is Γ-perfect if and only if G does not contain the graphs G1−G15

in Figure 1 and any member of W as induced subgraphs.

Proof: The necessity follows from Proposition 2.1 and the fact that β(Gi) < Γ(Gi),
1 ≤ i ≤ 15. The dotted edges in Figure 1 mean the following: G2 has none of the dotted
edges, G3 has one of the dotted edges, G4 has both of the dotted edges, and so on. To prove
the sufficiency, let F be a minimum counterexample, i.e., the graph F does not contain the
graphs G1−G15 and any graph from the familyW as induced subgraphs, β(F ) < Γ(F ), and
F has minimum order. The graph F is connected, since otherwise one of the component
F ′ satisfies β(F ′) < Γ(F ′), contrary to the minimality of F . Let X be a Γ-set of F such
that the number of edges in 〈X〉 is minimum, and let Y = V (F )−X. Denote all isolated
vertices of the graph 〈X〉 by X2 and let X1 = X −X2. Since X is a minimal dominating
set, it follows that I(x, X) 6= ∅ for any x ∈ X. If x ∈ X1, then I(x, X) ⊂ Y . For each
vertex x ∈ X1, take one vertex from the set I(x, X) and form the set Y1 ⊂ Y .

Suppose that Y2 = V (F )− (X ∪ Y1) 6= ∅ and consider the graph F − Y2. We have

β(F − Y2) ≤ β(F ) < Γ(F ) ≤ Γ(F − Y2),

a contradiction, since the graph F is a minimum counterexample. Therefore V (F ) = X∪Y1.
Now suppose that there is a vertex x ∈ X2. Since Y = Y1 and Y1 consists of vertices from
I(x, X), it follows that x is an isolated vertex of F . This is a contradiction, since F is a
connected graph and F 6= K1.

Thus, the graph 〈X〉 does not contain isolated vertices and all edges between the sets
X and Y form a perfect matching. If y is an isolated vertex of 〈Y 〉, then form the set
(X−x)∪{y}, where x is the vertex from X adjacent to y. This set is a Γ-set and contains
fewer edges than 〈X〉, contrary to hypothesis. Therefore, δ(F ) ≥ 2.

Assume that β(F ) < |X| − 1 and let uv be any edge of the perfect matching between
X and Y . It is not difficult to see that

β(F − {u, v}) ≤ β(F ) < |X| − 1 ≤ Γ(F − {u, v}),

contrary to the minimality of F . On the other hand, β(F ) < Γ(F ) = |X|. We get

β(F ) = |X| − 1.

Now, if |X| ≥ 5, then F is a member of W , a contradiction. If |X| = 2, then β(F ) = 1
and F ∼= K4 which is impossile. Consequently, 3 ≤ |X| ≤ 4. Consider a maximum
independent set U of the graph F . Clearly, U contains vertices in both X and Y , for
otherwise some v has no neighbor in U . Since β(F ) < |X|, there is an edge x1y1 of the
perfect matching such that x1, y1 6∈ U . In what follows, xi and yi denote vertices from
X and Y , respectively. The set U is maximum independent, and thus there exist vertices
x3 ∈ U and y2 ∈ U such that x1 is adjacent to x3 and y1 is adjacent to y2. Let x2y2 and x3y3

be edges of the perfect matching. Now consider the graph F ′ = 〈{x1, x2, x3, y1, y2, y3}〉.
The only edges of F ′ whose existence is not known yet are x1x2, x2x3, y1y3 and y2y3. If
all these edges are present in F , then F ′ is isomorphic to G1, a contradiction. Therefore,
one of the above edges is absent and we have 15 possible graphs resulting from F ′. It
is straightforward to check that each of the 15 graphs is isomorphic (with saving the
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partition) to one of the 8 graphs resulting from F ′ by taking any combination of only
the three edges x1x2, y1y3 and y2y3. Hence we can suppose that x2x3 6∈ E, where E is
the edge set of F . Thus, there are 8 cases to consider. Before considering these cases
we derive some facts common to all the cases. As {y1, x2, x3} is independent in F and
β(F ) + 1 = |X| ≤ 4, we have |X| = 4, i.e., F contains one more edge x4y4 in the perfect
matching. We shall often use the following simple but useful fact which will be called
β-argument: if xixj 6∈ E, then ykyt ∈ E where {i, j, k, t} = {1, 2, 3, 4}, for otherwise the
set {xi, xj, yk, yt} is independent which is impossible (and, analogously, if yiyj 6∈ E, then
xkxt ∈ E where {i, j, k, t} = {1, 2, 3, 4}). Since x2x3 6∈ E, by β-argument we immediately
conclude that y1y4 ∈ E.

