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Abstract
Catchment-scale transpiration is commonly determined by the use of sap-flow sensors, and its quantification, which is criti-
cal for water and forest management, relies crucially on the total catchment’s sapwood area (As). Species-specific allometric 
relationships between the trees As and the trees diameter at breast height (DBH) are widely used for determining stand or 
catchment As. However, substantial differences between studies challenge the robustness of these relationships between 
sites displaying various topographical and environmental characteristics. Our objectives for this study are to compare the 
parameters of these relationships between species of the Quercus genus from different sites across the globe and to test the 
role of topographical factors on the As-DBH relationship in Quercus petraea. Using 145 trees sampled within a 0.455 km2 
catchment, we found that topography (slope, flow accumulation, aspect, curvature, and topographic wetness index) does 
not modulate the As-DBH relationship in Q. petraea, within our catchment. We compared our curve parameters with those 
from 16 studies on oak trees and found that the As-DBH relationship is not only species-specific, but depends on the site’s 
conditions. The use of species-specific parameters from other sites may lead to more than 100% difference in the calculation 
of As, and therefore in forest transpiration. In the light of these results, we recommend building site- and species-specific 
As-DBH relationships for determining stand or catchment transpiration, using a minimum of nine, randomly sampled trees, 
and different methods and azimuthal directions for determining sapwood depth.
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Introduction

The estimation of catchment-scale transpiration remains 
critical for forest and water management. To date, a widely 
applied method is based on the use of sap-flow sensors 

(Hassler et al. 2018; Tsuruta et al. 2019; Mitra et al. 2020). 
Different types of sensors exist, but most rely on the meas-
urement of sap-flux density in a subset of trees that is most 
commonly multiplied by the sapwood area of the trees to 
obtained catchment-scale transpiration (Granier et al. 1996; 
Flo et al. 2019). Sapwood area therefore plays a crucial 
role in estimating tree and catchment transpiration (Cer-
mak and Nadezhdina 1998; Hölscher et al. 2005; Meinzer 
et al. 2005), which motivated numerous studies on sapwood 
allometric relations (e.g. Wang et al. 2010; Quiñonez-Piñón 
and Valeo 2017; Lubczynski et al. 2017; Mitra et al. 2020). 
Commonly, stand sapwood area is derived from empirical 
relationships with the DBH of the stand’s trees, because 
sampling all the trees in a catchment/stand is too resource 
intense (e.g. Hassler et al. 2018; Tsuruta et al. 2019). Given 
the importance of these empirical relationships for deter-
mining forest water use, they have been studied in a wide 
range of forested ecosystems and on various tree species 
like temperate broad-leaved species (Gebauer et al. 2008), 
boreal tree species (Quiñonez-Piñón and Valeo 2017), 
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snow‑dependent tree species (Mitra et al. 2020), tropical 
rain forest species (Granier et al. 1996; Motzer et al. 2005; 
Horna et al. 2011; Aparecido et al. 2016; Kunert et al. 2015; 
Moore et al. 2018), Amazonian tree species (Parolin et al. 
2008; Aparecido et al. 2019), desert tree species (Lubczyn-
ski et al. 2017), mountainous tree species (Vertessy et al. 
1995; Tsuruta et al. 2019) or Australian tree species (Wang 
et al. 2016) among others. The relationships can take the 
form of different mathematical equations (e.g. linear, expo-
nential, and hyperbolic). For most species from the Fagaceae 
family, including the Quercus genus, the relation commonly 
takes the form of a power-law function (Eq. 1),

where As is the sapwood area of the tree (cm2), DBH is the 
diameter at breast height (cm), and B0 and B1 are curve 
parameters.

