Replacement Strategies in Steady State Genetic
Algorithms: Dynamic Environments
J.E Smith and F. Vavak
Intelligent Computer System Centre
University of the West of England

Bristol England BS16 1QY
jim@ics.uwe.ac.uk

16th Feb. 1999

Abstract

Recent years have seen increasing numbers of applications of Evolu-
tionary Algorithms to non-stationary environments such as on-line process
control. Studies have indicated that Genetic Algorithms using “Steady
State” models demonstrate a greater ability to track moving optima than
those using “Generational” models, however implementing the former re-
quires an additional choice of which members of the current population
should be replaced by new offspring.

In this paper a number of selection and replacement strategies are com-
pared for use in Steady State Genetic Algorithms working as function op-
timisers in dynamic environments. In addition to an algorithm with fixed
mutation rates, the strategies are also compared in algorithms employ-
ing Cobb’s Hypermutation method for tracking environmental changes.
On-line and off-line metrics are used for comparison, which correspond to
different types of real-world applications.

In both cases it is shown that algorithms employing some kind of
elitism outperform those that do not, which is related to previous studies

on stationary environments. An investigation is made of various methods

of implementing elitism, including an implicit method, “conservative” se-
lection. It is shown that the latter, in addition to being computationally
simpler, produces significantly better results on the problems used, and
reasons are given for this behaviour.

Keywords: Selection, Replacement, Dynamic Environments, Genetic

Algorithms

1 Introduction

The majority of the Genetic Algorithm (GA) work to date has been in problem
domains in which the fitness landscape is time-invariant. However, it is not
unusual for a real-world system to exist in an environment that changes over
the course of time. The optimisation algorithm then has to be designed so that
it can compensate for the changing environment by monitoring its performance
and altering, accordingly, some aspects of the optimisation mechanism to achieve
optimal or near-optimal performance. An objective of the resulting adaptation
is not to find a single optimum, but rather to select a sequence of values over
time that minimise or maximise the time-average of environmental evaluations.
In this sense the optimisation algorithm “tracks” the environmental optimum
as it changes with time.

The distributed nature of the genetic search provides a natural source of
power for exploring in changing environments. As long as sufficient diversity
remains in the population, the GA can respond to a changing search landscape
by reallocating future trials. However, the tendency of GAs to converge rapidly
results in the GA population becoming homogenous, which reduces the ability of
the GA to identify regions of the search space that might become more attractive

as the environment changes. It such cases it is necessary to complement the

standard GA with a mechanism for maintaining a healthy exploration of the
search space.

The results in this paper concentrate on the case where the rate of change
of the environment is sufficiently slow for the algorithms to converge between
changes. Algorithms are compared by running them for a fixed period and
calculating two time-averaged metrics, which correspond to different types of
real-world applications.

The first of these is the “on-line” measure [DeJong 1975], and is simply
the average of all calls to the evaluation function during the run of the algo-
rithm. This measure relates to applications where it is desirable to maintain
consistently good solutions e.g. on-line process control.

The second metric considered is the “off-line” performance, and is the time-
averaged value of the best performing member of the current population. This
was resampled after a number of calls to the evaluation function equal to the size
of the population. In practice each member of the population was re-evaluated
in order to measure this, but the fitnesses were not used to overwrite those
stored in the individuals, since this would affect some of the strategies tested.

Unlike the on-line metric, off-line performance is unaffected by the occa-
sional generation of individuals with very low fitness, and so is more suitable for
problems where the testing of such individuals is not penalised e.g. parameter

optimisation using a changing design model.

1.1 Previous Work
There are two basic modification strategies for the GA which enable it to evolve

continually an optimal solution to a problem while the environment changes

with time.

The first strategy expands the memory of the GA in order to build up a
repertoire of ready responses for various environmental conditions. The main
examples of this approach are the GA with Diploid Representation [Goldberg
& Smith 1987] and the Structured GA [Dasgupta & McGregor 1992]. Goldberg
and Smith examine the use of diploid representation and dominance operators
to improve performance of the genetic algorithm in an oscillating environment,
while Dasgupta and McGregor present a modified genetic algorithm with a
multi-layered structure of the chromosome which constitutes a “long term dis-
tributed memory”.

