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Abstract—Artificial Life can be modeled using simulated au-
topoiesis. Liquid Automata are used to define simulated chemical
reaction systems; particle systems with rules governing how
particles are transformed on collision with each other. Unlike
cellular automata, there is no fixed grid or time-step, only
particles moving about and colliding in continuous space/time.
These systems may give rise to emergent artificial life, or they
may be (artificially) lifeless. Can we distinguish between these
systems by analysing their equilibria?

I. INTRODUCTION

The dynamics of non-living systems is characterised by in-
creasing entropy. A stone rolling to the bottom of a valley can
be explained by purely physical forces that maximise entropy.
By comparison, a life-form like a single-celled bacterium
exploits external energy sources to minimise entropy locally,
creating “order from disorder” far from chemical equilibrium
[1]. According to James Lovelock, this principle can be used
to look for life on alien worlds by analysis of planetary
atmospheres [2]. A system that is far from equilibrium may
provide evidence of life. On Mars, Curiosity rover discovered
levels of oxygen 30% higher in spring and summer than
expected. This may be evidence of life, or must be explained
by other means.

II. ARTIFICIAL LIFE

How then are we to understand life? Is it just a smorgas-
board of features such as the capacity for growth, reproduction,
functional activity, and change? This approach is not particu-
larly scientific. Maturana and Varela argue that life is no more
and no less than a system that exhibits autopoiesis [3], the
ability of a living system to self-organise and produce itself in
the physical realm. A living system is a self-referential domain
of interactions in the physical space, generally a network of
‘chemical’ relationships. According to Maturana and Varela,
“An autopoietic machine is a machine organized (defined as a
unity) as a network of processes of production (transformation
and destruction) of components.” Yet, there are many kinds
of chemical networks that aren’t alive, consider a chemical
explosion characterised by a runaway chain reaction of positive
feedback. The signature of life is the emergence of structure
that distinguishes self from non-self, closing it off from its
environment, “A universe comes into being when a space is
severed into two. A unity is defined.” This closure emerges
from, and is dynamically maintained by the organism. This
principle is also central to Spencer-Brown’s ‘Laws of Form’,

Fig. 1: A simulation of autopoiesis using a discrete time
cellular automaton on a rectangular grid, based on Varela’s
original algorithm. In (a) a pair of substrate (circles) are
transformed into a single link (squared circle) by the catalyst
(asterisk). By (c) we see the first bonds forming, then in (i)
these finally form a closed boundary around the catalyst.

“a distinction is drawn by arranging a boundary with separate
sides so that a point on one side cannot reach the other side
without crossing the boundary. For example, in a plane space
a circle draws a distinction.” [4]

There are two key features of autopoiesis:

1) Organisational closure: A network of the processes of
production, e.g. a chemical reaction system.

2) Structural closure: The appearance of a homeostatically
maintained boundary that divides self from non-self, also
described as the maintenance of identity, e.g. a cell-wall.

We can simulate autopoietic processes computationally —
not life as we know it, but artificial life. Conway’s “Game of



Life” [5], [6] is a classic Cellular Automaton that exhibits
emergent, self-organised behaviour. It gives rise to cyclic
patterns that are self-reproducing, such as the ‘blinker’ and
‘glider’ patterns. But these patterns are not obviously life-
like in the sense defined by Maturana and Varela as they
lack a clear structural boundary (however, see Beer [7] for an
alternative view). To demonstrate the process of autopoiesis,
Francisco Varela devised a novel Cellular Automaton that
shows how a simple system of rules can give rise to a ‘cellular’
structure [8]. It implements a simplified model of the chemical
reaction rules found in living cells, demonstrating how these
work together to form an organisationally closed system of
production. Figure 1 shows output from this system; a catalyst
(shown as an asterisk) is the ‘seed’; substrate particles (circles)
are consumed by the system, as pairs of them are composed
by the catalyst to form new link particles (squared circles);
and link particles self assemble into a compound structure —
a primitive cell wall with bonds shown as lines drawn between
them.