Methods for determining these empirical relationships 
can be destructive, like the use of a wood disc taken at 
breast height (Miranda et al. 2009), or invasive, such as 
core analysis (Gebauer et  al. 2008; Horna et  al. 2011), 
dye-immersed (Parolin et al. 2008; Aparecido et al. 2019) 
or thermo-imaged fallen trees (Granier et al. 1994). Non-
destructive methods also exist and are commonly based on 
electromagnetic imaging techniques (Čermák et al. 2004; 
Bieker and Rust 2010a, b; Wang et al. 2016; Benson et al. 
2019; Salomón et al. 2020). The allometric relations of 
trees from the Quercus genus have been extensively studied 
(Table 1), due to its high natural abundance (Rüther and 
Walentowski 2008; Petritan et al. 2012) and a broad range 
of suitable growing conditions (Mette et al. 2013; Pretzsch 
et al. 2013). Additionally, the sapwood-heartwood limit from 
most Quercus trees can be distinguished straightforwardly 
by the darker colour of the heartwood (Mosedale et al. 1996; 
Taylor et al. 2002), which facilitates the quantification of As 
within this genus by direct inspection after coring.

Many eco-hydrological studies aiming at quantifying 
tree or stand water uses rely on so-called species-specific 
relationships (e.g. Chiu et al. 2016; Hassler et al. 2018; 
Schoppach et al. 2021). However, different studies on the 
same species have shown contrasting values for the B0 
and B1 parameters (e.g. Aranda et al. 2005; Schmidt 2007; 
Grossiord et al. 2014), questioning the robustness of these 
relationships between sites (Horna et al. 2011) and raising 
concern on the level of difference in sapwood area, when 
measurements are up-scaled to the stand or catchment level 
using these parameter values. In the past decades, studies 
showed that the As-DBH allometric relationships of Japa-
nese cedar and Japanese cypress may be affected by topo-
graphical factors as they vary with the slope position of the 
trees (Kumagai et al. 2007; Kume et al. 2016). These topo-
graphical effects may explain the inconsistencies of B0 and 

(1)A
s
= B

0
∗ DBH

B
1

B1 between studies. However, topographical effects on As-
DBH relationships have never been explored in the Quercus 
genus, despite the wide use of this relationship for quantify-
ing stand-scale transpiration, especially across Europe. To 
date, most forest transpiration studies at the catchment scale 
rely on B0 and B1 parameters from the literature. There is a 
need for testing the robustness of these parameters between 
sites, specific species of a given genus, and topographical 
factors, to provide guidance for researchers and practitioners 
to build strong As-DBH allometric relationships.

In this study, we aim to fill these gaps by (i) compar-
ing As-DBH allometric relationships between species of the 
Quercus genus growing in diverse site conditions from 17 
field studies, (ii) investigating the role of topographical fac-
tors (i.e. slope, flow accumulation, aspect, curvature, and 
topographic wetness index) on As-DBH allometric relation-
ships of Q. petraea, and (iii) determining the minimum num-
ber of samples required for a robust quantification of the 
As-DBH power-law function for Q. petraea in a temperate 
European forest.

Material and methods

Study site

The Weierbach is a forested catchment of 0.455 km2 located 
in north-western Luxembourg (lat 49.827, long 5.795). The 
forest is a mix of European beech (Fagus sylvatica L.) and 
pedunculate (Q. robur L.) and sessile oak (Q. petraea (Matt.) 
Liebl.) (Fabiani et al. 2021; Schoppach et al. 2021). Catch-
ment’s elevation ranges between 458 and 514 m asl, and the 
geology is composed of Devonian slate and phyllites covered 
by 60 cm of silt and rock fragments (Juilleret et al. 2011). 
Distributions of the catchment topographical characteristics 
can be found in Schoppach et al. (2021).

Measurement of sapwood depth in oak trees 
and landscape characteristics analysis

During the 2019 and 2020 growing seasons, we measured 
sapwood depth of oak trees within 145 randomly selected 
trees in the catchment (Fig. 1b). Sapwood depth was deter-
mined by drilling one single core per tree directly coring 
horizontally, in a randomized azimuthal direction, at breast 
height. All sampled oak trees are mature trees in the co-dom-
inant strata. Sapwood and heartwood were discriminated 
based on colour variation (Mosedale et al. 1996; Quiñonez-
Piñón and Valeo 2018). Bark was removed from the cores 
before the sapwood depth was measured. Here, we assumed 
that the sapwood depth was constant on all azimuthal direc-
tions, and the tree trunks were considered as prefect cylinder 
for calculating As (Gebauer et al. 2008; Hassler et al. 2018).
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We used a high-resolution (1 m) digital elevation model 
(Luxembourgish air navigation administration 2017) and 
the Spatial Analysis Toolbox of ArcGIS Desktop 10.5 to 
determine the topographical characteristics at each sampling 
location.