The second modification strategy effectively increases diversity in the popu-
lation directly (i.e. without extending the GA memory) in order to compensate
for changes encountered in the environment. Examples of this strategy involve
the GA with the Hypermutation Operator [Cobb 1990] [Cobb & Grefenstette
1993], the Random Immigrants GA [Grefenstette 1992], the GA with Variable
Local Search (VLS) Operator [Vavak et. al. 1996, 1997] and the Thermo-
dynamic GA [Mori et. al. 1996]. The Hypermutation operator temporarily
increases the mutation rate to a high value, called the Hypermutation rate,
during periods when the time-averaged best performance of the GA worsens.
The Random Immigrants mechanism replaces a fraction of a standard GA’s
population by randomly generated individuals in each generation in order to
maintain a continuous level of exploration of the search space. The VLS op-
erator uses a similar triggering mechanism to Hypermutation, and it enables
local search around the location of the population members in the search space
before the environmental change. The range of the search is variable and can be

gradually extended to match degree of the environmental change. The thermo-

dynamic GA can maintain a given level of diversity in population by evaluating
the entropy and free energy of the GA’s population. The free energy function
is effectively used to control selection pressure during the process of creating a
new population.

Two different models of the GA can be used for an optimisation task. The
Generational Genetic Algorithm (GGA) creates new offspring from the mem-
bers of the current population, using the genetic operators (recombination and
mutation) and places these individuals in a new population. When the same
number of individuals have been created as there are members of the current
population, the new population replaces the current, and the cycle begins again.
[Goldberg 1989], [De Jong 1992]. The Steady State Genetic Algorithm (SSGA)
[Whitley & Kauth 1988] differs from the generational model in that there is
typically one single new member inserted into the new population at any one
time. A replacement/deletion strategy then defines which member of the pop-
ulation will be replaced by the new offspring (e.g. the worst, oldest or random
individual).

In [Vavak & Fogarty 1996a, 1996b] the suitability of GGAs and SSGAs
was studied for use in dynamic environments. Results showed that the SSGA
with a “delete-oldest” replacement strategy can adapt to environmental changes
with reduced degradation of off-line and particularly on-line performance. The
better performance of the SSGA can be explained by the fact that an offspring
is immediately used as a part of the mating pool, making a shift towards the
optimal solution possible in a relatively early phase of the optimization process.
Selection of the steady state model for use in nonstationary environments is

therefore advantageous, particularly for on-line applications.

1.2 Replacement Schemes in Steady State GA’s

Selection is a vital force in any evolutionary algorithm, and an understanding of
the nature of its effects is necessary if effective algorithms are to be developed.
For GGAs selection has been well studied, and methods developed which reduce
much of the noise inherent in the stochastic algorithm e.g. SUS [Baker 1987].
Unfortunately the very nature of SSGAs precludes the use of such methods and
those available are inherently more noisy.

In [Smith & Vavak 1998] several selection strategies were studied using a
Markov Chain analysis of the takeover probability vs. time, in order to under-
stand the different sources of the noise.

For delete-oldest and delete-random strategies, the variations in performance
arise in part from losing the only copy of the current best in the population,
which happened approximately 50% of the time for delete random, and 10%
of the time for delete-oldest. Performance comparisons on static landscapes
demonstrated that the extent to which this affects the quality of the solutions
obtained depends on the ability of the reproductive operators to rediscover the
lost points.In [Chakraborty 1995] other strategies e.g deletion by exponential
ranking were also shown to lose the optimum.

A common way of avoiding this problem is to incorporate elitism - often in
the form of a delete-worst strategy. As has been documented by other authors,
e.g. [Chakraborty 1995, Chakraborty et. al. 1996], the latter was shown to
exhibit increased selection pressure, leading to premature convergence and poor
performance on higher dimensional problems.

