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Abstract

This paper investigates the effects of a number of replacement strategies for use
in steady state genetic algorithms. Some of these (deleting the oldest, worst or
random members, or deletion by “Kill Tournament”) are well known from the
literature. The last, “conservative” replacement was developed for use in time-
varying problems and combines a Replace–Oldest strategy with modified selection
tournaments, where one candidate is always the oldest member of the population.

A Markov chain analysis is provided to model the expected time for a single member
of the optimal class to take over finite populations. For strategies which replace
the oldest member, a linear approximation is developed for the probability that
it belongs to the optimal class. It is shown that under certain conditions this
approximation yields a transition matrix which is identical to a strategy of deletion
by binary Kill Tournament.

Predicted and simulation results confirm that without enforced elitism Replace–
Random and Replace–Oldest strategies cannot guarantee takeover, and for a fixed
parent selection method the speed of takeover is dramatically altered by the choice
of replacement strategy.

1 Introduction

As suggested by the commonly used metaphor of “Natural Selection”, the selection mecha-
nism in Genetic Algorithms (GAs) is the driving force behind the hoped for improvement
in the fitness distribution of the population. Essentially its role is to take advantage of the



fitter individuals produced by the reproductive operators (recombination and mutation) and
increase their relative frequency in the population, so that they are more likely to be chosen
as parents during the next round of reproduction.

What distinguishes GAs from many biological models is the use of a fixed population size.
This enforces a split of the selection mechanism into two phases, namely parental selection
and replacement strategy. For Generational GAs (GGAs) the latter is simple: all members of
the previous population are deleted, and if good solutions are to be preserved and propagated
then this burden falls upon the reproductive operators. This simplifies the task of producing
analyses of the expected behaviour of the algorithm using measures such as Takeover Time
(e.g. [9]) and Selection Intensity (e.g. [2, 4]).

For Steady State GAs (SSGAs), there are choices of replacement strategy. De Jong and
Sarma examined the time taken for a superior individual (initially occupying 10 % of the
population) to take it over, when using Replace–Worst and Replace–Random strategies.
They attributed the observed differences to variance in the expected lifetimes of individu-
als [7]. However these deterministic approaches can hide some of the effects of applying
stochastic processes to finite sized populations, such as loss of the optimal solution. More
recent work by Chakraborty has applied an exact probabalistic approach to takeover times
for a number of selection mechanisms in both GGAs and SSGAs, using a Markov Chain
analysis [5, 6]. For SSGAs this was done for Replace–Worst (as used in GENITOR [15]),
Replace–Random and deletion by exponential ranking. This model is introduced in Sec-
tion 2.

In Section 3 Chakraborty’s results are repeated for Replace–Worst, and Replace–Random,
and extended to deletion by “Kill Tournament”, plus elitist variants of the last two. In
Section 4 linear models are developed for the probability that the oldest member of the
population belongs to the fitter class. These allow the Markov Models to be approximated
for another commonly used method, namely Replace–Oldest (this will also be referred to as
First In First Out = FIFO) in both its elitist and non-elitist forms. Finally an approximate
model is presented for a more conservative selection mechanism introduced in [14] for dealing
with non-stationary environments.

This “Conservative” mechanism consists of a FIFO replacement strategy used with modified
deterministic binary tournaments for parent selection. In these modified tournaments one of
the two candidates for parenthood is always the oldest member in the population. Because
each member is guaranteed entry in at least one tournament, there is an implicit form
of elitism, since when the fittest member of the population is also the oldest it will win
both parental selection tournaments. This holds at least under selection and recombination
although the best may still be lost through mutation if used.

In Section 5 theoretical and empirical results are compared in order to investigate the quality
of the approximate models. All of the replacement strategies are compared on the basis of
the probability of takeover, time taken to reach a range of landmarks during takeover, and
the rate at which total convergence is reached. These results are then discussed in the
context of function optimisation.



2 Analysis of Takeover Times

In this section the population of a Genetic Algorithm is considered to be split into classes
according to fitness. Theoretical and simulation results are compared for the time taken for a
single member of an optimal (i.e. fittest) class to completely take over finite sized populations
of size N. Only selection is used here, i.e. a parent is chosen by tournament selection and a
copy is made to put in to the population according to the replacement strategy used. These
results demonstrate the ability of the selection and replacement operators to exploit fitter
individuals, and also the degree to which they are prone to stochastic effects namely the
loss of the fittest class.

