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Abstract—One promising function of interactive robots is to
provide a specific interaction force to human users. For example,
rehabilitation robots are expected to promote patients’ recovery
by interacting with them with a prescribed force. However,
motion uncertainties of different individuals, which are hard
to predict due to the varying motion speed and noises during
motion, degrade the performance of existing control methods.
This paper proposes a method to learn a desired reference
trajectory for a robot based on dynamic motion primitives
(DMPs) and iterative learning (IL). By controlling the robot to
follow the generated desired reference trajectory, the interaction
force can achieve a desired value. In our proposed approach,
DMPs are first employed to parameterize the demonstration
trajectories of the human user. Then a recursive least square
(RLS)-based estimator is developed and combined with the
Adam optimization method to update the trajectory parameters
so that the desired reference trajectory of the robot is iteratively
obtained by resolving the DMPs. Since the proposed method
parameterizes the trajectories depending on the phrase variable,
it removes the essential assumption of traditional IL methods
that the iteration period should be invariant, and thus has
improved robustness compared with the existing methods. Ex-
periments are performed using an interactive robot to validate
the effectiveness of our proposed scheme.

Index Terms—Interaction force, physical human-robot inter-
action (pHRI), DMPs, iterative learning.

I. INTRODUCTION

W ith the advent of interactive robots, they are expected
to perform tasks according to needs of human users

and realize efficient collaboration in different scenarios of
physical human-robot interaction (pHRI). To do so, many
strategies have been developed for interactive robots to adjust
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their control in view of human behaviors [1]–[5]. In many
scenarios of pHRI, achieving a desired interaction force
between a human user and a robot is expected, e.g. the
requirements of a rehabilitation robot may include achieving
a specific interaction force that is prescribed by a physio-
therapist [6], [7]. Besides, control of interaction force is also
needed by exoskeleton robots for the purpose of effective
assistance [8]. Consequently, it is critical to design an effec-
tive robotic interaction force control. However, the uncertain
motion and unknown motion behavior of different individuals
raise challenges for control of HRI force.

Force control [9] and iterative learning control (ILC) [10],
[11] with sensed force-feedback can be used for generating a
desired interaction force. ILC-based force control offers good
performance due to its model-free nature and capability of un-
certainty compensation [12]. However, the existing ILC used
for pHRI is restricted by the assumption that the movement
speed should be fixed for each iteration, so its performance
is sensitive to the unpredictable human behaviors. To remove
this limitation, [13] proposes a control method to deal with
the uncertainty caused by the varying iteration period by
introducing a maximum execution time, so that the varying
motion speed of the human user is allowed. However, the
control method in [13] is based on the assumption of known
iteration periods, which is avoided by [14]. In [14], with the
proposed spacial ILC, robot’s learning is space-based instead
of time-based, and a desired interaction force is thus achieved
with varying motion speed. To further reduce the time-related
uncertainties, [15] designs a performance index function and
iteratively updates the robot’s parameterized trajectory for
a desired interaction force. Although this method has good
robustness against human motion uncertainties, it needs to
know the shape of the robot’s desired trajectory in advance,
which limits its applications.

Dynamic motion primitive (DMPs) is a parameterized
policy that can mathematically encode a movement into
nonlinear dynamic systems, which can be combined with
impedance/admittance control for force control. In [16], a
model-free reinforcement learning scheme is combined with
DMPs to learn the end-effector trajectories and variable
impedance in force fields to endow robots with human behav-
iors for disturbance rejection. In [17], the motion and stiffness
are learnt by the robot with DMPs during demonstrations,
which enables the robot to autonomously execute the task
according to task requirements. In [18], EMG signals are



used for stiffness estimation, and trajectories and stiffness
profiles are encoded in a unified way at the same time to
achieve a more complete skill transfer process. A modified
DMPs method is developed in [19] by adding a scaling factor
and a force coupling term that is derived from the adaptive
admittance control. With the modified strategy, trajectories
can be produced on the curved surface with better force con-
trol performance. However, [16]–[19] largely concentrate on
how to improve robots’ behavior with DMPs by skill transfer.
How to make robots efficiently cooperate with human users
to achieve a task in pHRI is still a critical issue that needs
to be further explored.

In pHRI, DMPs-based modeling is a powerful tool to
effectively capture and reproduce human behaviors by human
demonstrations. With the estimated human behaviors obtained
by DMPs, robot can adjust its movement or impedance to
meet the needs of humans with properly designed robotic
controllers. The works in [20]–[22] focus on DMPs-based
skill transfer from the perspective of trajectory learning and
trajectory adaptation that do not involve force learning. In
order to further improve the efficiency of pHRI, progress has
also been made in force learning on the basis of DMPs.
The force profile of humans is replicated and learned by
the robot in [23] by minimizing a quadratic cost function
of force error based on DMPs so that the robot can execute
a cooperative task with human with a desired force. In
[24], demonstration trajectory and force of human are first
obtained by using DMPs and then a robotic ILC is proposed
to compensate for the position offset for force adaptation in
human-robot cooperation. These two works offer new ideas
of combining DMPs and ILC to generate a desired interaction
force to complete the task. However, [23] and [24] separately
use DMPs and ILC, where DMPs are employed for the
generation of the initial trajectory and ILC is used for the
following update of the reference trajectory. Besides, [23] and
[24] consider the force compensated by the designed robotic
controller to complete a specific task instead of the interaction
force, which becomes the major motivation of our proposed
scheme.