Two other ways of achieving elitism are also considered in this paper. The

first is the common method of explicitly checking whether the member about to

be deleted is [one of] the current best in the population, and if so not replacing
it. In this case the member can either be preserved with its original fitness value,
or be re-evaluated and the new fitness value saved. The second, “conservative
selection” is an implicit mechanism introduced in [Vavak 1997]. Here each parent
is selected by a binary tournament between a randomly selected member of the
population, and the member about to be replaced. If the latter is the current
best, then it will win both tournaments, so recombination will have no effect,
and (apart from the effects of mutation), elitism is attained. In [Smith & Vavak
1998] this was shown to guarantee takeover by the optimal class, but at a much
slower rate than delete-worst or elitist delete-oldest.

In total ten selection strategies will be evaluated in this paper. Deletion
of the oldest, worst and random members is done in conjunction with both
standard (both members randomly selected) and conservative (member to be
replaced plus one random member) tournaments. Additionally a delete oldest
policy is tested with four variants of elitism. These are:

1. Oldest is not replaced if it is one of the current best, but is re-evaluated.

2. Oldest is not replaced if it is the sole copy of the current best, and is
re-evaluated.

3. As 1. but without re-evaluation (original fitness value kept).

4. As 2. but without re-evaluation (original fitness value kept).
2 The First Test Problem: Cobb’s Landscape

The two dimensional landscape used to compare the selection methods which
are being discussed in this paper is formed by 14 sinusoidally shaped hills [the

2D landscape was kindly provided by Dr. Helen G. Cobb - Navy Center for

Applied Research in AI, Naval Research Laboratory, Washington]. Each of two
dimensions is represented by 16 bits (i.e. total search space of 256 points) and
ranges from -32.767 to 32.768 (Figure 1). The maximum fitness has a constant

value 60 and the next highest peak has a value of 30.

fitness

Figure 1: The 2-D Fitness Landscape

Environmental changes are simulated by moving the maximum peak in a ran-
dom direction from its initial position. The starting position of the maximum
peak is also generated randomly. To obtain the required degree of environmen-
tal change, one of the coordinates (selected at random) of the maximum peak
initial position is shifted in positive or negative direction (selected at random)
by a required value of the environmental change “EC”. A random angle 0-45
degrees is then generated and the other coordinate is evaluated using the tan-
gent function, the direction of change being obtained by selecting one of the
four quadrants at random.

For the purposes of this investigation the algorithms were started with ran-

domly initialised populations, and allowed to run for 20,000 evaluations, with
a single environmental change occurring halfway through this period. For this
paper, the various selection methods and replacement strategies were tested
across the range of possible magnitudes of environment change, EC = 1 to 20.
For each degree of environmental change, 10 random starting positions of the
maximum peak were generated and the GA was then initiated 10 times with
different random generator seeds for each starting position, so the results pre-
sented are the mean of 100 runs.This was done for algorithms with and without

Hypermutation.

2.1 Experimental Details for Cobb’s function

The Steady State GA which was used for the tests implemented uniform crossover
and tournament selection. The tournament size is 2 and the better chromosome
always wins the tournament. After initial experimentation to determine suit-
able values, the following parameter settings were used: population size 120, bit
mutation probability 0.001, crossover probability 1.0. The Gray coded chromo-
somes are 32 bits long (16 bits per dimension) and each chromosome represents
two integer numbers 0-65535. To transform these integer values into rational
variables, i.e. search space coordinates ranging from —32.767 to 32.768, the fol-
lowing mapping is used: rational variable = (32.768 — integer_variable/1000).

The Hypermutation operator was implemented as it is currently the most
commonly used method for tracking. It is triggered if the running average of
the best performing members of the population over an equivalent of three gen-
erations of the generational GA (i.e. over a number of evaluations equal to
three times the population size) drops by an amount which exceeds a prede-

fined threshold. In this case a value of threshold TH = 3 was used. The best

performing member of the population is evaluated after an equivalent of one
generation of the generational GA. Once it has been triggered, the Hypermu-
tation rate (0.2) is switched back to the “baseline” mutation rate (0.001) as
soon as the best performing member of the population reaches 80% of its value
before the environmental change occurred. The setting of the parameters (80%
and Hypermutation rate 0.2) was found to provide good results for the given
problem. A prolonged period of high mutation for values higher than 80% has
a negative effect on-line performance due to diversity being introduced into the
population despite the correct region of the search space having already been
identified. Similarly to the choice of the threshold level described previously,

the values of both parameters were selected empirically.