Case 1: x1x2, y1y3, y2y3 6∈ E. Since δ(F ) ≥ 2, we get y3y4 ∈ E. By β-argument,
x1x4 ∈ E and x2x4 ∈ E. If x3x4 6∈ E, then F ∼= G2 or G3 depending on the existence of
the edge y2y4, a contradiction. Consequently, x3x4 ∈ E and we have F ∼= G3 if y2y4 6∈ E,
and F ∼= G11 if y2y4 ∈ E, which is impossible.

Case 2: x1x2 ∈ E and y1y3, y2y3 6∈ E. Analogously to Case 1, y3y4 ∈ E and
x1x4, x2x4 ∈ E. We have y2y4 6∈ E, since otherwise F − {x3, y3} ∼= G1, a contradiction.
Now, depending on the existence of x3x4, F ∼= G3 or G4, a contradiction.

Case 3: y1y3 ∈ E and x1x2, y2y3 6∈ E. This case is similar to Case 2.
Case 4: y2y3 ∈ E and x1x2, y1y3 6∈ E. By β-argument, x2x4 ∈ E and y3y4 ∈ E.

Suppose y2y4 6∈ E. If x1x4, x3x4 6∈ E, then F ∼= G2 (note that G2 has two partitions
V (G2) = A∪B such that the only edges between A and B are a perfect matching). If only
one edge from {x1x4, x3x4} is present in F , then F ∼= G5. At last, x1x4, x3x4 ∈ E implies
F ∼= G6. All cases yield a contradiction. Hence, y2y4 ∈ E. Now

x1x4, x3x4 6∈ E ⇒ F ∼= G7, x1x4, x3x4 ∈ E ⇒ F ∼= G12.

If only one edge from {x1x4, x3x4} is present, then F ∼= G9, which is impossible.
Case 5: x1x2, y1y3 ∈ E and y2y3 6∈ E. By β-argument, x1x4 ∈ E. Also, the set

{x1, y2, y3, y4} cannot be independent, and therefore we may assume w.l.o.g. that y3y4 ∈ E.
We have, x3x4 6∈ E, since otherwise F − {x2, y2} ∼= G1. The set {x2, x3, x4, y1} cannot be
independent, so x2x4 ∈ E. We get F −{x3, y3} ∼= G1 if y2y4 ∈ E, and F ∼= G11 if y2y4 6∈ E,
a contradiction.

Case 6: x1x2, y2y3 ∈ E and y1y3 6∈ E. By β-argument, x2x4 ∈ E. Suppose y2y4 ∈ E.
Then x1x4 6∈ E, since otherwise F − {x3, y3} ∼= G1. We have

x3x4 6∈ E ⇒ F ∼= G3 or G9, x3x4 ∈ E ⇒ F ∼= G6 or G14.

This contradiction implies y2y4 6∈ E.
Now, if y3y4 6∈ E, then

x1x4, x3x4 6∈ E ⇒ F ∼= G2, x1x4 ∈ E, x3x4 6∈ E ⇒ F ∼= G3,

x1x4, x3x4 ∈ E ⇒ F ∼= G9, x1x4 6∈ E, x3x4 ∈ E ⇒ F ∼= G5.