We smoothed our raster maps by averaging topographical 
values of each one-square-metre grid plot with the values 
of the plots encompassed within a 10 m circle around it, to 
avoid the influence of small differences from the tree actual 
position to the analysis. The topographical characteristics 
within those 10 m circles were extracted for each sampled 
tree. Two relationships between sapwood depth and DBH 
were established based on a value criterion for each topo-
graphical characteristic. We selected these criteria to obtain 
roughly balanced (Table 2) and normally distributed groups 
in terms of DBH (Fig. 2), without significant differences 
in the means and variances (Table 2). Criteria, number of 
trees composing each group, and mean ± SE are displayed 
in Table 2. The slope values represent the steepness of the 
land surface. The flow accumulation represents the number 
of m2 of converging area flowing into each downslope area. 
The aspect is the orientation of the down-hill slope. The 
curvature indicates if the surface is upwardly convex or con-
cave. The topographic wetness index (TWI) was calculated 
as follows (Eq. 2):

with flow ac. being the flow accumulation of a m2, a being 
the size (1 m2), and slope being the slope value in degrees.

We tested the statistical differences between the As-
DBH relationships derived from all pairs of datasets (two 
groups per topographical characteristic) using extra-sum-
of-squares F tests and Akaike’s information criterions. For 
both approaches, we tested the probability that one model 
with identical B0 and B1 parameters fits the data as well as 
two models with different B0 and B1 values.

Comparison between As‑DBH allometric 
relationships from the literature

For determining the significance of the difference in As pro-
duced by the application of the various B1 and B0 parameters 
from the literature, we applied Eq. 1 to our dataset of 145 DBH 
and compared the resulting As. We used one-way analysis of 
variance (ANOVA) to determine the significance (p < 0.05) 
of the species and site effect on the produced As. Given the 
obvious differences between relationships of different species, 
we focused our analysis on Q. Petraea datasets, which present 
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relatively similar curves, and ran a Tukey’s multiple compari-
son test in order to test the significance of the site effect alone.

Power analysis to determine the minimum number 
of samples required

We used a power analysis to estimate the minimum sam-
ple size required to reasonably detect an effect of a given 
size (Maxwell 2000). The effect size is a number measur-
ing the strength of the relationship between two variables 
in a sampling panel. In our case, the relationship links As to 
DBH. Our effect size estimation is based on Lehr’s rule of 
thumb which states that the sample size n for a two-sided 
two-sample t test with power 80% (β = 0.2) and significance 
level (α = 0.05) should be (Lehr 1992; Van Belle 2011):

(3)n =
16

Δ2

where Δ is the treatment difference to be detected in units 
of the standard deviation—the standardized difference. We 
used “pwr” R package (Champely et al. 2018) to calculate 
the number of samples needed to get at least the same level 
of coefficient of determination that we obtained with our 145 
samples. As Eq. 1 is not linear, pwr was applied on the rela-
tion between As and pAs (the predicted As based on Eq. 1). 
The coefficient of determination is based on a linear assump-
tion which is not technically appropriate for our nonlinear 
study, but we use them for a rough performance reference.

Fig. 1   Location of the study site within Luxembourg (a), location of 
the wood core samplings within the catchment (b), and 5 m contour 
lines (c). Panel B: Red circles represent the location of the trees sam-

pled in 2019, and blue circles represent the location of the trees sam-
pled in 2020. Light green line delineates the catchment boundaries. 
(Color figure online)

Table 2   Groups characteristics 
for topographical investigation.

a p value of the unpaired t test between both groups
 bp value of the F test for comparing variances between both groups
c TWI  topographic wetness index

Criteria Sample size Mean DBH (± SE) p value t testa p value F testb

Slope < 5° 66 52.90 ± 1.34 0.83 0.36
Slope > 5° 79 52.54 ± 1.10
Aspect < 160° 72 52.43 ± 1.29 0.75 0.22
Aspect > 160° 73 52.97 ± 1.11
Curvature < 0° 60 53.77 ± 1.49 0.29 0.05
Curvature > 0° 85 51.95 ± 1.00
Flow accumulation < 100 mb 70 53.29 ± 1.31 0.51 0.25
Flow accumulation > 100 m2 75 52.16 ± 1.10
TWIc 68 52.57 ± 1.22 0.88 0.77
TWI 77 52.82 ± 1.19
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Results