The Markov model used here is that of [5, 6] in which the number of members of a given
fitness class present in a population of size N at a time t is represented by the variable X(t).
For a GA the elements X(0), X(1),... X(t) form a Markov chain with N + 1 discrete states.
Further, since there is no introduction of variety due to reproduction, the states X(t) = 0
and X(t) = N are absorbing, and all others are transitory. Other authors have applied
similar techniques to study genetic drift in the absence of selection (e.g. [1, 10]).

For a SSGA, each iteration comprises of a single generation-replacement step, and so the
number of members of any class varies by at most +/- 1. Hence, the corresponding transition
matrix, P , for the Markov chain is tridiagonal. The non-zero elements of P are defined
by the choice of selection and replacement strategies. The number of members of the class
will increase if a member is selected to be copied and a non member replaced, and decrease
if a nonmember is copied and a member replaced. Subtracting the probabilities of these
two events from unity gives the probability of keeping the same number of members. Once
P is thus defined, it is simple to calculate the n-step transition matrix Pn. If a starting
configuration of the GA has, say, i members of the optimal class,then X(0) = i . The
probability that X(t) = N , (i.e. that the class has taken over the population) is then given
by the matrix element P t

iN . In this paper the situation is considered where only one member
of the optimal class is initially present, so the takeover probabilities are given by P t

1N .

For binary tournament selection, with the fittest always selected, and i members of the
class in the population, the probability of selecting a member of that class for copying is
given by:

pselect = p(both candidates in class) + 2p(one in class and one not).

If both the candidates in the tournament are selected from the population at random, with
replacement, then each one can be in the class with probability i/N which gives:

pselect =
i2

N2
+ 2

i

N

(
N − i

N

)
=

i(2N − i)
N2

(1)

This deterministic binary tournament selection can be generalised in two ways which increase
and decrease the selection pressure respectively. The first is to increase the number of
participants in the tournament to some value n . In this case (assuming that the fittest
member wins the tournament) the probability of selecting a member of the optimal class
becomes:

pselect =
n∑

j=1

(
i

N

)j (
N − i

N

)n−j (
n
j

)
(2)



The second generalisation, which can be used to reduce selection pressure, is to select the
fittest member of the tournament with a probability s ≤ 1.0. In this case the probability of
selecting a member of the optima class becomes:

pselect =
i2

N2
+ 2s

i

N

(
N − i

N

)
(3)

For the purposes of this paper we will mostly restrict ourselves to considering binary tour-
naments of the form (3) as the focus is on the effect of different replacement strategies given
the same parental selection strategy.

3 Exact Models

The following replacement strategies can all be modelled exactly using the analysis above.

3.1 Replace Worst

In this case a nonmember will be replaced with probability 1.0 until takeover has occurred.
Using pselect for the probability that a member of the optimal class is chosen for copying,
the elements of P are given by:

pij =




1 i ∈ {0, N}, j = i
pselect i = 1, . . . , N − 1, j = i + 1
1 − pselect i = 1, . . . , N − 1, j = i
0 otherwise

(4)

The first term notes that states X(t) = 0 and X(t) = N are absorbing, which holds for all
the strategies. The second term relates to a member of the optimal class being selected for
copying. Since a non-member is always replaced (unless X(t) = N) the number of members
increases by one. The third term is the probability that a nonmember is selected for copying.
Again a nonmember is replaced so X(t+1) = X(t).

Finally the fourth term states that the matrix is in this case bidiagonal, since the number
of class members varies by at most one per selection-replacement event and for this strategy
can never decrease.

3.2 Replace Random

In this case the probability of picking a member for replacement is simply i/N for the
optimal class, and (N − i)/N for the others. The elements of P are given by:

pij =




1 i ∈ {0, N}, j = i

pselect

(
N−i
N

)
i = 1, . . . , N − 1, j = i + 1

(1 − pselect)
(

i
N

)
i = 1, . . . , N − 1, j = i − 1

1 − pselect

(
N−i
N

) − (1 − pselect)
(

i
N

)
i = 1, . . . , N − 1, j = i

0 otherwise

(5)

Comparing (5) with (4), the probability of increasing the number of members of the optimal
class is altered to allow for the fact that the count only increases if a member is chosen for
copying (pselect) and a non-member is replaced (N − i)/N.



There is an extra term since the count can now be reduced with probability (1 − pselect)
[non member copied]×i/N [member deleted].