2.2 Results with Fixed mutation Rates

Offline Online

60
— oldest

il +—FConservative
— Elitistv2

40
BB Elitist vd.

30 @ O Random

Worst

2 2
0 5 10 15 0 0) 015 0

Figure 2: Performance with Fixed Mutation Rates

The mean off-line and on-line performance vs. size of Environmental Change

(EC) are shown in Figure 2. Some curves are not shown for reasons of clar-

10

ity where they are not statistically significantly different from another (using
Student’s t-test at the 5% level). These are:

Conservative Selection - delete-random performs worse, but not significantly
so than delete oldest for both metrics, so the latter only is shown.

Delete-Worst - using the conservative policy makes no significant difference
and is not shown.

The elitist policies - whether re-evaluating or not, it makes no difference
whether the algorithm checks for duplicates before keeping an individual which
has fitness equal to the best. The versions where only the sole copy is preserved
are shown.

As can be seen the performance drops for both metrics as the size of the
environmental change is increased, but the extent to which this occurs is highly
dependant on the replacement strategy. For all but delete-oldest or random
(which show poor performance throughout the range) there is a steady decline
in performance as EC increases. For the more successful strategies there is a
dip in performance at EC =5, which is an artifact of the coding. Analysis
of the results using Analysis of Variance (ANOVA) confirmed the statistical
significance of the patterns visible from the graphs, namely:

1. Replacement strategies which can lose the current best value (delete
oldest and random) perform poorly according to both metrics. This result on
non-stationary landscapes fits in with the theoretical results in [Smith & Vavak,
1998]. The rediscovery of “lost” points of high fitness is liable to be harder on
non-stationary problems since with a population converged around the previous
optimum, mutation is more likely to be the cause of discovery of new good

individuals than crossover. Even for small environmental changes, discovering

11

points close to the new optimum may require several simultaneous mutations,
which will only happen with very low probability, hence the importance of not
losing them demonstrated by these results

2. Replacement policies which keep the current best individuals but do not
re-evaluate them (delete worst, the 3rd and 4th variants of elitism) perform
well for EC = 1, but the performance drops off almost linearly as the size of
the change is increased, up to the radius of the optimum (EC 5). Above
this the performance curves are almost flat, at a value just above the fitness of
the second highest peak. This shows that the algorithms are able to track the
problem occasionally but not reliably.

The reason for this is that once the optimum has moved, several members
of the population will have artificially high fitness values attached to them, and
so will be selected to be parents a disproportionate number of times, without
being replaced. Recombination involving these individuals will tend to create
offspring which lie within the area of the original peak position. The probability
that these offspring will lie on the slopes of the new optimum depends on the
degree of overlap between the two regions, which is very low for EC' > 5 and
zero for EC' = 10. If there is significant overlap the population can move to the
new position by a process of simple hill climbing. However if there is little or no
overlap, (EC > 5) the new position of the optimum can only be discovered by
mutation, hence the constant low rates of discovery and correspondingly poor
performance.

3. The strategies which combine (at least implicit) elitism with re-evaluation
of the fitness of individuals are far more successful than the others at tracking

the optimum. The conservative strategy (with deletion of either the oldest or

12

a random member of the population) performs significantly better than the
elitism with re-evaluation according to both metrics, especially for the on-line
performance.

Detailed examination reveals this is partly because in the first search phase,
the elitist algorithms with standard tournaments converged to sub-optima more
frequently than the conservative strategies. In [Smith & Vavak 1998] it was
shown that the conservative policy exhibits less selection pressure and slower
takeover times than a standard tournament. This translates to a lesser tendency
for premature convergence, as is demonstrated by the improved off-line results.