Effect of topographical characteristics on As‑DBH 
relationships

According to the extra-sum-of-squares F test, among 
all tested topographical characteristics (i.e. slope, flow 

accumulation, aspect, curvature, and TWI), none produced 
a significant effect on the As-DBH relationship (Fig. 3). 
The strongest effect of topographical factor in our dataset 
was the aspect, but with only a p value of 0.1 between 
the two models. Results are similar using the Akaike’s 
information criterion. Except for the aspect, none of the 
topographical characteristics produced a likely effect.

Variations of the B1 and B0 coefficients 
between species of the Quercus genus and sites

We identified 16 studies in the literature in which the allo-
metric As-DBH relationship was determined for oak trees 
(Table 1). Within these studies and our additional study, 
14 relationships have the shape of a power-law function 
(Fig. 4), while two others were linear and one exponen-
tial (Table 1). The As-DBH relationship was established 
for 13 different species from the Quercus genus (Fig. 4a, 
Table 1). We found a highly significant (p value < 0.0001) 
effect of the studies, which includes species and sites 
effects, on the different As datasets calculated using B1 and 
B0 coefficients from the literature and our DBH dataset. 
The mean As calculated varies by two orders of magni-
tude (between 56.7 and 6592 cm2) using the most extreme 
study-specific parameters. Beside our study, four other 
studies determined the As-DBH relationship on Q. petraea 
(Aranda et al. 2005; Schmidt 2007; Jonard et al. 2011; 
Grossiord et al. 2014). Our study has, on average, seven 
times more samples than the previous studies (145 vs. an 
average of 20). Our As-DBH relationship presents a R2 36% 
lower (0.65 vs an average of 0.88). The area covered by 
the sampling is almost a thousand time larger (904) than 
the mean area of all the other studies (Table 1). We found 
a highly significant site effect (p value < 0.0001—Fig. 5) 
on the calculated As of Q. Petraea. The mean As ranged 
from 368.5 ± 8.03 cm2 when applying Jonard’s B0 and B1 
parameters to 1151 ± 35.0 cm2 when applying Grossiord’s 
parameters (Table 3).

Number of samples required for a reliable 
quantification of As‑DBH relationship

The power tests indicated that at least nine samples are 
needed to reach the same level of correlation, or even bet-
ter, than what we obtained with our 145 samples (n = 8.7, 
r = 0.81).

Fig. 2   Topographical characteristics associated with each group of 
trees. Left panels display boxplots of the topographical character-
istics with horizontal lines representing the minimum, mean and 
maximum values of DBH. Right panels display the DBH distribution 
within each group of trees. Solid line filled with red and dashed line 
not filled delineate the distribution of the different groups. Threshold 
values defining each group are displayed on each pane. (Color figure 
online)



803European Journal of Forest Research (2023) 142:797–809	

1 3

Discussion

Topography does not modulate the allometric 
relation between DBH and sapwood area in Q. 
petraea at our study site

Topography does not influence the As-DBH allometric 
relationship in Q. petraea at the Weierbach study site. This 
contrasts with the results of Kumagai et  al. (2007) and 
Kume et al. (2016) in Japanese cedar and Japanese cypress 
who found different relationships at different slope posi-
tions. Based on our analysis, we can argue that As-DBH 

Fig. 3   Effect of the topo-
graphical characteristics on the 
As-DBH allometric relationship. 
Each circle represents one tree 
and the colours denote their 
group within each topographi-
cal characteristic. Black and red 
curves represent the As-DBH 
allometric relationship (Eq. 1) 
fitted to each group of data. 
(Color figure online)

Fig. 4   As-DBH allometric 
curves determined on Quercus 
trees. Panel a displays the 
As-DBH relationships of all 
Quercus species from literature, 
while panel b displays the As-
DBH relationship on Quercus 
petraea only. Different colours 
represent different studies and 
species (see legend). In panel 
b, each grey circle represents 
one of our core measurements. 
(Color figure online)
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relationship in Q. petraea is robust, independent of the top-
ographical position of the sampled trees at the study site. 
This is a major finding for the robustness of future upscaling 
analysis relying on this allometric relation. Further research 
on different species and in different topographical settings 
is undoubtedly needed as a way forward.