The probability that the system stays in the same state is reduced to allow for this (since
the terms must sum to 1.0), and the final term states the fact that the matrix is tridiagonal.

3.3 Elitist Replace Random

This replacement strategy is as above, with the proviso that if there is only one instance of
the optimal class then it is never chosen for replacement. This is catered for by adding an
extra set of terms to (5) for the case when i is one, so that Pij beomes:

pij =




1 i ∈ {0, N}, j = i

pselect i = 1, j = 2

1 − pselect i = 1, j = 1

pselect

(
N−i
N

)
i = 2, . . . , N − 1, j = i + 1

(1 − pselect)
(

i
N

)
i = 2, . . . , N − 1, j = i − 1

1 − pselect

(
N−i
N

) − (1 − pselect)
(

i
N

)
i = 2, . . . , N − 1, j = i

0 otherwise

(6)

3.4 Kill Tournament

With a strategy of selecting a member for replacement by a “kill tournament” a number of
possibilities arise. As for the parent selection tournament, it is possible to pick a number
of parents at random and replace the worst, or to pick two parents at random and replace
the worse with some probability 0.5 ≤ d ≤ 1.0. Other authors have suggested tournaments
between the parents and their offspring to decide which should be in the next population
(see [13] for a good discussion). Assuming a random choice of participants in the kill
tournament, the probability pkill of deleting a member of the optimal class will again be a
function of i and is defined by analogous expressions to those for parent selection. For a
n–way tournament with the worst always replaced, all of the participants in the tournament
must be of the optimal class if one is to be replaced, i.e. pkill = (i/N)n. For binary kill
tournaments the probability of deleting a member of the optimal class is given by:

pkill =
i2

N2
+

2i(N − i)(1 − d)
N2

=
(2d − 1)i2

N2
+

2i(1 − d)
N

(7)

The elements of P are given by:

pij =




1 i ∈ {0, N}, j = i
pselect(1 − pkill) i = 1, . . . , N − 1, j = i + 1
pkill(1 − pselect) i = 1, . . . , N − 1, j = i − 1
1 − pselect(1 − pkill) − pkill (1 − pselect) i = 1, . . . , N − 1, j = i
0 otherwise

(8)



3.5 Elitist Kill Tournament

Again it is possible to implement an elitist version of this strategy, which can be modelled
by adding terms to (8) for the case when i is one, yielding:

pij =




1 i ∈ {0, N}, j = i
pselect i = 1, j = 2
1 − pselect i = 1, j = 1
pselect(1 − pkill) i = 2, . . . , N − 1, j = i + 1
pkill(1 − pselect) i = 2, . . . , N − 1, j = i − 1
1 − pselect(1 − pkill) − pkill (1 − pselect) i = 2, . . . , N − 1, j = i
0 otherwise

(9)

4 Approximate Models

For all the replacement strategies considered above the Markov models are exact,which is
confirmed by comparisons of predicted values for P t

ij against simulation results. However for
some strategies exact models are not possible, as it is necessary to estimate the probability
that the member about to be deleted belongs to the optimal class.

4.1 Replace Oldest

4.1.1 The Generic Form

For a FIFO strategy, it is necessary to estimate the probability pold, that the oldest member
of the population belongs to the optimal class. If the system is in one of the two absorbing
states (i ∈ {0, N}) then this probability is constant with values 0.0 and 1.0 respectively. If
the system is not in one of these states, then there will be stochastic fluctuations, but pold

will be some function of i . The generic form for the elements Pij is:

pij =




1 i ∈ {0, N}, j = i
pselect(1 − pold) i = 1, . . . , N − 1, j = i + 1
(1 − pselect)pold i = 1, . . . , N − 1, j = i − 1
1 − pselect(1 − pold) − pold (1 − pselect) i = 1, . . . , N − 1, j = i
0 otherwise

(10)

4.1.2 A Linear Approximation for pold

In order to model pold in an evolving population we consider the probability pclass(x), that
an individual of age x (0 ≤ x ≤ N − 1) belongs to the optimal class. The age of an
individual here is taken to mean the number of individuals inserted into the population
after it. The simplest model is to assume that pclass(x) is independent of x , in which case
the model is identical to that for Replace–Random (5). However simulation reveals that
this is not the case, which corresponds to the intuition that if i is increasing with time (i.e.
the selection/replacement mechanism is increasing the mean fitness of the population) then
newer members of the population are more likely to belong to the optimal class than older
members.