If y3y4 ∈ E, then

x1x4, x3x4 6∈ E ⇒ F ∼= G5, x1x4 ∈ E, x3x4 6∈ E ⇒ F ∼= G6,

4



x1x4, x3x4 ∈ E ⇒ F ∼= G14, x1x4 6∈ E, x3x4 ∈ E ⇒ F ∼= G13.

Both subcases yield a contradiction.
Case 7: y1y3, y2y3 ∈ E and x1x2 6∈ E. Since δ(F ) ≥ 2, we have x2x4 ∈ E. By β-

argument, y3y4 ∈ E. Now x1x4, x3x4 6∈ E implies F ∼= G7 or G8. If only one edge from
{x1x4, x3x4} is present, then F ∼= G9 or G10. At last, x1x4, x3x4 ∈ E implies F −{x2, y2} ∼=
G1, a contradiction.

Case 8: x1x2, y1y3, y2y3 ∈ E. The set {x2, x3, x4, y1} is not independent, and so w.l.o.g
x2x4 ∈ E. Suppose y2y4 ∈ E. Since F − {x3, y3} 6∼= G1, we have x1x4 6∈ E. Now, if
x3x4 6∈ E, then F ∼= G4 or G10, and if x3x4 ∈ E, then F ∼= G14 or G15. This contradiction
implies y2y4 6∈ E.

If y3y4 ∈ E, then

x1x4, x3x4 6∈ E ⇒ F ∼= G9, x1x4 ∈ E, x3x4 6∈ E ⇒ F ∼= G12,

x1x4, x3x4 ∈ E ⇒ F − {x2, y2} ∼= G1, x1x4 6∈ E, x3x4 ∈ E ⇒ F ∼= G14.

If y3y4 6∈ E, then

x1x4, x3x4 6∈ E ⇒ F ∼= G3, x1x4 ∈ E, x3x4 6∈ E ⇒ F ∼= G11,

x1x4, x3x4 ∈ E ⇒ F ∼= G12, x1x4 6∈ E, x3x4 ∈ E ⇒ F ∼= G6.

This contradiction completes the proof of Theorem 2.2.

It turns out that the class of Γ-perfect graphs is a subclass of IR-perfect graphs.

Theorem 2.3 Any Γ-perfect graph is IR-perfect.

Proof: Let G be a Γ-perfect graph and let H be arbitrary induced subgraph of the graph
G. Clearly, H is also a Γ-perfect graph. Let X be a maximum irredundant set of the
graph H. Consider the induced subgraph F = 〈N [X]〉 of the graph H. Obviously, the set
X is a dominating set of the graph F . The set X is an irredundant set of H, therefore
I(x, X) 6= ∅ for each vertex x ∈ X in H. Since I(x, X) ⊆ N [X] for all x ∈ X in H, we see
that I(x, X) 6= ∅ for each vertex x ∈ X in the graph F , i.e., the set X is an irredundant
set in F . Consequently, X is a minimal dominating set of the graph F . Thus,

Γ(F ) ≥ |X| = IR(H).

Since H is a Γ-perfect graph, we have

β(H) = Γ(H) and β(F ) = Γ(F ).

We get
IR(H) ≤ Γ(F ) = β(F ) ≤ β(H) = Γ(H) ≤ IR(H).

Therefore, Γ(H) = IR(H). Thus, the graph G is an IR-perfect graph. The proof is
complete.

Theorem 2.2 implies a characterization of Γ-perfect graphs in terms of Property A
defined below. Two vertex subsets A, B of a graph independently match each other if
A∩B = ∅, |A| = |B|, and all edges between A and B in 〈A∪B〉 form a perfect matching.
We say that a graph G satisfies Property A if for any vertex subsets A, B ⊂ V (G) that
independently match each other, the graph 〈A ∪B〉 has an independent set of order |A|.
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Corollary 2.4 A graph G is Γ-perfect if and only if G satisfies Property A.

Proof: Let A and B be vertex subsets of a Γ-perfect graph G independently matching
each other. Since A is a minimal dominating set of the graph F = 〈A ∪ B〉, we have
β(F ) = Γ(F ) ≥ |A|, i.e., G satisfies Property A.