Besides the iterative learning method, machine learning
methods, e.g., imitation learning and reinforcement learning
[25]–[27], which are commonly utilized for human-robot
interaction, can be used to learn the human behavior based on
DMPs. Compared with the existing machine learning meth-
ods, which come from the computer science field, the iterative
learning method originates from the control field and its sta-
bility and performance can be rigorously analyzed. Different
from the machine learning method that needs considerable
offline demonstrations, the online iterative learning method
can address uncertainties during human-robot interaction.

In this article, a DMPs-based high-level controller is de-
veloped to achieve a specific interaction force by formulating
a reference trajectory of the robot. Here, we use the Adam
optimization method [28] to minimize the force error based
on a recursive least square (RLS)-based estimator. A low-
level control is designed to realize trajectory tracking. The
major contributions of this paper can be summarized as
follows:

1) DMP is applied in this paper to encode the robotic
reference trajectory, and thus the essential assumption of
the traditional ILC, i.e., the iteration period is fixed [29]
that is hard to guarantee in pHRI, is not required in our
proposed strategy. Consequently, each iteration allows to
have a different duration with our proposed method and the
interaction force can arrive at the specific value regardless of
human’s motion speed.

2) Since the iterative update of the robot’s reference trajec-
tory depends on the phrase variable, our proposed algorithm
has the capability against the time-related uncertainty and has
better robustness than the traditional method that updates each
position point on the robot’s reference trajectory.

3) Compared with [15], the shape of the robot’s desired
reference trajectory does not need to be known as a priori,
which significantly expands its application domains.

The rest of the paper is structured as follows. The method-
ology of the DMPs-based trajectory learning for human-
robot interaction force control is introduced in Section II in
detail, where Section II-A presents the design of the low-level
robotic controller and a DMPs-based high-level controller
is proposed in Section II-B including the design steps of
the parameterization of the initial trajectory of the human
user, the update of the parameters and the robot’s reference
trajectory. Section III shows the experimental results with
comparisons and multiple subjects to prove the effectiveness
of the proposed algorithm. Section IV discusses how to
improve the robustness of the low-level controller and Section
V finally summarizes this paper.

Notation: In this paper, ℜn and ℜn×m stand for n-
dimensional column vectors and n×m dimensional matrices,
respectively. Vectors and matrices are represented as bold
small and capital symbols, respectively, and they are not bold
when n = 1 for vectors and n = m = 1 for matrices. The
n×n identity matrix is denoted by In. The circle operator ◦
denotes element-wise product of two vectors. For instance,
if vectors a and b are defined as a = [a1, · · · , an] and
b = [b1, · · · , bn], we have a ◦ b = [a1b1, · · · , anbn].

II. METHODOLOGY

In this section, a DMPs-based trajectory learning method is
designed for the interaction force control to meet some specif-
ic requirements as mentioned in the introduction section. With
its help, the actual iteration force will converge to a desired
value. The whole process is summarized by Fig. 1A, which
illustrates that pHRI is realized via physical contact. Based
on the measurable interaction force, the proposed DMPs-
based trajectory learning method enables generation of a
desired robot’s reference trajectory, which first needs several
offline demonstration trajectories of the human user, and then
requires online pHRI for learning. Details of the designed
DMPs-based trajectory learning method will be introduced
in the following. By tracking the generated desired reference
trajectory with a low-level control, a specific interaction force
will be achieved between the human user and the robot so that
the robot can assist the human user with a certain movement.
The framework of the developed method is illustrated by Fig.
1B.
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Fig. 1: A scenario of pHRI with our proposed scheme (A) and the proposed DMPs-based trajectory learning method (B).

A. Low-Level Robotic Controller Design

A low-level controller is first designed for reference tra-
jectory tracking of the robot. To simplify the analysis, the
following robot kinematics of 2D robot is considered

ẋ = J (q) q̇ (1)

where J (q) ∈ ℜ2×2 is the Jacobian matrix that is square and
invertible, x ∈ ℜ2 is the position of the robot in the Cartesian
space, and q ∈ ℜ2 is the coordinate in the joint space.

The dynamics of the robot manipulator in the joint space
can be expressed as

M (q) q̈ +C (q, q̇) q̇ +G (q) = τ + JT (q)fh (2)

in which M (q) ∈ ℜ2×2 denotes the inertia matrix of the
manipulator, C (q, q̇) ∈ ℜ2×2 is a matrix representing the
Coriolis and Centrifugal force, G (q) ∈ ℜ2 stands for the
gravitational force, τ ∈ ℜ2 denotes the control torque, and
fh ∈ ℜ2 is the force exerted by the human user.

Eq. (2) can be rewritten as

M̄ (q) ẍ+ C̄ (q, q̇) ẋ+ Ḡ (q) = f + fh (3)

where M̄ (q) = J−T (q)M (q)J−1 (q), C̄ (q, q̇) =

J−T (q)
(
C (q, q̇)−M (q)J−1 (q) J̇ (q)

)
J−1 (q),

Ḡ (q) = J−T (q)G (q), and f = J−T (q) τ represents the
control force in the Cartesian space.