The model investigated in this paper makes the simple assumption that pclass(x) decreases
linearly with age x across the population, so it can be modelled as pclass(x) = a+ bx, where
a and b, are constants.



The value of a is pclass(0), which by definition is the probability that the member copied at
the last time step belonged to the class. Since the number in the class varies by at most one
per time-step, this can be approximated using the expressions derived above for pselect, i.e:

a = pselect(t − 1) ≈ pselect(t) (11)

Note that in all of these expressions the value of pselect is a function of i . Since there is
only one individual of each age, the expected number of members of the optimal class for
each age is equal to the probability pclass(x). If we sum over all ages between 0 and N–1,
the expected number of members in the population is the sum of the expected number for
each age i.e. the sum of pclass. Recognising that this sum must equal i gives:

i =
N−1∑
x=0

pclass(x)

= Na + b

N−1∑
x=0

x

= Npselect + bN(N − 1)/2

∴ b =
2(i − Npselect)

N(N − 1)
(12)

Substituting these values for a and b in the linear model gives the probability that the oldest
member of the population belongs to the optimal class as:

pclass(N − 1) = a + b(N − 1)
= pselect + 2(i − Npselect)/N
= 2i/N − pselect (13)

4.1.3 Applying the Approximation

Substituting this approximation for pold into (10) gives the transition matrix for this model
of a Replace–Oldest strategy as:

pij =




1 i ∈ {0, N}, j = i
pselect(1 − 2i/N + pselect) i = 1, . . . , N − 1, j = i + 1
(1 − pselect)(2i/N − pselect) i = 1, . . . , N − 1, j = i − 1
1 − 2p2

select + 2i(2pselect − 1)/N i = 1, . . . , N − 1, j = i
0 otherwise

(14)

Finally it should be noted that if a stochastic binary selection tournament (3) is used with
a with Replace–Oldest strategy, the probability of deleting a member of the optimal class
for 0 < i < N (13) reduces to:

P (deleting class member) = pold =
2i(1 − s)

N
+

(2s − 1)i2

N2
(15)

Comparing this with the equivalent probability for a stochastic binary kill tournament, (7),
shows that the two are the same provided s = d. This shows that provided the linear model
is accurate, when using a binary selection tournament with a probability 0.5 ≤ s ≤ 1.0 of
selecting the fitter, a Replace–Oldest policy is equivalent (at least in terms of takeover) to
a binary Kill Tournament where the worst is deleted with the same probability.



4.2 Elitist Replace Oldest

It is possible to implement elitist versions of a Replace–Oldest strategy. Unlike the previous
elitist strategies cases the Markov models cannot be exact since it is necessary to approxi-
mate the probability that the oldest member of the population belongs to the optimal class.
As noted in the previous section, the linear approximation for pclass used here results in a
probability of deleting a member of the optimal class which is the same as for binary kill
tournaments, so the elitist version of Replace–Oldest will have the same form as (9).

4.3 Conservative Selection

4.3.1 Generic form

This operator was developed in [14] for use in noisy and/or non-stationary environments,
and combines a FIFO replacement strategy with a modified deterministic binary tournament
selection operator. In this case one of the two members of each tournament is always the
oldest in the population, thus elitism is implicitly assured, at least under recombination and
selection. Thus in these models this is an elitist strategy.

If the oldest member is the optimal class, it will win the tournament, so the number in the
class can never decrease. The number will only increase if the oldest is out of the optimal
class (which has probability 1 − pold) and the other (randomly chosen) candidate in the
tournament belongs to the optimal class (which has probability i/N), which gives for the
generic form:

pij =




1 i ∈ {0, N}, j = i
(i/N) (1 − pold) i = 1, . . . , N − 1, j = i + 1
1 − (i/N) (1 − pold) i = 1, . . . , N − 1, j = i
0 otherwise

(16)

4.3.2 Using Linear Approximation for pold

Using the linear model pclass = a + bx and binary deterministic tournament selection gives
for a :

a ≈ pselect

= P (both in class) + P (oldest in, random not) + P (random in, oldest not)
= pold (i/N) + pold (1 − i/N) + (1 − pold) i/N

= pold +
i

N
(1 − pold) (17)

Again summing expectations, subsituting for a and rearranging gives:

i = Na + b

N−1∑
x=0

x

= Npold + i − ipold + bN(N − 1)/2

∴ b =
2pold(i − N)
N(N − 1)