Let G possess Property A. The graphs G1 − G15 in Figure 1 and the graphs from W
do not satisfy Property A, and so they cannot be induced subgraphs of the graph G. By
Theorem 2.2, the graph G is Γ-perfect.

Jacobson and Peters [6] considered the class of graphs G such that β(H) = IR(H) for
all induced subgraphs H of G. Clearly, this class is the intersection of Γ-perfect graphs
and IR-perfect graphs. The next result follows directly from Theorem 2.3 and Corollary
2.4.

Corollary 2.5 (Jacobson and Peters [6]) A graph G is both Γ-perfect and IR-perfect
if and only if G satisfies Property A.

We complete this section with the next simple observations following immediately from
Theorem 2.2 and the definition of W .

Corollary 2.6 Let m be fixed. The class of Γ-perfect graphs having β(G) ≤ m can be
characterized in terms of a finite number of forbidden induced subgraphs.

As an illustration of Corollary 2.6, we have the following result.

Corollary 2.7 A K4-free graph is Γ-perfect if and only if it does not contain the graphs
G1 −G15 in Figure 1 as induced subgraphs.

3 Subclasses of Γ-perfect and IR-perfect graphs

A number of well known classes of graphs are subclasses of Γ-perfect and IR-perfect graphs.
Hammer and Maffray [4] define a graph G to be absorbantly perfect if every induced sub-
graph H of G contains a minimal dominating set that meets all maximal cliques of H.

Theorem 3.1 An absorbantly perfect graph is Γ-perfect and IR-perfect.

Proof: Let G be an absorbantly perfect graph and suppose that the sets A, B ⊂ V (G)
independently match each other. The graph H = 〈A ∪B〉 contains a minimal dominating
set X that meets all maximal cliques of H. Since all the edges of the perfect matching P
of H are maximal cliques, we have |X| ≥ |A|, and for any edge ab of the perfect matching
P at least one of the vertices a, b belongs to X. Let Z denote all isolated vertices in 〈X〉
and Y = X − Z. Since X is a minimal dominating set of H, we have I(y, X) 6= ∅ for any
vertex y ∈ Y . Denote I = ∪y∈Y I(y, X). Suppose that there is an edge uv such that u ∈ Y ,
v ∈ I and uv is not an edge of P . Then there exists an edge vw of P such that w ∈ X,
contrary to the definition of I(u, X). Thus, the edges between Y and I are edges of P ,
and |I| = |Y |. By the definition of I, there are no edges between I and Z. Suppose now
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that the set I is not independent, i.e., there is an edge e in 〈I〉, and consider the maximal
clique C containing e. The set X meets all maximal cliques, so X ∩C 6= ∅. Consequently,
a vertex x ∈ X ∩ C is incident to e, contrary to the definition of I. Thus, the set I ∪ Z is
an independent set and

|I ∪ Z| = |I|+ |Z| = |Y |+ |Z| = |X| ≥ |A|.

Therefore, G satisfies Property A and the result now follows from Corollary 2.4 and The-
orem 2.3.

A set of vertices S in a graph G is called a stable transversal if |S ∩ C| = 1 for any
maximal clique C of G. Obviously, a stable transversal is a maximal independent set. A
graph G is strongly perfect if every induced subgraph of G has a stable transversal. Since
any maximal independent set is a minimal dominating set, strongly perfect graphs form a
subclass of absorbantly perfect graphs, and the inclusion is strict (see [4]). A graph G is
called strongly Γ-perfect if G is both perfect and Γ-perfect. It is proved in [4] that every
absorbantly perfect graph is perfect. Using Theorem 3.1 we get that absorbantly perfect
graphs form a subclass of strongly Γ-perfect graphs. Take the graph G1 in Figure 1 and
make a subdivision by two vertices of an edge not belonging to a C3. The resulting graph
shows that the above inclusion is strict. By the definition, strongly Γ-perfect graphs are
a subclass of Γ-perfect graphs and this inclusion is strict, since C5 is Γ-perfect but not
strongly Γ-perfect. Using Theorem 2.3 and taking into account that G1 in Figure 1 is
IR-perfect and is not Γ-perfect, we get the following chain of strict inclusions:

{Strongly perfect graphs} ⊂ {Absorbantly perfect graphs} ⊂
{Strongly Γ-perfect graphs} ⊂ {Γ-perfect graphs} ⊂ {IR-perfect graphs}.