Define the tracking error as

e = x− xr (4)

where xr ∈ ℜ2 is the reference trajectory of the robot. Comb-
ing a feedforward control term ff designed to compensate
for the undesired dynamics of the system

ff = M̄ (q) ẍr + C̄ (q, q̇) ẋ+ Ḡ (q)− fd (5)

and a feedback control term fb, which is also a PD control,
to stabilize the system

fb = −M̄ (q)Kdė− M̄ (q)Kpe (6)

the robotic controller is proposed as

f = ff + fb (7)

where fd is the specified interaction force, Kd ∈ ℜ2×2 and
Kp ∈ ℜ2×2 are positive control gains, i.e., parameters of
the PD feedback control term, which need to be designed for
control.

Define the interaction force error as

fe = fh − fd (8)

and then considering Eqs. (3) and (5)-(8) yields

ë+Kdė+Kpe = M̄−1 (q)fe. (9)

Apparently, by appropriately setting Kd and Kp, if fe

is able to converge to zero with the help of the high-level
control which generates a desired reference trajectory for the
robot, which is denoted by xd, this designed low-level robotic
control law in Eq. (9) ensures the stability of the interaction
system.

Remark 1: In the feedforward control term in Eq. (5), ẍr

is used to achieve the closed-loop system including position
and force errors in Eq. (9) rather than ẍ, which is hard to be
precisely obtained during human-robot interaction.

Remark 2: For a general case of a n-DoF (degree of
freedom) robot where the Jacobian matrix is not square, the
issue of Jacobian invertibility needs to be further considered
in the design of low-level controller [30], which is not the
focus of this paper and thus is not discussed here.

B. DMPs-based High-Level Controller

In this subsection, the proposed DMPs-based high-level
controller is designed. Following the robot’s desired trajectory
xd, the specific interaction force between human and robot
can be generated. To facilitate the analysis, only 1-DoF is
considered in the following, and it can be extended to the
case of multiple dimensions by introducing DMPs to each
dimension as in [31].
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1) Parameterizing the Initial Trajectory of the Human
User: In this subsection, DMPs are adopted to encode
and parameterize offline demonstration trajectories of the
human user to get the user’s initial trajectory, which is also
his/her contact-free trajectory without any external force. The
obtained trajectory parameters will be served as initial values
of the iterative learning laws in the next part.

A typical discrete DMP for a 1-DoF trajectory can be
described by

τ ϱ̇ = α (β (zg − z)− ϱ) + Ψ (s) (10)
τ ż = ϱ (11)

where z and ϱ are the position and the velocity of the DMP
system, zg is the target position, τ is a time constant used
for temporal scaling, with which the duration of the motion
can be adjusted, positive constants α and β that can be
respectively regarded as the spring and damping coefficients
determine the behavior of the DMP system, the phase variable
s enables the forcing term Ψ(s) to be active in a finite
time window and it is obtained from the following canonical
system

τ ṡ = −cs (12)

where the positive constant c is a decay factor. When s
converges from the initial value, which is typically set as
a positive constant, to zero with time, Ψ(s) will correspond-
ingly trend to zero and then the attractive point [zg, 0] can be
achieved for [z, ϱ].

The nonlinear function Ψ(s) in Eq. (10) is expressed as

Ψ(s) =

N∑
i=1

ξ0,iψi (s)

N∑
i=1

ψi (s)

s (zg − z0) (13)

which is a linear combination of N basis functions defined
as

ψi (s) = exp
(
−0.5bi(s− µi)

2
)
, i = 1, · · · , N (14)

where bi and µi, i = 1, · · · , N , are positive constants that
determine the width and the centers of ψi (s), respectively, z0
is the initial state of z at t = 0, and ξ0,i denotes the adjustable
weights of ψi(s) that can be obtained by minimizing the
following error function

min
∥∥Ψtarget (s)−Ψ(s)

∥∥2 (15)

with Ψtarget (s) defined as

Ψtarget (s) = τ ϱ̇demo − α (β (zg − zdemo)− ϱdemo) (16)

where zdemo and ϱdemo are respectively the position and
velocity of the human that can be collected from offline
human demonstrations.

Remark 3: With DMPs described by the nonlinear differ-
ential equations in Eqs. (10) and (11) [32]–[34], a discrete
movement, i.e., point-to-point movement, is generated, so that
DMP in Eqs. (10) and (11) is also called discrete DMP.
Observing Eqs. (10) and (11), it is known that they represent

a simple second-order system (a damped spring model) with
a PD-like controller and its velocity is modified by a linear
combination of N basis functions expressed by a forcing
term Ψ(s) in Eq. (13). With Ψ(s) being phasic, the simple
second-order system becomes a point attractive system and
the attractor landscape can be specified for the trajectory z
towards the goal zg.