There is an additional benefit arising from the reduced selection pressure.
The longer retention of diversity gives more scope for recombination to act as
a search operator once the optimum has moved. By comparison the tightly
converged populations resulting from the standard tournament have to wait for
mutation to create diversity, hence the exaggerated differences in on-line results.

The performance falls fairly smoothly for EC values up 12, beyond which it
remains roughly constant. Inspection of the off-line performance shows that the
lowest values for the conservative strategy are around 45, which is what would
be expected if the population initially found the optimum, then after the change

converged onto the highest of the neighbouring hills.

2.3 Results with Hypermutation

Figure 3 shows the results using Hypermutation for off-line and on-line perfor-
mance. Again the delete-oldest and delete-random strategies performed very
poorly and so these results are not shown. Also not shown for reasons of clarity
are the delete-worst-conservative policies and elitism with multiple copies kept,

as discussed above. However the random-conservative results are shown as they

13

Offline Online

+—+Conservative
— Elitist v

" LS N ST IN B W Elitist v4

B \l .
a4 3 | 00 Random-Cons.
30 Rl Worst
0 2
0 5 10 15 0 0 5 10 15 2

Figure 3: Performance with HyperMutation

are significantly different (worse) from oldest-conservative.

The patterns of relative performance are the same as with fixed mutation
rates, for the same reasons, and most (but not all) strategies benefit from the
introduction of Hyper Mutation.

The performance curves for delete-worst and elitism without re-evaluation
are very similar to the previous set. This is because individuals occupying the
previous peak never get re-evaluated, and so Hyper Mutation is never triggered.

For the two conservative variants, and elitism with re-evaluation, the algo-
rithms are able to track large changes much better than with the fixed rates.
This is because the once the higher rate of mutation is triggered in Hyper-
Mutation, there is a greater probability of generating points at large Hamming
distances from the previous optimum position. Again the conservative strategies
perform better than elitism according to both metrics.

There is now a significant difference (at the 1% confidence level) between

14

replacing the oldest or random members. For both strategies the expected
lifetime of a single individual is exactly popsize evaluations. However whilst this
is exact for delete-oldest, for random deletion there is a significant probability of
an individual remaining in the population for much longer. With the random-
conservative strategy, a member has two opportunities to be selected to be a
parent for every one to be replaced, and if it has an artificially high fitness, it
is likely to win tournaments. Thus out of date information about the fitness
of the previous optimal position will be propagated for longer with random
replacement than with systematic replacement of the oldest. Not only does this
mean that offspring may be created around the previous optimum position for
longer, but there was also a longer delay observed before Hyper Mutation was

triggered with random deletion.
3 Time Varying Knapsack Problem

This problem is a variant of that described in [Mori et. al. 1996]. A number
of items each have a value (¢;) and a weight (a;) associated with them, and the
problem is to select a subset that maximises the sum of the elements’ values
while meeting a total weight constraint. Given a fixed number of elements N,
each subset is represented by a binary string of length N, where a 1 in a position
1, indicates that the corresponding item is included in the subset. For such a

string z the fitness is given by:

(boum = (D1 ai®z: () —b(1))) x 001 T, as(wi(t)
where the term bgy,, in the penalty clause for solutions which transgress the

15

constraint is the sum of all the items’ weight.

3.1 Experimental Details- Alternating Knapsack Prob-
lem

In the particular case investigated here, a 32 bit problem was considered (N =
32), the values a;, and weights ¢; attached to the items remained constant, and
were generated using a uniform random distribution over the interval [0,100.0].
The weight constraint b alternated between 50%, 30% and 80% of bsym, changing
once every 20000 evaluations.

After considerable experimentation to establish sets of parameter values,
the experiments were run with a population of 100 using binary deterministic
tournament selection, and uniform crossover at a rate of 100%. Fixed mutation
rates of 0.005, 0.001, 0.01 and 0.05 were used. Each algorithm was tested for

200 runs of 60,000 evaluations each.