The rules implemented by Varela’s Cellular Automaton are
described as chemical reaction rules. A reaction rule has a left-
hand side defining the reactants, separated by an arrow from
the reaction products on the right-hand side. The appearance
of a + (plus) symbol between reactants indicates an event
where all of the indicated particles must come together. Each
particle type may be prefixed by a positive integer indicating
a number of particles of the same type, so that K + 2S is
equivalent to K + S + S, the interaction of three particles.
The use of plus between reaction products, indicates that the
reaction produces multiple outputs. Bonds are indicated by
multiplicative operators such as L.L, L2, or Ln [9]. These
reaction rules are summarised below, where K represents the
catalyst, S the substrate, and L the link particles.

composition : K + 2S → K + L (1)
disintegration : L→ 2S (2)

concatenation : Ln + L→ Ln+1 (3)

Figure 1 illustrates a number of steps from a single run.
In step (a) at time, t = 1, a pair of substrate particles are
composed into a single link particle by the catalyst. After
the composition of a number of link particles, we see the
first bonds forming between them in step (c) at t = 3. The
concatenation rules in Varela’s algorithm are constrained to
forming only obtuse bond angles. This prevents the uppermost
link particle at (h) t = 8, from bonding with the particle
immediately below it. It is only when this particle disintegrates
later at (i) t = 16, that enables the remaining links to re-bond,
and form a closed boundary around the catalyst.

These same rules were re-implemented in a later program
called SCL (Substrate, Catalyst and Link) by McMullin using
the SWARM system [10] where chemical reaction rules are
captured in a modular fashion enabling their reaction rates to

Fig. 2: Liquid automaton showing a boundary (blue links)
forming around the catalyst (triangle), distinguishing self from
non-self. The catalyst transforms the substrate (circles) into its
structural building blocks (squares).

be more precisely controlled. This program introduced a more
configurable way to control the random motion of particles in
2D space, modelled as a square lattice with toroidal toplogy
and discrete time.

III. PARTICLE SYSTEMS

There is currently a great deal of interest in 2D particle
systems, though the same ideas extend to three dimensions.
Particle systems are game physics engines designed to re-
produce naturalistic phenomena based on objects moving
around, typically in a 2D space. The engine used for the
Liquid Automata described in this paper is Box2D (specif-
ically pybox2D), a rigid body simulation library for games.
Interestingly, Box2D has been used as the game engine for
a number of implementations of “Angry Birds.” Each particle
is a 2D body with mass and velocity, so particles have three
degrees of freedom; translation along x,y axes, and rotation.
Each body is associated with one or more shapes which can
be any geometrical construct, such as the squares, circles, and
triangles seen in Figure 2. Joints define constraints on the
relative motion between two bodies, used here to create bonds
between neighbouring links. Forces, torques, and impulses
are applied to bodies to make them move. Box2D includes
a high performance iterative constraint solver that resolves
joint constraints, particle motion and resulting collisions [11].
Particles can bounce off each other in elastic collisions, or
slide against each other based on a realistic simulation of the
frictional forces between them. A world may, or may not, have
gravity; the simulations described here do not.
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Fig. 3: (a) Model A runs to equilibrium with L converging at around 16. (b) This equilibrium is sensitive to variations in
initial population size, S. ‘Sobol’ analysis shows the effect of this variation, with the blue region covering 90% of the observed
variation.

IV. LIQUID AUTOMATA

We reproduce and extend Varela’s simulations of autopoiesis
[12] using so-called Liquid Automata. These are based on
2D particle systems with added support for chemical reaction
rules. Unlike cellular automata which divide space into to
a regular fixed grid, and time into discrete steps, Liquid
Automata implement a continuous model of space/time. There
is no fixed grid, just particles moving about and colliding
with each other in continuous space. By analogy with cellular
automata, the Liquid Automaton is a variety of collision-
based system [13]. Particles move freely in space and react
‘chemically’ when they collide. Rules (1) & (3) are invoked
when the necessary particles come into contact with each
other, while rule (2) occurs spontaneously.

External energy is added to the system in the form of
random ‘Brownian’ motion defined in terms of a Wiener
process along the x,y dimensions [14]. The force applied to
every particle along each dimension is a normally distributed
random variable with zero mean, and variance, (delta)2dt,
correlated with a single parameter delta, and time period, dt,
which varies dynamically. It is this external energy source that
drives the system to self-organise, and create a local island of
order from the surrounding chaos.