Corollary 3.2 (Cheston and Fricke [1], Jacobson and Peters [6]) A strongly per-
fect graph is Γ-perfect and IR-perfect.

The same result is valid for bipartite graphs [2] and chordal graphs [7], since they
are strongly perfect. Moreover, the class of strongly perfect graphs contains perfectly
orderable graphs, comparability graphs, peripheral graphs, complements of chordal graphs,
Meyniel graphs, parity graphs, i-triangulated graphs, cographs, permutation graphs, and
thus graphs in all these classes are Γ-perfect and IR-perfect.

Recall that a graph G is called circular arc if G can be represented as the intersection
graph of arcs on a circle.

Corollary 3.3 (Golumbic and Laskar [3]) A circular arc graph is Γ-perfect and IR-
perfect.

Proof: Let G be a minimal Γ-imperfect graph and suppose that G is a circular arc graph.
By Theorem 2.2, G ∈ W or G ∼= Gi, 1 ≤ i ≤ 15. In both cases there is a partition
V (G) = A ∪B as in the definition of W . The graph G contains an induced odd cycle Cm,
since otherwise G is a bipartite graph and hence β(G) = |A|, a contradiction. The cycle
Cm is odd, and hence Cm contains consecutive vertices u, v, w such that {u, v, w} ⊂ A
(w.l.o.g). Let Iu, Iv and Iw be circular arcs corresponding to u, v, w. Assume that m ≥ 5.
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Clearly, the arcs of Cm cover the circle and Iu 6⊆ Iv, Iw 6⊆ Iv. By the definition of W , v
is adjacent to b ∈ B not adjacent to u and w, so Ib ⊆ Iv. This is a contradiction, since
δ(G) ≥ 2 and b is adjacent to b′ ∈ B not adjacent to v. It remains to consider the case
when m = 3 and the arcs of Cm do not cover the circle, i.e., Iu ∩ Iv ∩ Iw 6= ∅. Clearly, one
of the arcs, say Iv, is contained in Iu ∪ Iw. This is a contradiction, since v is adjacent to
b ∈ B not adjacent to u and w.

Volkmann [9] generalized the above mentioned result from [2] that every bipartite graph
is Γ-perfect and IR-perfect, and also the result of Topp [8] that each unicycle graph is Γ-
perfect and IR-perfect.

Corollary 3.4 (Volkmann [9]) If G is a graph such that all cycles of odd length contain
a common vertex, then G is Γ-perfect and IR-perfect.

Proof: Suppose that A, B ⊂ V (G) independently match each other. If H = 〈A ∪ B〉 is
bipartite, then H has an independent set of order |A|. If H is not bipartite, then it contains
a vertex v, a common vertex of all odd cycles. Now the graph H ′ = H − {v} is bipartite
and we have

β(H) ≥ β(H ′) ≥ 1

2
(|V (H)| − 1) = |A| − 1

2
.

Thus, G satisfies Property A and the result follows from Corollary 2.4 and Theorem 2.3.

Let P be a family of connected graphs of Figure 2 having independence number four.

Theorem 3.5 If a graph G does not contain the graphs G1 − G15 in Figure 1 and any
member of P as induced subgraphs, then G is Γ-perfect and IR-perfect.