3.2 Results - Alternating Knapsack Problem

The on-line and off-line results obtained are presented in Tables 1 and 2 . Using
the values for each run performed, an Analysis of Variance test was done, which
confirmed that there is a statistically significant difference (at the 0.1% level) be-
tween the results for the different strategies. For each mutation rate, the method
of Least Significant Difference was used to perform post-hoc comparisons be-
tween strategies to see if there was a significant difference between results . The
subgroups identified by these tests are indicated in the tables below by stars,
e.g. in the first line of Table 1 the subgroups are, in ascending order of fitness:
{worst},{random*},{oldest**} {elite v.2, elite v4***} {conservative****}.

For all but the lowest mutation rate, the on-line performance of the differ-

ent strategies is in the order worst < random/elite v4 < oldest < elite v.2 <

16

Mutation Replacement Strategy

Rate Oldest | Random | Cons. Worst | Elite v.2 | Elite v.4

0.001 1010.19 | 982.27 | 1065.93 | 631.81 | 1018.50 | 1018.29
*k * ok ok *okok *okok

0.005 1054.89 | 1036.57 | 1070.30 | 620.25 | 1060.46 | 1040.36
*k * ok ok *okok *

0.01 1011.17 | 989.74 | 1014.26 | 599.79 | 1011.62 989.74
*k * *ok *ok *

0.05 719.66 715.79 728.74 | 487.87 | 726.38 709.21
*k * Hok gk Hokok *

Table 1: Online Performance: Alternating Knapsack Problem

Mutation Replacement Strategy

Rate Oldest | Random | Cons. Worst | Elite v.2 | Elite v.4

0.001 1029.20 | 1012.73 | 1039.05 | 639.68 | 1039.48 | 1062.34
)k 3 kskskoskok kkok kskoskok

0.005 1128.44 | 1118.55 | 1153.05 | 648.15 | 1136.61 | 1144.24
)k 3 kskskoskok kkok kskoskok

0.01 1152.72 | 1143.07 | 1162.15 | 649.85 | 1156.33 | 1164.40
kk 3 kokok %k kokok

0.05 1072.96 | 1070.88 | 1082.26 | 651.38 | 1104.07 | 1118.54
3 3 %k kokok kokoskok

Table 2: Offline Performance: Alternating Knapsack Problem

conservative.

The poor performance of the delete-worst strategy results from its being
totally unable to track changes of environment in this problem. Because the
populations converge around the first optimum, new individuals created after
the environmental change appear to be less fit, and are quickly deleted. Thus un-
less an individual is created sufficiently close to the new optimum to be retained,

the population is doomed to remain in its previous location (see discussion of

Figure 4 later).

As noted above, both delete-oldest and delete-random policies suffer from

losing the current best in the population, and this is more noticeable for delete-

random.

Again the elitist policy with re-evaluation outperforms the one without, as

17

solutions around the previous optimum are not kept in the population.

Table 1 shows the mean on-line values for 200 runs, the standard deviations
for a rate of 0.005 were (in ascending order): worst (15.34), elite v2 (26.86),
conservative (29.06), random (29.72), oldest (30.59), elite v4. (32.14). The very
low variance for delete-worst confirms that this strategy gets trapped in one
position. As can be seen the strategies which combine some form of elitism
with re-evaluation (elite v.2 and conservative) display the best mean values and
smaller variances than those strategies which can lose the current best value
(random and oldest).

The elitist strategy without re-evaluation showed poor mean performance
and the highest variance. Such a strategy will preserve in the population at
least one individual from the pre-change peak position, with an artificially high
fitness. When such an individual is selected for crossover with a parent from the
vicinity of the new optimum, the resultant offspring are likely to lie between the
two positions.The fitness of such offspring is hard to predict, and as seen can
display a high variance, depending as it does on such things as the random choice
of bits to cross-over, as well as the underlying shape of the fitness landscape.

When the off-line performance is considered,(Table 2) the patterns of mean
performance is similar, except that the Elite v.4 policy now shows the second
best performance. The patterns for the variance in performance are, however,
exactly the same as for on-line. Since the values quoted here are the “true” off-
line figures, rather than those based on the remembered fitness of individuals,
these results demonstrate that the elitist strategy without re-evaluation is able
to track the optimum with at least some of the population, but the high variance

suggests that the preservation of individuals with artificially high fitness makes

18

this unpredictable.