A Liquid Automaton defines an organisationally closed
chemical reaction system (CRS). Figure 2 shows output from
a Liquid Automaton implementing reaction rules (1), (2), and
(3). Bathed in a liquid substrate, the catalytic agent (triangle)
composes substrate (circles) into its structural building blocks,
or links (squares). Links are subject to decay, and may spon-
taneously disintegrate back into a pair of substrate particles.
The link particles are able to self-organise (blue links) into

a structure akin to a long-chain polymer. Links can make up
to two connections, and a chain of concatenated links is able
to wrap around and close in on itself. This emergent closed
boundary, analogous to a cell wall, divides self from non-self;
the signature of (artificial) life.

V. EQUILIBRIUM AND DISEQUILIBRIUM

If artificial life is to be recognised by its disequilibrium, we
must first define what the equilibrium state would be in the
absence of artificial life. If a key characteristic of life is the
boundaries that it forms, then we need to study the system in
the absence of those boundaries. Deleting the concatenation
rule (3) that bonds particles together, disrupts the internal
organisation of the system. The network of relations no longer
performs a complete cycle that produces an enclosed structure
so the boundary never forms. We will call the this simpler
‘chemical’ system, System A, while the full system with
boundaries will be known as System B. For experimentation
we need a measurable proxy for this emergent structure. By
observation, the boundary appears to regulate the number of
substrate particles reaching the catalyst, with the knock-on
effect of throttling back the number of link particles produced
by the reaction. We therefore use the number of link particles
as a proxy for this structure and hypothesise that the mean
number of link particles is higher in System A than it is in
System B.

The Liquid Automaton for System B maintains a mean of
12.46 link particles, based on samples taken every second over
a period of 30 minutes, with an initial substrate population
of 500 substrate particles. Deleting the concatenation rule in
System A, we see an increased mean of 17.56 link particles
over the same time period, given the same initial conditions.
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Fig. 4: (a) Model B runs to equilibrium with in.L converging around 6.6. There is an initial surge of substrate, in.S, into the
interior before the boundary is fully formed. (b) The ‘Sobol’ analysis is absent of any variation, so the equilibrium of in.L is
independent of the initial population size, out.S.

This 29% difference from artificial chemistry is the ‘tell’ of
artificial life at work. Its emergent structure shifts it away from
‘chemical’ equilibrium.

We further hypothesise that the higher point of equilibrium
for System A is sensitive to initial conditions. Simulation with
Liquid Automata is computationally expensive, and the data it
produces is too variable to perform sensitivity analysis reliably.
Even without the concatenation rule, the halo of reaction
products around the catalyst produces a barrier that impedes
subsequent reactions with the substrate. Instead, we define
simplified models using the Mathworks SimBiology package
[15]. These models are more tractable as they do not require
a physics engine, and only take population size into account.
They cannot produce any organised states of matter. We define
a simpler Model A, corresponding to the Liquid Automaton
of System A. Parameters governing the reaction rates are
set to simple ‘Mass Action’ kinetics, where the rate of a
chemical reaction is directly proportional to the concentration
of the reactants. Model parameters governing reaction rates are
tuned only to the extent of achieving comparable qualitative
behaviour, with results of the same order of magnitude. Finer
tuning doesn’t appear to provide any additional insight.

Model A comprises just the reaction rules for composition
(4) by the catalyst, K, and spontaneous disintegration (5) of
link particles back into substrate, S, at the rates indicated.
There is no rule for concatenation as the simulator does not
support the notion of compound particles. We will continue to
refer to ‘link’ particles for continuity with Varela’s nomencla-
ture, but these numerical simulations do not perform any such
linking. This ‘chemical’ simulation will naturally run towards
a state of equilibrium, at a rate governed by the “Law of Mass
Action”. These rules and their corresponding (mass-action)

reaction rates are defined below.

composition : 2S +K → K + L rate = 0.5E-3 (4)
disintegration : L→ 2S rate = 0.01 (5)

Figure 3(a) shows a simulation run of model A. In these
simulations we only consider a single catalyst particle, K,
remaining constant at 1. The simulations begin with no link
particles, and it has an initial population size of S = 50. The
system reaches equilibrium when the production and decay
of link particles, L, reaches a balance, converging at around
16 particles. Sensitivity analysis allows us to explore the
effects of variations in model quantities on a model response.
We want to explore the time-dependent sensitivities of the
number of link particles, L, with respect to the initial substrate
population, S. Using Local Sensitivity Analysis (LSA) we
compute, δL/δS = 1.22. This shows a clear sensitivity of
the state of the output species L on the initial population size
of the substrate, S. This is positive, showing that in Model
A, L increases with S, as expected. Figure 3(b) illustrates
the results of a variance-based sensitivity analysis using the
‘Sobol’ method, showing the simulation results and mean
value. The shaded region shows the spread of outputs, covering
90% of the results, based on a random spread of perturbations
to the initial population size. We conclude that the stability
exhibited by Model A is contingent, being sensitive to initial
conditions.