(18)



This gives the probability that the oldest member is of the optimal class as:

pold = pclass(N − 1) = a + (N − 1)b

= pold +
i

N
(1 − pold) + (N − 1) × 2pold(i − N)

N(N − 1)
= i/(2N − i) (19)

Using these approximations the transition matrix (16) becomes:

pij =




1 i ∈ {0, N}, j = i

2i(N−i)
N(2N−i) i = 1, . . . , N − 1, j = i + 1

1 − 2i(N−i)
N(2N−i) i = 1, . . . , N − 1, j = i

0 otherwise

(20)

5 Results

The probability of a single individual completely taking over populations of size N = 50,
100 and 500 in t time steps (i.e. P t

1N ) was calculated using the models above. This will be
referred to as Ptakeover . In all cases a binary tournament (with s = 1 except where explicitly
stated) was used to select the individual to be copied. The Kill Tournaments deleted the
worst of two randomly chosen members (i.e. d = 1).

Under these circumstances the approximate models developed for the two Replace–Oldest
variants are the same as for Kill Tournaments, and so they were not calculated. For the
Replace–Oldest and Conservative strategies results were also obtained from simulations, in
order to test the validity of the approximate models. These are the mean of 1000 runs: that is
to say that the results presented for the probability of takeover at time t are the proportion
of runs in which the population already consisted of N members of the optimal class by
that time-step. Since the effects of crossover and mutation are ignored for the purposes of
this analysis, the representation of individuals becomes irrelevant, so the initial population
members are assigned random fitnesses over the range 0.0-1.0, with the constraints that
all fitnesses are unique (although this is not strictly necessary) and exactly one individual
belongs to the optimal class with fitness 1.0.

5.1 Quality of Linear Approximation

The linear approximation for the probability that the oldest member is of the optimal
class can be evaluated by comparing the modelled and simulated results for the two FIFO
variants and Conservative selection. In the case of FIFO, the approximation predicts that
the simulated results should match the modelled results for the appropriate variant of Kill
Tournament.

Figure 1 shows the relevant takeover curves for a population of size 100. For the Replace–
Oldest strategy, empirical results are shown where the initial copy of the fittest class is
placed either at the end of the population (v.1), or at random (v.2). The predicted curves
for Elitist Replace–Oldest are not shown as they are very close to the non-elitist version.

Examination of Figure 1 for the Conservative operator shows a close match between simu-
lated and predicted results, although the initial rise in Ptakeover is faster in practice than



Figure 1: P(takeover) vs. time - Empirical vs. Theoretical Results

in the model. The simulated results for elitist FIFO match the predictions accurately over
most of the range, but the initial rise is again slightly faster than the model, and in this
case the final part of the curve is flatter in practice than predicted.

For the non-elitist FIFO results, the Ptakeover curves are similar in practice to those predicted
up to a certain point, at which the simulation results stop improving, i.e. the approximation
overestimates the asymptotic value for Ptakeover .

In the simulations the population was usually initialised such that the instance of the op-
timal class was treated as the “youngest” member, mimicking the situation where a new
fittest point is discovered during the search. This makes no difference to the elitist FIFO
and Conservative Replacement. For non-elitist FIFO, this curve is shown in Figure 1 as v.1.
Initialising so that the fittest member was placed in a random position, changes the asymp-
totic value for Ptakeover from 91.6% to 51.1%. This is shown in Figure 1 as v.2 By contrast
the approximation reaches its maximum probability of 99.505% after 1330 evaluations.

The accuracy of the approximate linear model for pclass (and hence pold) for elitist FIFO
and Conservative Replacement suggests that the errors in the aproximation arise when the
number of members of the optimal class is small. This can be explained by considering the
derivatives of pselect with respect to i . For a deterministic binary tournament these are:

pselect = 2i/N − i2/N2, dpselect/di = 2/N − 2i/N2, d2pselect/di2 = −2/N2 (21)

The first derivative is always positive except in the limit i = N , since the probability of
selecting a member of the optimal class increases with their count. The negative sign of
the second derivative shows that the rate at which this changes decreases with i . Since the
value of i changes by at most one per time step, the approximation pselect(t−1) ≈ pselect(t)
is least accurate when the value of pselect is changing most rapidly, i.e. at low values of i .
By restricting the changes in i to positive values, the approximation becomes an inequality



(pselect(t− 1) ≤ pselect(t)) and is more accurate. This holds for elitist FIFO when i = 1 and
for all values of i with Conservative Replacement.