Remark 4: Referring to [34], µi and bi in Eq. (14) can be
designed as µi = exp

(
−c i−1

N−1

)
and bi = 1

(µi+1−µi)
2 , which

are adopted in the following experiment in Section III.
The weighted linear regression problem in Eq. (15) can be

resolved by applying regression methods, e.g. locally weight-
ed regression. With the solution ξ0 = [ξ0,1, · · · , ξ0,N ]

T ∈
ℜN , the initial trajectory of the human user ϱ can be achieved
using Eqs. (10) and (11). By making use of the typical
discrete DMPs, the initial trajectory of the human user is
thus parameterized.

2) Updating Parameters of the Reference Trajectory of the
Robot: In this step, we will iteratively update the parameter
ξj of the forcing term Ψ(s) online. Since the parameters of
the forcing term Ψ(s) are constants, ξj remain unchanged
in the jth iteration and are iteratively updated according to
their values in the previous iteration. With these parameters,
a reference trajectory of the robot is generated with DMPs to
achieve the specific interaction force.

According to human motor control [35], the interac-
tion force from human user can be modeled as fh =
Kh (x− xh), where xh is the desired position of the human
user, and Kh is the stiffness of the human arm. Since x can
follow xr and xr generated by Eqs. (35)-(37) is related to
ξj in the jth iteration, fh,j can be conceived as a ξj-related
function. In other words, when the robot updates its reference
trajectory by updating trajectory parameters, the interaction
force will be correspondingly updated because of the change
of the current position x. If the specific interaction force is
defined as fd that allows to be a time-related function, the
interaction force error in the jth iteration is then expressed
as

fe (ξj) = fh (ξj)− fd (17)

where j = 1, 2, · · · ,M with M being the iteration number,
ξj = [ξj,1, · · · , ξj,N ]

T ∈ ℜN , and fh is the interaction force
induced by the human that is collected online.

Then we develop a performance index to guide the iterative
learning of ξj in terms of minimizing the interaction force
error

g (ξj) =

∫ Tj

0

∥fe (ξj)∥dt (18)

in which Tj represents the jth iteration duration.
If the gradient of the index function denoted by ∇g (ξj) ∈

ℜN between iterations is known, the Adam method [28], i.e.
a gradient-based optimization algorithm, is applied to find the
optimal solution ξ∗ = lim

j→∞
ξj , ξ∗ = [ξ∗1 , · · · , ξ∗N ]

T ∈ ℜN ,

that minimizes the index function in Eq. (16) as follows

εj = κεεj−1 + (1− κε)∇g (ξj) (19)
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λj = κλλj−1 + (1− κλ)∇gT (ξj)∇g (ξj) (20)

ε′j =
εj

1− κε
(21)

λ′j =
λj

1− κλ
(22)

ξj = ξj−1 −
κξ√
λ′j+η

ε′j (23)

where ξ∗ is the parameter of the desired reference trajectory
xd, κε , κλ and κξ are positive constants, ε′j ∈ ℜN and
λ′j ∈ ℜ are bias-corrections of moments εj ∈ ℜN and
λj ∈ ℜ respectively, and η is a positive constant for avoiding
singularity.

In Eq. (23), the initial iteration value of the trajectory
parameter ξj , which is also the initial trajectory parameter of
the human user ξ0, is obtained from Section II-B-1. However,
∇g (ξj) in Eqs. (19) and (20) can not be directly calculated
in the case of pHRI. To obtain ∇g (ξj), an estimator is
developed to endow the performance index function g (ξj)
with an explicit mathematical formulation and then ∇g (ξj)
can be calculated online and used for the aforementioned
learning process in Eqs. (19)-(23).

In this work, the estimator of g (ξj) is proposed as

ĝ (ξj) = ϕT (ξj)θj (24)

where ϕ (ξj) is the regressor vector that can be designed
using the m-order polynomial as

ϕ (ξj) =

1, ξT
j , ξ

T
j ◦ ξT

j , · · · , ξT
j ◦ · · · ◦ ξT

j︸ ︷︷ ︸
m


T

(25)

in which ξT
j ◦ · · · ◦ ξT

j︸ ︷︷ ︸
m

= [(ξj,1)
m
, · · · , (ξj,N )

m
] ∈ ℜN ,

ϕ (ξj) ∈ ℜNm+1, m is the user-defined number of the
polynomials, and the coefficients θj ∈ ℜNm+1 in Eq. (24)
can be calculated applying the RLS technique [36] as

σj =
1

ς

(
σj−1 −

σj−1ϕ (ξj)ϕ
T (ξj)σj−1

ς + ϕT (ξj)σj−1ϕ (ξj)

)
(26)

θj = θj−1 +
σjϕ (ξj)

ς + ϕT (ξj)σjϕ (ξj)

(
g (ξj)− ϕT (ξj)θj−1

)
(27)

where ς > 0 is a forgetting factor and σj ∈
ℜ(Nm+1)×(Nm+1).

Remark 5: The real value of g(ξj) can be calculated
according to Eq. (18), in which the interaction force error
is available as the actual force can be measured by a force
sensor while the desired force is given. The estimation of
g(ξj) is calculated according to Eq. (24). Therefore, the
accuracy of the estimator of g(ξj) can be evaluated by the
estimation error. Besides, since the estimator of g (ξj) is
designed based on RLS, its effectiveness in the presence of
perturbations has been proved by [35], [37], [38].