VI. CONTROLLED DISEQUILIBRIUM

By “controlled disequilibrium”, we mean a new point of
equilibrium displayed by a self-organising system that is both
distinct from the ‘chemical’ equilibrium we find in the absence
of self-organisation, and is intrinsically stable. This intrinsic
stability can be understood as an internally set goal or purpose.
In other words, it behaves as a control system to maintain
that goal. As before, we measure the mean number of link
particles observed from second to second and investigate
whether the goal criteria, the goal value for L, is stable in the
face of perturbations in the initial conditions. We hypothesise
that the artificially living system maintains this new point of
equilibrium over a range of initial conditions.

As before, we build a simplified model of System B,
using MathWorks SimBiology [15], and call this Model B.
Whereas in the System B Liquid Automaton, the boundary is
an emergent property, Model B introduces explicit compart-
ments that separate particles inside the boundary from those
outside. The catalyst, K, now only reacts with substrate, S,
inside the boundary (rule 6). We also assume that when link
particles disintegrate, the waste substrate is ‘dumped’ outside
the boundary, ready for recycling (rule 7). The boundary is
semi-permeable allowing substrate particles to diffuse across
in either direction at a rate that is inversely proportional to the
density of link particles forming the boundary (rule 8). Model
B incorporates the reaction rules below.

composition : 2 in.S + in.K → in.K + in.L rate=0.5E-3 (6)
disintegration : in.L→ 2 out.S rate=0.01 (7)

diffusion : out.S ←→ in.S rate=1/(in.L+ 1) (8)

Figure 4(a) shows a simulation run of model B, with an
initial population size of out.S = 50. There is an initial
surge of substrate into the interior before the boundary is fully
formed (the density of link particles increases). The quantity of
catalyst, in.K, again remains constant at 1. The mean number
of link particles, in.L, converges at around 6.6 particles, lower
than the point of equilibrium for Model A. Again, using Local
Sensitivity Analysis (LSA), we compute, δin.L/δout.S = 0,
the time-dependent sensitivities of the output species in.L
with respect to the initial substrate population, out.S. This
is 0, demonstrating that in.L does not vary with out.S, and
so there is no sensitivity to perturbations in out.S over the
range tested. Similarly, the ‘Sobol’ plot in Figure 4(b) shows
no variance in in.L. The shaded region of variance is all but
invisible.

We are in effect applying Ashby’s “test for independence”
[16, p158] to demonstrate that Model B induces temporary
independence (over the range tested) between the initial popu-
lation of substrate, and the density of link particles; “constancy
in a subsystem’s state implies that the state is one of equi-
librium, and constancy in the presence of small disturbances
implies stability.” We conclude that the stability exhibited

by Model B is largely independent of initial conditions. The
variable diffusion rate creates a feedback control loop based on
the quantity of link particles, making it robust to disturbance.

VII. CONCLUSION

A central feature of living systems is that they exist out of
equilibrium with their environment. All closed systems will
ultimately reach thermodynamic or chemical equilibrium, but
this may simply be contingent on initial conditions. A key
aspect of this disequilibrium is that it is under control by the
organism and maintained within a specific range necessary for
the organism’s continued survival.

Liquid Automata enable us to investigate the mechanisms of
artificial life based on particle simulations with added reaction
rules. They are a tool for exploring emergent phenomena
and the equilibrium states that arise. The equilibrium state of
artificial life (simulated autopoiesis) falls far from the base-
line equilibrium of an (artificially) lifeless chemical reaction
system. This baseline equilibrium is also contingent on initial
conditions. Artificial life self-organises, defining a new point
of disequilibrium relative to this baseline. Furthermore, this
new equilibrium is dynamically controlled through feedback,
remaining stable in the face of perturbation. Artificial Life has
a goal, its purpose to survive.
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