5.2 Comparison of Strategies

5.2.1 Probability of Takeover

Figure 2: P(takeover) vs. time - Comparison of Strategies

In Figure 2 takeover curves (empirical where appropriate) are shown for a population of
100. Also shown is Ptakeover for a Replace–Worst strategy in combination with stochastic
selection with s = 0.6 (for 0.6 < s < 1.0 the curves lie between the two lines plotted). The
Elitist versions for predicted Kill Tournament and empirical Replace–Oldest are not shown
for the sake of clarity, as they are both very similar to non-elitist Kill-Tournament results.

The results show that changing the replacement strategy has a marked effect on the takeover
time, even for the same parent selection mechanism. Replacing the worst member of the
population produces very fast takeover by copies of the fittest member of the population,
such that even if the parent selection pressure is drastically reduced ( i.e. s = 0.6) the
takeover still occurs faster than for the other replacement methods. Although it is not
shown in Figure 2 for the sake of clarity, the curve was plotted for Replace–Worst with no
parental selection pressure (i.e. s = 0.5). This showed very similar performance to Kill
Tournaments and the empirical results for elitist FIFO, and was markedly faster than elitist
Replace–Random.

As noted above, the simulations of FIFO with elitism exhibited behaviour which matched
closely that of deterministic binary Kill Tournaments, as predicted. Adding elitism to
the Kill Tournaments had very little effect. All of these strategies exhibit takeover of the
population by the optimal class, although less rapidly than Replace-Worst. Replacing the
oldest with the modified selection tournament (Conservative Replacement) also guarantees



Algorithm Pop. 50 Pop. 100 Pop. 500
50% 99% 50% 99% 50% 99%

Worst 121 225 280 490 1816 2871
Random 633 – 1493 – 10000 –
Random Elitist 420 775 990 1702 6609 10172
Kill Tournament 216 468 505 822 3337 4747
Kill Tourn. Elitist 216 357 504 783 3337 4719
Oldest (Simulation) 214 – 490 – 3102 –
Oldest Elitist (Sim.) 214 401 490 856 3101 5038
Conservative Model 307 529 721 1166 4821 7061

(Simulation) 306 517 693 902 4463 6560

Table 1: Time to Reach 50% and 99% Takeover Probability

takeover, although at a slower rate, and elitist Replace–Random is yet slower.

In contrast, with random initialisation, replacing the oldest or a random member without
elitism led to a loss of the optimal value in 49% of the runs performed, regardless of the
initial population size. This effect has been noted by other authors e.g. [11]. The position
in the population makes no difference to a Replace–Random strategy, and even with the
population initialised so that the fittest member was the “youngest”, 9% of the Replace–
Oldest runs lost the fittest member before it was copied and could multiply.

5.2.2 Speed of Takeover

In Table 1 the times taken for Ptakeover to reach 50% and 99% are given for both the models
and the simulations for population sizes of 50, 100 and 500.

The figures in Table 1 demonstrate that for the landmarks given, a Replace-Worst policy
will meet them in approximately half the time taken by most of the other strategies, and
roughly a third of the time taken by the Random–Elitist policy.

The Replace–Worst, Kill Tournament, Elitist and Conservative strategies always achieve
takeover, but the time-scales in which this happens are very different. As has been noted by
a number of authors e.g. [9, 6], the Replace–Worst strategy exhibits a much harder “push”
towards takeover, and does so very early on. This is likely to lead to premature convergence
since a smaller number of points on the search space will have been sampled, and is one
of the reasons for the common use of large populations with the GENITOR algorithm. A
related effect has also been noted in the context of self-adaptation, e.g. in [12] where it was
found that replacing the worst led to premature decrease in mutation rates and stagnation
of the search.

5.2.3 Rate of Approaching Convergence

It should be noted that the values of Ptakeover for the models are given to a finite degree of
precision. For parental selection with replacement, (as here) the values only approach 1.0
asymptotically. This is because when the final member of the non-optimal class is chosen for
replacement, there is a finite non-zero probability that both candidates in the tournament
will be the non-optimal member.