Allometric curves vary between species 
of the Quercus genus

The allometric As-DBH relationships are commonly 
described as “species-specific”. In our study, we show that 

determining As using different Quercus’s B0 and B1 param-
eters from the literature produce highly significant differ-
ences. This site and species specificity of parameters led 
to a difference of two orders of magnitude in the calculated 
mean As. Tropical forests typically display a wide variety of 
species which commonly imposes the use of a single pair of 
parameters for determining As of a stand (e.g. Moore et al. 
2018) with Eq. 1. For the species from the Quercus genus in 
temperate forests, we demonstrated that this method leads to 
under- or over-estimate As by up to hundred times. This mas-
sive difference confirms and reinforces the requirement of 
species-specific relationships when upscaling sap-flux den-
sity data from a subset of trees to stand or catchment scale.

Quercus petraea’s B0 and B1 parameters vary 
between sites

Our analysis showed that applying B0 and B1 parameters 
determined in different studies and at different sites on 
pedunculate oaks resulted in significantly different values of 
As (Table 3, Fig. 5). Using the parameters from other studies 
would induce a difference ranging from an overestimation of 
107% (Grossiord et al. 2014) to an underestimation of 44% 
(Jonard et al. 2011) compared to the As determined with our 
own B0 and B1. These major differences highlight the need 
for, not only species-specific, but also site-specific allometric 
relations when estimating sap-flow at stand or catchment 
level. Similar investigations on larger catchments would help 
evaluating how far B0 and B1 remain valid.

Interestingly, the use of B0 and B1 parameters from 
our study and Schmidt (2007) did not result in significant 
differences in As (Fig. 5). In Jonard et al. (2011), authors 
found a linear relationship, probably because of the too 
low DBH range of the sample trees (29–48 cm). Schmidt’s 
study was carried out in northern Bavaria, less than 300 km 
from Weierbach. Jonard’s study was carried out in the Bel-
gian Ardennes, the northern site among the five, located 
within less than 100 km from Weierbach. Aranda’s study 
was carried out in Spain, and Grossiord’s study took place 
in Tuscany, both being much further south and in a clearly 

Fig. 5   Sapwood areas (As) calculated via Eq. 1 using different B0 and 
B1 parameters from Q. petraea and our 145 DBH dataset. The box 
extends from the 25th to 75th percentiles. The line in the middle of 
the box is plotted at the median. Whiskers represent 5th and 95th per-
centiles. Dots represent data outside of the 5–95 percentiles. Letters 
denote significant differences between groups

Table 3   Meteorological and 
stand characteristics of the 
studies on Quercus petraea 

*Two plots with two densities mentioned
**Mean As determined by applying B0 and B1 parameters from each study to our database of 145 DBH 
values

Study Mean annual 
temperature 
(°C)

Total annual 
precipitation 
(mm)

