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Abstract 

UK transport policy has shifted dramatically in recent years. The new policy 

direction seeks to promote walking as an alternative to the car for short trips. 

Midblock signalled pedestrian crossings are a common method of resolving the 

conflict between pedestrians and vehicles. 

This paper considers alternative operating strategies for midblock signalled 

pedestrian crossings that are more responsive to the needs of pedestrians without 

adding to the costs of business by increasing delay to motorists and freight traffic. 

Specifically the paper considers the development of a pedestrian gap acceptance 

model that would be required in the proposed strategies. A succession of artificial 

neural network models are developed and factors influencing performance of the 

models both in terms of accuracy and processing requirements are considered in 

detail. The paper concludes that a feedforward artificial neural network using 

backpropagation can deliver a gap acceptance model with a high degree of accuracy 

within the context and constraints under which it has been developed. 
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1 Introduction 

1.1 UK transport policy 

Until recently transport policy emphasised the role of the private car as a 

symbol of personal freedom. During the 1990s transport policy entered into a state of 

flux with a realisation that, with rising levels of traffic and congestion and a 

deterioration in the quality of the urban environment for pedestrians, it was no long 

acceptable to continue to concentrate on the needs of the motorist. In 1998 the 

publication of the first Transport White Paper for some 20 years set out a new policy 

agenda build around the need to reduce car use and promote alternative means of 

travel. For local journeys, walking is seen as a suitable alternative mode of transport 

and the Government wishes to make walking a more viable, attractive and safe option. 

The White Paper ‘A New Deal for Transport – Better for Everyone’ (DETR, 1998) 

sets an expectation for local authorities to give more priority to walking.  The aims 

include reducing waiting times for pedestrians at traffic signals and giving them 

priority in the allocation of time at junctions where this supports more walking. 

This improvement for pedestrians needs to be achieved without increasing 

delays (and costs) to essential road users.  Congestion and unreliability of journeys 

add to the costs of business, undermining competitiveness particularly in our towns 

and cities where traffic is worst. The CBI has put the cost to the British economy at 

about £15 billion every year, some estimates are lower but agree that the cost to the 

nation runs into billions of pounds every year and is rising (DETR, 1998). Hitherto, 

provision of new capacity was the accepted means to address these issues. However, 

current and future policies are likely to focus attention on making better use of the 

existing infrastructure. Existing infrastructure is not only for use by goods distribution 

vehicles and private cars. New policies raise the profile and importance of provision 

for pedestrians and public transport vehicles (primarily buses). Goods logistics in 

particular is based increasingly on just-in-time deliveries. Overall journey time and 

more specifically journey time reliability are critical factors. Continued increase in 

congestion and further competition for roadspace from pedestrians and public 

transport could pose serious problems for the freight industry. The research described 

in this paper endeavours to reconcile the conflicting requirements of motorised traffic 

and pedestrian movements. 
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1.2 Existing pedestrian crossing facilities 

In the United Kingdom most signalled midblock pedestrian crossings are of 

the Pelican (Pedestrian Light Controlled) type. The United Kingdom has more than 

11000 Pelican crossings (County Surveyors' Society, 1994) installed between 

junctions to provide pedestrians with signal protected periods in which to cross 

streams of traffic between junctions. The operational strategies for Pelican crossings 

(DoT, 1995) are based on default priority for vehicles with pedestrian right of way 

available, on demand, at times and with frequencies that are consistent with 

minimising delay to vehicle occupants. At most crossings vehicle precedence is 

retained during periods when vehicle flow is sufficiently low for pedestrians to 

identify gaps in vehicle arrivals in which they can cross the road. Current operating 

strategies impose substantially higher delays on pedestrians who obey the signal 

indications. There is thus a strong incentive for pedestrians to seek to reduce their 

delay by crossing in gaps in traffic flow when the red man is showing. Pedestrians 

become particularly impatient when a red man continues to be shown during periods 

of low vehicle flow. The reduction of unnecessary delay for pedestrians who obey the 

signal indications would encourage more pedestrians to use the facility correctly and 

reduce pedestrian annoyance and risk taking. Although no clear relationship has been 

established between pedestrian delay and casualties, a more balanced and responsive 

approach to the allocation of time at Pelican crossings has the potential to make a 

substantial contribution to a decrease in pedestrian casualties as well as improving 

pedestrian amenity. 