The rate at which Ptakeover approaches 1.0 can be explained by considering two factors which
affect the time taken to replace the last inferior member. The first factor is the expected
waiting time between selections of the individual for replacement. This is a single time step
if the worst is deleted, and exactly N time steps for FIFO and Conservative strategies. For
Replace–Random and Kill-Tournaments, the waiting time comes from a random distribution
with mean N (but with an infinitely long right tail). The second factor is the probability that
the member being replaced will be selected twice for the tournament. The latter probability
is 1/N for the conservative operator, which is larger than the value of 1/N2 for the others.

In short, once there is a single inferior individual left in the population, the probability that
it will still be present decreases for each generation (N time steps) by a factor of 1/N2N

for Replace–Worst, 1/N2 for FIFO, Kill-Tournaments and Replace–Random and 1/N for
Conservative. This is a further demonstration of the differing selection pressures exhibited
by the different strategies.

5.3 Discussion

The results demonstrate an important facet of search in SSGAs, namely that large variances
in performance can arise from the nature of the replacement algorithms.

For randomly initialised FIFO and Replace–Random strategies variations in performance
will arise from the fact that with 49% probability a sole instance of the fittest population
member will be lost from the population. This puts an increased emphasis on the ability of
the reproductive operators to rediscover good points. One attempt to tackle this problem
can be seen in the CHC algorithm, where the task of preserving fit individuals is left to a
specifically elitist algorithm [8]. The results presented here demonstrate that increasing the
population size has no effect on the likelihood that a new “fittest” individual will be lost
before it is copied.

Another source of variation is the rapid increase in the probability of takeover for Replace–
Worst for values of s greater than 0.5. This means that frequently only a relatively small
proportion of the search space will have been searched. The performance achieved will
therefore depend greatly on the (random) choices of initial population and bits mutated
during the early stages of the search.

In practice, the test runs with Replace–Worst showed Ptakeover > 0.99 after a number of
evaluations which was between 5 and 6 times the population size. This number will also
include a number of re-evaluations, and so it can readily be seen why users of GENITOR-like
algorithms often use large population sizes, prevention of incest or prohibition of duplicate
copies in order to preserve diversity and delay takeover.

By contrast the conservative strategy displays guaranteed takeover (in the absence of mu-
tation) by the best individual discovered during the search, whilst showing a much later
“push” than either Replace–Worst or FIFO. The implicit elitism effect will reduce a source
of variance in performance due to loss of good solutions, and the delayed takeover means
that a larger proportion of the search space will be sampled before the algorithm converges.
This will reduce variance arising from the initial choice of population.



6 Conclusions

Selection is a vital force in any evolutionary algorithm, and an understanding of the nature of
its effects is necessary if effective algorithms are to be developed. For Generational Genetic
Algorithms selection has been well studied, and methods developed which reduce much of
the noise inherent in the stochastic algorithm e.g. Baker’s SUS [3]. Unfortunately the very
nature of Steady State Genetic Algorithms precludes the use of such methods and those
available are inherently more noisy. In this paper five selection strategies have been studied
using a Markov Chain analysis of the takeover probability vs. time, in order to understand
the different sources of the noise.

For Replace–Oldest and Replace–Random strategies, the variations in performance arise
in part from losing the only copy of the current best in the population, which happens
approximately 50% of the time. The extent to which this will affect the quality of the
solutions obtained in a “real” Genetic Algorithm will depend in part on the ability of the
reproductive operators to rediscover the lost class. This will in turn depend on the match
between the search landscape and the probability distribution functions induced by the
action of the reproductive operators on the population.

A common way of avoiding the problem of losing the best member of the population is to
incorporate elitism - usually in the form of a Replace–Worst replacement strategy. As has
been documented by other authors, this causes an increased selection pressure which can
lead to premature convergence. The results obtained here show that for a selection only
algorithm, takeover will occur after a number of evaluations which is only 5-6 times the
original population size.

By comparison the fifth strategy investigated - “conservative” selection - suffers from neither
of these problems. It exhibits takeover by the optimal class, but over a longer timescale,
and so is likely to sample a larger proportion of the search space before convergence.

Development of the transition matrices for the Markov model used involved a linear ap-
proximation for the probability that the oldest member of a population belongs to the op-
timal class. The results obtained show that this was surprisingly accurate for Conservative
replacement and Replace–Oldest with elitism, although it over estimated the asymptotic
probability of takeover for the non–elitist version.

One consequence is that given this approximation, when using binary tournament selection,
a Replace–Oldest strategy is equivalent to replacement by Kill Tournament provided the
parameters of the two tournaments are the same.
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