Proof: Let G not contain the graphs G1 − G15 and any member of P as an induced
subgraph. Suppose that G contains a graph H ∈ W as an induced subgraph, and consider
a maximum independent set U of the graph H. By the definition of W , β(H) < |A| = |B|,
and therefore there is an edge a1b1 of the perfect matching (a1 ∈ A, b1 ∈ B) such that
a1 6∈ U and b1 6∈ U . The set U is maximum independent, and thus there exist vertices
a2 ∈ U∩A and b3 ∈ U∩B such that a1 is adjacent to a2 and b1 is adjacent to b3. Let a2b2 and
a3b3 be edges of the perfect matching. Now consider the graph H ′ = 〈{a1, a2, a3, b1, b2, b3}〉.
The only edges whose existence is not known yet are a1a3, a2a3, b1b2 and b2b3. If all these
edges are present in H, then H ′ ∼= G1, a contradiction. Using the same argument as in the
proof of Theorem 2.2, we can suppose that a2a3 6∈ E(H). Since H ∈ W , we have |H| ≥ 10,
and H is a connected graph. Hence there is the edge a4b4 of the perfect matching, and a4b4

is not an isolated edge in the graph F = 〈{ai, bi : 1 ≤ i ≤ 4}〉. Clearly, Γ(F ) = 4 and F is
a connected graph. If β(F ) < 4, then F is not Γ-perfect, and by Theorem 2.2, F contains
an induced subgraph from G1 − G15, a contradiction. Therefore, β(F ) = 4 and F ∈ P, a
contradiction. Thus, G does not contain any member of W as an induced subgraph and
also does not have the induced G1 − G15. By Theorems 2.2 and 2.3, G is Γ-perfect and
IR-perfect.

Theorem 3.5 essentially improves the known sufficient condition for a graph to be IR-
perfect (Corollary 3.7). To show this, we weaken the conditions of Theorem 3.5:

8



Corollary 3.6 If G does not contain the graphs P5 and G1 in Figure 1 as induced sub-
graphs, then G is Γ-perfect and IR-perfect.

Proof: All the graphs G2 − G15 in Figure 1 contain P5 as an induced subgraph. Let
us show that any graph of the family P contains induced P5. In fact, the family P
is determined by the connected graph F in the proof of Theorem 3.5. Suppose that
F does not contain induced P5. We know that a2a3 6∈ E(F ). If a1a3 6∈ E(F ), then
〈{a2, a1, b1, b3, a3}〉 ∼= P5, and hence a1a3 ∈ E(F ). We have b2b3 ∈ E(F ), for otherwise
〈{b2, a2, a1, a3, b3}〉 ∼= P5. Now b3b4 6∈ E(F ), for otherwise 〈{a2, a1, a3, b3, b4}〉 ∼= P5, and
b2b4 6∈ E(F ), for otherwise 〈{a3, a1, a2, b2, b4}〉 ∼= P5. Also, 〈{b2, b3, a3, a4, b4}〉 6∼= P5 implies
a3a4 6∈ E(F ), 〈{b3, b2, a2, a4, b4}〉 6∼= P5 implies a2a4 6∈ E(F ), 〈{b2, b3, a3, a1, a4}〉 6∼= P5

implies a1a4 6∈ E(F ), and 〈{a4, b4, b1, b3, a3}〉 6∼= P5 implies b1b4 6∈ E(F ). Hence the edge
a4b4 is isolated in F , a contradiction. Thus, if G does not contain induced P5, then G also
does not contain the graphs G2 − G15 and any member of P as induced subgraphs. The
result now follows by Theorem 3.5.

Corollary 3.7 (Cockayne, Favaron, Payan and Thomason [2]) If G does not con-
tain P5, C5, G1 − v and the 5-vertex graph with edge set {ab, bc, cd, de, bd} as induced
subgraphs, then G is IR-perfect.

Proof: This follows directly from Corollary 3.6.

Notice that the list of forbidden subgraphs in Corollary 3.7 consists of four Γ-perfect
graphs while Corollary 3.6 contains only one Γ-perfect graph from this list and one minimal
Γ-imperfect graph.
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FIGURE 1. Minimal Γ-imperfect graphs G1 −G15
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