We re-express the vector θj obtained from Eqs. (26) and

(27) as

θj =
[
θ0,j , θ

1
1,j , θ

2
1,j · · · , θN1,j , · · · , θ1m,j , θ2m,j · · · , θNm,j

]T

(28)

and thus the gradient of the estimated index performance
function arrives at

∇ĝ (ξj) =

[
m∑
k=1

kθ1k,j(ξj,1)
k−1

, · · · ,
m∑
k=1

kθNk,j(ξj,N )
k−1

]T

.

(29)

In light of Eqs. (19)-(23), the Adam method is revised
based on the estimated gradient ∇ĝ (ξj) as

εj = κεεj−1 + (1− κε)∇ĝ (ξj) (30)

λj = κλλj−1 + (1− κλ)∇ĝT (ξj)∇ĝ (ξj) (31)

ε′j =
εj

1− κε
(32)

λ′j =
λj

1− κλ
(33)

ξj = ξj−1 −
κξ√
λ′j+η

ε′j (34)

with which lim
j→∞

ξj = ξ∗ and lim
j→∞

g (ξj) = 0 can be

achieved and the interaction force error iteratively tends to
zero, which means lim

j→∞
fh (ξj) = fd holds.

Remark 6: Adam method has been extensively used to
solve various problems, e.g., image processing, sparse prob-
lems, etc. Compared with the momentum method, Adam
method updates the parameter with a decaying mean over the
previous gradients, which contributes to more accurate fine-
grained convergence. It also enables the method to straightfor-
wardly correct for the bias arising from initialization to zero.
Taking these advantages into consideration, Adam method is
adopted to estimate the index performance function in this
paper.

3) Updating the Robot’s Reference Trajectory: Denote
Ψ(s) in the jth iteration with ξj as Ψj (s) and the de-
sired Ψ(s), with which the specific interaction force can be

achieved, as Ψd (s) =

N∑
i=1

ξ∗i ψi(s)

N∑
i=1

ψi(s)

s (zg − z0). Then according

to Eqs. (10) and (11), we have the following DMPs-based
high-level controller for the jth iteration

τ ϱ̇j = α (β (zg − zj)− ϱj) + Ψj (s) (35)

τ żj = ϱj (36)

where Ψj (s) is similar to Eq. (13) as

Ψj (s) =

N∑
i=1

ξj,iψi (s)

N∑
i=1

ψi (s)

s (zg − z0) (37)

zj is the updated robot’s reference trajectory denoted by xr,j
in the jth iteration, i.e. xr,j = zj holds in the jth iteration,
and ξj is updated as shown in Section II-B-2.

In this paper, xr,j denotes the actual reference trajectory
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of the robot generated by our proposed high-level controller
in the jth iteration. xd is the desired reference trajectory
of the robot. If the robot can strictly follow xd with the
proposed high-level and low-level controllers without any
tracking error, the desired human-robot interaction force can
be received. During control process, we expect that x follows
xr,j with the designed low-level controller and xr,j iteratively
follows xd with the designed high-level controller to achieve
the desired interaction force. Then Theorem 1 is introduced.

Theorem 1: With the gradient descent estimator in Eqs.
(24)-(27) and the low-level controller in Eqs. (5)-(7), the
DMPs-based high-level controller in Eqs. (30)-(37) enables
the human-robot interaction system described in Eq. (3)
to achieve a desired interaction force, and the closed-loop
system is asymptotically stable.

The proof of Theorem 1 is provided in Appendix.
With Ψj (s) in Eq. (37), the updated robot’s reference

trajectory zj can be attained by resolving Eqs. (35) and
(36). The conclusive procedures of the proposed DMPs-based
strategy are provided in Algorithm I.

Remark 7: As described in the introduction section, our
proposed method has three major contributions. For contribu-
tion 1), it attributes to Eqs. (18), (30)-(34). From Eqs. (18),
(30)-(34), it is known that an integral index of force error
is utilized to update the parameters of the robot’s reference
trajectory in each iteration. In this way, the condition of
fixed iteration period, which is caused by the point-to-point
update, is removed. Contribution 2) corresponds to Eq. (13),
from which it is known that the robot’s reference trajectory
is updated by updating the parameters of the forcing term
Ψ(s) that is defined on the phrase variable s rather than
the time domain. As a result, the developed scheme has the
capability against the time-related uncertainty, which leads
to its good robustness. Contribution 3) corresponds to the
DMPs in Eqs. (10)-(14). Since the DMPs can encode and
parameterize demonstration trajectories of the human user in
any pattern, the assumption of known shape of the robot’s
reference trajectory is removed in this paper.

III. EXPERIMENTAL RESULTS

Experiments have been conducted in this section to validate
our proposed method, which is desired to generate a specific
interaction force by updating the reference trajectory of the
robot. An interactive robotic platform H-MAN customized
for pHRI is used for the experiments.