1150
e |
1050
@®—® Random
—+——+ Conservative
950
Worst
— — Elitist v2.
B — W Elitist v4.
850
=
750 =
19500 21500 23500

Figure 4: Transition Behaviour: Alternating Knapsack Problem

Figure 4 plots the running mean of the last 100 evaluations vs. time around
the first environmental change, averaged over 200 runs for a mutation rate of
0.005. As can be seen this demonstrates some of the points made above:

The delete-worst strategy reaches the highest mean values initially, but is
completely unable to track the change of the optima. Viewed over a longer time
scale, the running mean performance deteriorates for the first two changes then
remains constant at a very low level.

The two elitist strategies behave almost identically before the change, but
the version without re-evaluation consistently produces less fit individuals after
the change, as a result of the population being “dragged back” to the previous
peak position.

Delete-random strategies react slower than delete-oldest, but reach similar

fitness values. The values reached are less than both elitist versions before the

19

change, and than the re-evaluating elitist strategy after, as a result of the optima
being lost and not rediscovered in some runs.
The conservative strategy exhibits slower takeover of the new optimum than

delete-oldest, but reaches higher values, both before and after the change.

4 Conclusions

The ability to locate and track a moving optimum in a dynamic environment
with a genetic algorithm requires two features, namely the ability to maintain
(or create) diversity within the population, and the ability to exploit individuals
of high fitness once discovered. As documented here, much work has been done
on preserving or creating diversity, and lately it has been shown that the steady
state model is more suited to dynamic environments than the generational one.
In this paper attention was focused on the role of the selection and replacement
policies. Several replacement strategies were tested in the context of a steady
state algorithm using binary tournament selection

The results obtained clearly confirmed that for some algorithms an extra
method for creating diversity (in this case Hypermutation) can improve tracking
performance, although not all of the strategies tested were able to take advantage
of this. However two factors are immediately apparent from these results which
hold with or without Hypermutation.

Exploitation - strategies such as delete-oldest or delete-random, which can
lose the sole copy of the current population best, performed poorly. This
matched results on static landscapes noted above. Analysis of the takeover
times for a single newly created best individual showed that these policies will

actually lose the individual 50% of the time. Therefore some form of elitism is

20

desirable.

Re-evaluation - in potentially dynamic environments it is essential that
the fitness of points on the landscape is continuously and systematically re-
evaluated. Failure to do so leads to the population forever being “dragged
back” to the original peak position. Although this was obvious for the 3rd
and 4th variants of elitism tested, it also applies to the much more common
delete-worst policy, since if the population had converged close to the opti-
mum prior to the change, the “worst” members which get deleted may be the
only ones with a true fitness value attached. The importance of systematic re-
evaluation was clear from the difference between conservative-delete-oldest and
conservative-delete-random. The former always produced better performance
than the latter, very significantly so when Hyper mutation was present.

Of all the policies tested here, the conservative-delete-oldest is the best suited
to the points noted above, and produced the best performance. The improve-
ment over the elitist policy with re-evaluation is believed to result not merely
from the reduced selection pressure, but from the fact that the exploitation of
good individuals is not limited to preserving the very best, but will also apply
(with decreasing probability) to the second best member and so on. Since the
implicit elitism still allows changes via mutation, there is a higher probability
of local search around individuals of high fitness, whilst worse members are less
likely to win tournaments and so they are replaced with offspring created by
recombination. The result is that even without Hypermutation the algorithm

was able to track environmental changes of modest size.

21

5 References

J.E. BAKER Reducing Bias and Inefficiency in the Selection Algorithm. In
Proceedings of the 2nd International Conference on Genetic Algorithms , (J.J.
GREFENSTETTE ed.) (1987), ppl4-21. Lawrence Elbraum Associates.

U.K. CHAKRABORTY An analysis of selection in generational and steady
state genetic algorithms. In Proceedings of the National Conference on Molec-
ular Electronics (1995), Nerist A.P. (India)

U.K. CHAKRABORTY, K. DEB, M. CHAKRABORTY Analysis of Se-
lection Algorithms: A Markov Chain Approach. FEwvolutionary Computation,
4(2)(1996):133-167.