Tree density (Tree/ha) Mean As (± SE)**

Our study 8.9 815 301 555.9 ± 17.1
Aranda et al. (2005) 8.1 1105 867 777.8 ± 21.7
Schmidt (2007) 7.7 800 350 and 636* 494.0 ± 18.6
Jonard et al. (2011) 9.8 1044 468 368.5 ± 8.03
Grossiord et al. (2014) 13.5 950 867 1151 ± 35.0
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different climate than the two first cited. One explanation for 
the significantly different curve parameters within the same 
species could therefore be the growing conditions effect 
on the trees allometry. Indeed, higher water demand and 
lower water availability have been pointed out as a driver 
of defoliation, which subsequently affects the proportion of 
sapwood area (e.g. Bréda et al. 2006; Limousin et al. 2012). 
In Scots pine, summer vapour pressure deficit and maximum 
temperature have been shown to be negatively correlated 
with the leaf area/sapwood area ratio across Europe (Men-
cuccini and Bonosi 2001). Sapwood proportion is suspected 
to depend on the availability of light (Sellin 1994; Thurner 
et al. 2019) and the water demand (Gebauer et al. 2008; 
Horna et al. 2011). Trees exposed to higher level of light and 
potential evapotranspiration require to maximize sapwood 
area for sustaining the higher evaporative demand and thus 
preventing leaf overheating and dehydration (Aparecio et al. 
2019). Importantly, the hydraulic conductivity of sapwood is 
also influenced by growth rate which depends on resources 
availability and demand (Medhurst and Beadle 2002). The 
total annual precipitation amount, the mean annual tempera-
ture, and the tree densities varies between the five above-
mentioned studies on Q. petraea (Table 2). Total radiation 
received by each site and the associated potential evapotran-
spiration are not available in the original papers. However, 
Spanish and Tuscan sites are likely to receive higher level 
of annual radiation and are exposed to higher evaporative 
demands due to their southern locations compared with 
Luxembourgish, Belgian, and German sites (Cornes et al. 
2018). Sites with lower tree densities present lower sapwood 
area for a given DBH, which contrasts with the findings of 
Benyon et al. (2015) in eucalypt forests, showing a decrease 
in sapwood thickness with an increase in forest density. 
Higher forest density is supposed to reduce the exposition 
to high radiation and VPD conditions, which influences the 
development of sapwood. Here, we cannot decipher the 
various effects of the growing conditions on the As-DBH 
relationship based on these annual data. Further research is 
certainly needed to unravel the role of temperature, radia-
tion, water demand, water availability, and forest density on 
the As-DBH allometric relationship on Q. petraea.

Number of samples required for a reliable 
quantification of As‑DBH relationship

For upscaling purposes, a reliable quantification of the As-
DBH allometric relationship remains crucial as it appeared 
that Eq. 1 parameters are constrained not only by species, 
but also by sites/stand characteristics. We thus recommend 
to experimentally determine Eq. 1 parameters for each site 
rather than using values from literature. According to our 
power test, at least nine samples are needed for building a 
robust As-DBH relationship. Importantly, the sampled trees 

should cover a range of DBH that is as wide as possible 
to avoid misinterpretation of the curve shape (e.g. Jonard 
et al. 2011). This number of samples is close to or lower 
than the number of samples most studies on Quercus genus 
used (Table 1). Therefore, Eq. 1 parameters extracted from 
these studies can be considered as robust for the species 
and sites concerned. However, the As-DBH allometric rela-
tion calculated in this study displays a substantially lower R2 
compared to previous studies, which potentially pools down 
the required number of samples.

Confounding effects and methodological caveats

In this study, we were not able to highlight significant topo-
graphical effects on the As-DBH relationship of Q. petraea. 
Also, we determined an As-DBH relationship displaying a 
substantially lower R2 compared to literature. Confounding 
effects may be responsible for the lack of significance of the 
topographical effects and the lower R2. Confounding effects 
may include a much larger sampling area than other stud-
ies with higher unexplained variances and random errors, 
a higher number of sampled trees, a wider range of tree’s 
DBH, or methodological limitations.

A methodological limitation that may introduce some 
deviation of the measurement from the As-DBH curve is 
that As of each tree was inferred from a single core sampled 
at a random azimuth. We assumed the sapwood depth to 
be constant on all azimuths (Čermák et al. 2004; Tsuruta 
et al. 2010; Benson et al. 2019). Sapwood area was indeed 
inferred from a single core taken at random azimuth because 
we had no authorization from the forest owner to core each 
tree more than once during the experiment. However, the 
radial profile of sapwood thickness is suspected to be vari-
able (e.g. Looker et al. 2016), especially in regard to slope 
(Pilate et al. 2004). Indeed, trees growing on a slope will 
produce tension wood to counteract the forces of gravity 
(Scurfield 1973; Pilate et al. 2004). This alters the produc-
tion of wood, and presumably the sapwood thickness around 
the circumference of the tree, which could be a substantial 
confounding effect. The variability in radial sap-flux densi-
ties was found to be considerable in temperate broad-leaved 
species (Gebauer et al. 2008). For boreal trees, radial profile 
of sapwood thickness was shown to be dependent on the 
species; some species displaying constant sapwood depth, 
while others are growing thicker on the North-East side 
(Quiñonez-Piñón and Valeo 2017). For trembling aspen 
and white spruce, the influence of azimuthal direction on 
sapwood depth had a low impact (Merlin et al. 2020). In oak 
trees, the xylem vessel size was found to be larger on the 
northern side of Quercus suber, compared with the southern 
side (Barij et al. 2011), but, to our knowledge, the influ-
ence of azimuthal direction on sapwood depth itself remains 
unexplored in Q. petraea.
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Topographical effect may also be confounded by the 
threshold values selected for comparing groups, which 
was imposed by catchment characteristics and done in 
such a way to force similar sample sizes, but was not 
necessarily tied to meaningful physical attributes. Fur-
ther research on catchments displaying larger ranges of 
topographical characteristics could help untangling these 
effects.