As illustrated by Fig. 2A, H-MAN is a planar 2-DoF robot.
Its operation area is a 342 mm × 330 mm square. A human
user can interact with H-MAN by holding its handle that is
mounted on a slider, and at its end, a 6-DoF force sensor is
installed for measuring the pHRI force in real time. A GUI is
designed in the experiments to display a reference trajectory
to the human user, following which his/her demonstrations are
recorded by the robot, and a parameterized initial trajectory of
the human user can thus be synthesized off-line using DMPs.
Then by asking the human user to track the same trajectory
displayed in GUI online, the parameterized robot’s reference
trajectory is accordingly updated with our proposed scheme

Algorithm 1: Procedures of the proposed DMPs-based
pHRI force control algorithm

Input: Desired interaction force fd; coefficients for low-level
control Kd, Kp; for DMPs α, β, c, τ , zg , bi, µi; for
RLS-based estimator κε , κλ and κξ, η;

Output: Reference trajectory xr,j ;

1 begin

2 Fit the DMPs model using the demonstration data of the
human user to obtain the initial robot’s reference
trajectory with parameter vector ξ0.

3 for j = 1 to M do

4 Obtain g (ξj) in Eq. (18) based on a force sensor;

5 Apply the estimator in Eqs. (24)-(27) to obtain the
explicit mathematical formulation of ĝ (ξj);

6 Calculate ∇ĝ (ξj) as Eq. (29);

7 Update the parameter ξj of the robot reference
trajectory using the Adam method in Eqs. (30)-(34);

8 With the updated parameter ξj , calculate Ψj (s) as
Eq. (37) and update the robot’s reference trajectory
xr,j = zj based on DMPs described by Eqs. (35) and
(36);

9 Use low-level robotic controller f in Eqs. (5)-(7) to
make the robot track the reference trajectory xr,j .

10 end
11 end

and the interaction force is desired to achieve the specific
value with iterations.

In the following experimental results, we first show the
performance of our proposed DMPs-based trajectory learning
scheme. Then a comparison is made between the proposed
and existing trajectory learning techniques. Multiple human
subjects have been recruited to further validate the effective-
ness of our proposed method.

A. Performance of Our Proposed DMPs-based Trajectory
Learning Method

In this experiment, the performance of our proposed
DMPs-based trajectory learning method is shown in 1D and
2D cases. The desired interaction forces are set to be assistive
and resistive to emulate the different uses of our proposed
controller. In practice, if the human user cannot complete
a certain task due to some specific reasons, e.g., motor
dysfunction or other diseases resulting in limb weakness, the
robot providing assistive force will assist him/her with the
task. On the other side, the robot providing specific resistive
force will challenge the human user and contribute to his/her
recovery in rehabilitation.

In the experiment, the initial trajectory of the human user
is first obtained, based on which the robot will update its
reference trajectory for the specific interaction force.

1) Step 1: Obtaining the initial trajectory of the human
user: In this step, several demonstrations are conducted by
the human user without any robot control. The human user is
asked to hold the handle and repetitively follow the reference
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Fig. 2: The experimental setup - H-MAN (A), and demonstrations of the human user (grey lines) and the initial trajectory obtained with DMPs offline (red
line) (B): (a) 1D case, (b) 2D case.

trajectory as shown in GUI for five times in a natural and
comfortable way. Then the DMP technique is adopted to
parameterize the initial trajectory of the human user offline
and its parameters are selected based on experience. For 1D
case, the DMP is designed with parameters τ = 10, α = 5.66,
β = 6.55, and zg = 0.2. The decay factor of the canonical
system is designed as c = 4.94. For the 2D case, we design
zg as zgx = 0.2 and zgy = ±0.1, where the subscripts x and
y denote the X and Y axes, respectively. Other parameters
of DMPs are designed to be the same for x and y axes as
τ = 10, α = 3.30, β = 5.34, c = 4.94.

By parameterizing the recorded five demonstrations of the
human user for 1D and 2D cases, the initial trajectory is
synthesized and presented in Fig. 2B, where demonstrations
are shown in grey colour and the line in red colour denotes
the initial trajectory fitting with DMPs. By observing Fig.
2B, it is known that the initial trajectory of the human user
learned by DMPs has an irregular shape, which is hard to be
learned by the method in [15].

By using DMPs with the parameters given
above, parameters of human user’s initial tra-
jectory can be achieved for 1D case as ξ0 =
[8.7, 19, 29.5, 29.7, 9, 5, 13, 60.3, 14.9, 4.27]T, where ξ0,i is
the ith element of ξ0, and for the x axis of 2D case as ξx,0 =
[1.39, 2.59, 2, 2.7, 38.9, 0.1,−0.57,−2.7, 15.1,−53]T,
for the y axis is ξy,0 =
[1.5, 28.3, 3.32, 5.87,−40, 2.2, 15.7,−30,−28,−22.6]T.
The weight ξ0 for 1D case, and ξx,0 and ξy,0 for 2D case
obtained in this step are regarded as the initial values of the
parameters of the robot’s reference trajectory. They will be
updated online in the following step.

2) Step 2: Updating parameters of the robot’s reference
trajectory: In this step, the human user needs to iteratively
track 1D and 2D reference trajectories as shown in GUI that
are the same as the ones in step 1, in his/her own way, for
11 iterations. According to the interaction force measured by
the sensor in real time, the reference trajectory of the robot
will be accordingly updated with our proposed scheme.

a) For 1D case: The desired resistive and assistive inter-
action forces are designed to be position-dependent in the
following two cases:

case a: resistive force fd = −4x0.5 N;
case b: assistive force fd = 3x0.2 N.