H. COBB An Investigation into the Use of Hypermutation as an Adaptive
Operator in a Genetic Algorithm Having Continuous, Time-Dependent Nonsta-
tionary Environments. Naval Research Laboratory Memorandum Report 6760,
1990.

H. COBB, J. GREFENSTETTE Genetic Algorithms for Tracking Changing
Environments. In Proceedings of the 5th International Conference on Genetic
Algorithms (S. FORREST ed.) (1993), pp523-530. Morgan Kaufmann.

D. DASGUPTA, D. MCGREGOR sGA: A Structured Genetic Algorithm.
Technical Report IKBS-8-92, University of Strathclyde, 1992.

K. A. DE JONG An Analysis of the Behaviour of a Class of Genetic Adaptive
Systems. PhD Thesis, University of Michigan, 1975.

K.A. DE JONG Are Genetic Algorithms Function Optimizers? In Parallel
Problem Solving From Nature II (R. MAENNER, B. MANDERICK eds.),(1992)
pp- 3-13. Elsevier Science.

D.E. GOLDBERG, R.E. SMITH Nonstationary Function Optimisation Us-

22

ing Genetic Algorithm with Dominance and Diploidy. In Proceedings of the
2nd International Conference on Genetic Algorithms, (J. GREFENSTETTE
ed),(1987) pp 59-68. Lawrence Elbraum Associates.

D.E. GOLDBERG Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley Publishing Company Inc., 1989

J.J. GREFENSTETTE Genetic Algorithms for Changing Environments. In
Parallel Problem Solving From Nature II (R. MAENNER and B. MANDERICK
eds.), (1992) pp. 137-144, Elsevier Science.

N. MORI, H. KITA, Y. NISHIKAWA Adaptation to a Changing Environ-
ment by Means of the Thermodynamical Genetic Algorithm. In Parallel Prob-
lem Solving From Nature IV (H. VOIGT, W. EBELING, I. RECHENBERG,
H-P. SCHWEFEL eds.)(1996) pp513-522. Springer Verlag.

J.E. SMITH, F. VAVAK Replacement Strategies in Steady State Genetic
Algorithms: Static Environments. In FOGA V: Proceedings of the Foundation
of Genetic Algorithms Workshop(BANZHAF, REEVES eds), 1998. Morgan
Kauffman

F. VAVAK. Genetic Algorithm Based Self-Adaptive Techniques for Direct
Load Balancing in Nonstationary Environments. PhD thesis, University of the
West of England, 1998.

F. VAVAK, T.C. FOGARTY. Comparison of Steady State and Generational
Genetic Algorithms for Use in Nonstationary Environments. In Proceedings of
the 3rd IEEE International Conference on Evolutionary Computation, (1996)
pp 192-195. IEEE Publishing,.

F. VAVAK, T.C. FOGARTY A Comparative Study of Steady State and

Generational Genetic Algorithms for Use in Nonstationary Environments. In

23

Evolutionary Computing, (T.C.FOGARTY ed.) (1996), pp. 297-304. Springer
Verlag

F. VAVAK, T.C FOGARTY, K. JUKES A Genetic Algorithm with Variable
Range of Local Search for Tracking Changing Environments. InParallel Problem
Solving From Nature IV (H. VOIGT, W. EBELING, I. RECHENBERG, H-P.
SCHWEFEL eds.), (1996) pp. 376-385. Springer Verlag.

F. VAVAK, K.JUKES, T.C. FOGARTY Adaptive Combustion Balancing
in Multiple Burner Boiler Using a Genetic Algorithm with Variable Range of
Local Search. In Proceedings of the 7th International Conference on Genetic
Algorithms, (T. BAECK ed.),(1997), pp. 719-726., Morgan Kaufmann.

D. WHITLEY, J. KAUTH GENITOR: A different Genetic Algorithm. Pre-
sented at Proceedings of the Rocky Mountain Conference on Artificial Intelli-

gence, (1988) pp 118-130.

24