Within studies on Q. petraea displaying power-law 
functions, Aranda et  al. (2005), Schmidt (2007), and 
Grossiord et al. (2014) had a difference between their 
smaller and larger DBH of 14, 20, and 36 cm, respec-
tively. Our dataset displayed a difference of 61 cm and 
our number of sampled trees was substantially higher. 
Also, our panel encompassed many trees with large 
DBH, while both Schmidt (2007) and Grossiord et al. 
(2014) had no trees larger than 50 cm. This value falls 
at 19 cm for Aranda et al. (2005). However, excluding 
the 85 trees larger than 50 cm in DBH from our dataset 
led to a substantially lower R2 (0.28) of the As-DBH rela-
tionship. Larger range of DBH within the sampled trees 
therefore did not explain the low R2 value displayed by 
our relationship.

Our dataset presents sapwood depth values varying 
between 10 and 86 mm with a mean of 42 mm. If we con-
sider a deviation of 1 mm due to a recurrent measurement 
error, this one mm deviation would result in a deviation 
of 2.17% (14 cm2) of the As of a tree with average DBH 
(53 cm). For our smallest tree (DBH = 29.3 cm), the devi-
ation increases to 9% (8.5 cm2). However, the potential 
effect of a systematic measurement mistake remains far 
too weak for explaining the observed spread of the points 
around the allometric curve (Fig. 3b). Dyeing experiments 
suggest that As is likely susceptible to be overestimated by 
the determination solely on heartwood coloration (Apare-
cido et al. 2019), despite other studies contradicting this 
suggestion (e.g. Githiomi and Dougal 2012). Experiments 
using dye are able to differentiate between observable sap-
wood and the functional conducting sapwood, the latter 
being typically lower. For this reason, we recommend the 
use of variable methods to validate the delimitation of 
sapwood.

The influence of the sampling area cannot be ignored. 
Most studies presented in Table 1 aimed at quantifying 
stand transpiration, and their main objectives was not to 
determine the As-DBH allometric relationship, which is 
commonly done only on few trees outside the field setup. 
In our experiment, we sampled within a catchment of 
0.455 km2, which is by far wider than all previous studies 
on oak trees. Therefore, our As-DBH curve is likely to be 
influenced by non-accounted micro-climatic conditions, 
influencing the resources availability (i.e. water and radia-
tion) and the evaporative demand.

Conclusion

Sapwood area plays a key role for determining sap-flow 
of a tree and upscaling sap-flow measurements from tree 
to stand or catchment level. A reliable quantification of 
sapwood area is therefore crucial for water and forest 
management. In this study, we confirmed that the As-DBH 
allometric relationship of the Quercus genus is not only 
species-specific, but depends on the site conditions. We 
showed that topography does not modulate the As-DBH 
relationship in Q. petraea, within our catchment. In the 
light of these results, we emphasize that each upscaling 
study should rely on its own site- and species-specific rela-
tionship and recommend a minimum of nine, randomly 
sampled trees, in order to build a robust As-DBH rela-
tionship. Due to the potentially high variability in radial 
profile of sapwood thickness and the caveats related to 
colour distinction, we recommend coring at different azi-
muthal locations in the trees and validating the delimita-
tion of sapwood via different methods. Further research 
is certainly needed for evaluation on how far B0 and B1 
parameters remain valid.
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