The parameters of the proposed algorithm are designed as
κε = 0.7, κλ = 4.7, η = 10−3, α = 0.74, β = 0.74, and
κε = 0.3, κλ = 8.5, η = 10−3, α = 0.56, β = 0.45 for cases
a and b, respectively.

The robot’s reference trajectory, the interaction force error
as well as the performance index g(ξj) in different iterations
are presented in Fig. 3(a-c) for case 1 and Fig. 3(d-f) for case
2, respectively. As shown in Fig. 3, with trajectory parameters
ξj that are updated with our proposed method, the robot’s
reference trajectory converges with time, which is in line with
the theoretical analysis. After 9 iterations, the specific pHRI
force fd is achieved with a small force error as illustrated by
Figs. 3b and 3e. Besides, the performance index g(ξj) also
decreases with iterations and finally converges to zero. As a
result, our proposed approach enables the interaction force to
achieve the specific value for both resistance and assistance
in 1D case.

b) For 2D case: The specific interaction force fd is
designed as:

case c: resistive force with ∥fd∥ = 4N;
case d: assistive force with ∥fd∥ = 3N.
The parameters of the proposed algorithm are designed

to be the same for x and y axes as κε = 0.11, κλ = 4.70,
η = 7×10−3, α = 0.95, β = 0.63 and κε = 0.30, κλ = 6.68,
η = 7 × 10−3, α = 0.61, β = 0.23 for cases a and b,
respectively.

The iteratively updated robot’s reference trajectories are
presented in Fig. 4a for case c and Fig. 4d for case d.
By observing Figs. 4a and 4d, it is seen that the reference
trajectories of the robot iteratively update towards opposite
directions in cases c and d due to the different directions of
the specific force fd. Besides, because of the resistance in
case d, the human user does not return to the start point in
the given time as shown in Fig. 4d.

According to experimental results shown in Figs. 2-4, the
effectiveness of the proposed scheme is validated.

B. Comparison with a Traditional Control Strategy

To address the advantage of our developed method, the
experiment results with an existing ILC method [12] are
presented in this section for comparison.

Similar to our proposed scheme, the existing method
focuses on regulating the robot’s reference trajectory via a
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Fig. 3: Performance of our proposed scheme in cases a and b of 1D case: (a) robot’s reference trajectory in case a, (b) interaction force error in case a, (c)
performance index function g(ξj) in case a, (d) reference trajectory in case b, (e) interaction force error in case b, (f) g(ξj) in case b.

Fig. 4: Performance of our proposed scheme in cases c and d of 2D case: (a) robot’s reference trajectory in case c, (b) norm of the interaction force error in
case c, (c) performance index function g(ξj) in case c, (d) reference trajectory in case d, (e) norm of the interaction force error in case d, (f) g(ξj) in case d.

point-to-point approach for a specific interaction force. Its
core idea is described as follows [12]

xr,j = xr,j−1 +αfh (38)

where α is a positive constant denoting the learning speed.
In this experiment, we tune the parameter α = 4.3I2 to
ensure desired control performance for comparison. In Eq.
(38), the robot’s reference trajectory is updated based on
the information collected from the last iteration in the time
domain.

With both existing and proposed strategies, the human user
is asked to perform the experiment with hand trembling to
explore the performance of our proposed method for the cases
discussed in Section III-A. Interaction force errors in the 11th
iteration of cases a and b in 1D case and cases c and d in 2D

case are shown in Figs. 5A(a-d), respectively. From Fig. 5A,
it is clear that the specific interaction force can be achieved
with our proposed approach with a smaller force error despite
disturbances caused by the trembling hand. Consequently, the
proposed approach provides better performance as compared
to the existing trajectory learning method in [12], and our
method is more robust against the disturbance.

C. Multiple Human Subjects Experiments

To further test whether our proposed method is effective for
different individuals, five human subjects (two females and
three males whose ages are between 20 and 40) are recruited
to perform the experiment with our proposed method and the
existing method in [12] for the four cases as discussed before
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Fig. 5: Tracking error and its norm with the existing and the proposed methods in the last iteration of different cases (A): (a) case a of 1D case, (b) case b
of 1D case, (c) case c of 2D case, (d) case d of 2D case, and interaction force errors of five human subjects with the existing and the proposed methods in
the last iteration of different cases (B): (a) case a of 1D case, (b) case b of 1D case, (c) case c of 2D case, (d) case d of 2D case.

(cases a and b for 1D case, and cases c and d for 2D case),
which is approved by the Sciences and Technology Cross-
Schools Research Ethics Committee of Sussex University,
with reference number ER/YL557/1. All the subjects need
to practice until they are familiar with the experiment. After
that, five demonstrations are done offline for step 1, and five
pilots (each pilot includes 12 iterations) are performed online
for step 2 of each case. Disturbances are introduced to the
control signal during the experiment.

The average interaction force errors of five pilots of five
human subjects for cases a and b in 1D case and cases c
and d in 2D case with both existing and proposed methods
are presented in Figs. 5B(a-d), respectively. Fig. 5B shows a
considerable difference between the two methods. With the
proposed approach, the norm of the interaction force error
is reduced to less than 0.1N in 1D case and ≈< 0.2N in
2D case. It shows that the proposed approach can overcome
noises, and provide a specific force with less error and mostly
shorter error bars, i.e., less deviation, for different individuals.
Consequently, it caters to different individuals’ requirements
and can provide users with a specific assistive or resistive
interaction force as needed.

IV. DISCUSSIONS

In practice, fe in Eq. (8) does not asymptotically converge
to zero, as it is shown also in the results. The bounded steady-
state error of fe is caused by the external disturbance or
the uncertain dynamics of the robot. If we denote the time-
varying disturbance acting on the robot as d ∈ ℜ2 and the
state-related uncertainty as Φ (q, q̇) ∈ ℜ2. Then the closed-
loop system in Eq. (9) is rewritten as

ë+Kdė+Kpe = M̄−1 (q) (fe + d+Φ (q, q̇)) . (39)

Observing Eq. (39), it is known that only the boundedness
of e can be guaranteed if d and Φ (q, q̇) are bounded. As a
result, fe will not asymptotically converge to zero.

To solve this problem, we can improve the robotic low-
level controller by introducing a disturbance/uncertainty com-
pensation term. To cancel the negative effect of d that
satisfies ∥d∥ ≤ D, where D is a positive constant, a
term −D sgn (ė) [39] can be added to the controller f ,
where sgn is a signum function that can be replaced with
a tanh-function [40] or a saturation function [41]. Compared
with signum function, tanh and saturation functions enable
smoother control performance without chattering. However,
different from signum function, which endows the closed-
loop system with asymptotical stability, tanh and saturation
functions can only guarantee the stability of the system with a
steady-state error, which can be adjusted by changing control
parameters. Besides, a disturbance observer can be designed
to estimate and compensate for the external disturbance [42].

To compensate for the undesired effect of the uncertainty,
a neural network adaptive term [43] or a fuzzy adaptive term
[44] can be introduced to f to approximate and compensate
for Φ (q, q̇).

V. CONCLUSIONS

In this paper, a DMPs-based trajectory learning method is
developed for interaction force control. The proposed algo-
rithm aims at achieving a specific interaction force between
human and robot. The merit of DMPs, namely capturing the
characteristics of the system by parametrization, is integrated
into our strategy so that the robot iteratively updates its
reference trajectory by updating parameters of DMPs without
any restriction of iterative time duration and against time-
related uncertainty. To do so, a performance index function is
designed, whose gradient is calculated by an RLS-estimator,
and Adam method is adopted to search the optimal parameters
of DMPs that can generate a desired reference trajectory
of the robot. In this way, the actual interaction force can
converge to a specific value with iterations. The experiment
results with multiple subjects are conducted so that the
effectiveness of the proposed scheme is validated.
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APPENDIX

Combing Eqs. (35) and (36) in the revised paper, one gets

τ2z̈j + ατżj − αβ (zg − zj)−Ψj (s) = 0. (40)

With the desired forcing term Ψd (s) =
N∑

i=1

ξ∗i ψi(s)

N∑
i=1

ψi(s)

s (zg − z0), xd for the specific interaction

force satisfies the following dynamics

τ2ẍd + ατẋd − αβ (zg − xd)−Ψd (s) = 0. (41)

Combing Eqs. (40) and (41), we have

τ2z̈e,j + ατże,j + αβze,j = Ψe,j (s) (42)

where ze,j = zj − xd and Ψe,j (s) = Ψj (s)−Ψd (s).
Design a Lyapunov function of the system for the jth

iteration as follows

Vj =
1

2
αβz2e,j +

1

2
τ2ż2e,j . (43)

Taking time derivative of Eq. (43) yields

V̇j = αβze,j że,j + że,j (Ψe,j (s)− ατże,j − αβze,j)

= −ατż2e,j + że,jΨe,j (s) . (44)

In view of the convergence property of the Adam method
and the attenuation of s as reflected by Eq. (12), it is known
that Ψe,j (s) is bounded and Ψe,j (s) → 0 holds when
j → ∞. Regarding Ψe,j (s) as a virtual control input, from
Eq. (44), one gets V̇j = −ατż2e,j ≤ 0 for j → ∞. Define a

set Ω as Ω =
{(
ze,j , że,j

) ∣∣∣V̇j = 0
}

. If V̇j = 0, że,j = 0 is
satisfied. As a result, że,j = 0 is necessary and the set Ω can
be rewritten as Ω =

{(
ze,j , że,j

) ∣∣że,j = 0
}

. When że,j = 0
holds, z̈e,j = 0 holds, and ze,j = 0 can be obtained for
j → ∞ from Eq. (42). As a result, using LaSalle’s invariance
theorem [45], it is known that the system is input-to-state
stable and

(
ze,j , że,j

)
will eventually converge to (0, 0), i.e.,

lim
j→∞

ze,j = 0 and lim
j→∞

że,j = 0. It means that the reference

trajectory of the robot can iteratively converge to the desired
value in the sense of xd = lim

j→∞
zj = lim

j→∞
xr,j , following

which the specific interaction force can be finally generated.
Therefore, the system stability with the proposed DMPs-
based high-level controller is proved. To notice, the above
proof process is inspired by [46], in which more details of
the proof can be found.
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