 

1.3 Alternative operating strategies for pedestrian crossing facilities 

The proposed alternative strategies are based on the concept that it is possible 

to identify, in advance, a sequence of vehicle arrivals at a midblock signalled 

pedestrian crossing which the average pedestrian would perceive as a crossing 

opportunity.  This information can then be applied to provide an operating strategy 

that is more responsive to pedestrian demand by providing an earlier change to 

pedestrian precedence than is possible currently.  The enhanced strategies will 

minimise disbenefit, which may otherwise be associated with a system which is more 

responsive to pedestrian demand, to vehicle occupants by making more effective use 

of periods of low vehicle flow.  The enhanced strategies depend on developing a 
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technique to identify vehicle arrival patterns which represent a gap crossing 

opportunity for the average pedestrian. 

The study of pedestrian response to gaps in vehicle flow is well established.  

Traditional models (Tanner, 1951) of pedestrian road crossing delay are based on 

strategies in which pedestrians respond to symmetrical nearside and farside gaps.  In 

practice pedestrian response in interpreting and responding to gaps is more complex.  

Artificial neural networks (ANNs) provide a tool for developing an appropriate on 

line system that can interpret a greater number of possible explanatory variables for 

crossing behaviour in an efficient way with a potential enhancement in performance. 

The potential of ANN techniques continues to be assessed in a wide and diverse range 

of transport applications (Dougherty, 1995). This paper considers the use of a 

feedforward ANN trained using backpropagation to develop an ANN gap acceptance 

model for pedestrian crossing opportunities. The backpropagation learning algorithm, 

used with a feedforward ANN (Multi-Layer Perceptron), is the most widely applied 

arrangement in both research and development (Taylor, 1994). The Learning Vector 

Quantization paradigm (an alternative ANN model form used for classification tasks) 

was also assessed during the research but failed to improve on the results presented in 

this paper. Model development has made use of the ANN software simulation 

package Predict (NeuralWare, 1995). In addition to the primary aim of assessing the 

viability of the proposed approach, the focus of the research has been the data used in 

model development with an aim to determine and minimise appropriate input 

parameters for the gap acceptance model. A pragmatic approach has been adopted 

whereby a succession of increasingly improved models are developed based on 

reasoned decisions concerning options, settings, parameters and forms of data 

representation for preceding models and their associated performance with the 

available data. 

 

 

 

 

2 Development of Gap Acceptance Models Using Site Data 
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2.1 Description of the Data Set 

In a previous study of pedestrian gap acceptance (Hunt and Griffiths, 1991), 

more than 13,000 pedestrian crossing manoeuvres were analysed and described by a 

digital representation of key events. Each pedestrian manoeuvre consisted of a 

number of rejected crossing opportunities followed by an accepted opportunity. Each 

opportunity is represented as an example in the database including the crossing 

decision of the pedestrian for each opportunity. At a single point in time a pedestrian 

can be presented with more than one crossing opportunity in terms of how he/she 

elects (or not) to cross the road (see Figure 1). Each crossing situation therefore 

comprises a set of opportunities of this type. Table 1 shows an example of a set of 

crossing opportunities presented at a single point in time. For the example shown in 

the Table the pedestrian elects to cross between the 4th and 5th farside vehicles. 

Figure 1 

Table 1 

2.2 Look-up Table Model 

Considering the variables Near, Far1 and Far2 as the only determinants of gap 

acceptance for an average pedestrian, the data set can be used to produce matrices 

showing the probability of acceptance by pedestrians according to time gaps tabulated 

using intervals for Near, Far1 and Far2. Figure 2 shows the resulting tables of 

probabilities of a crossing opportunity being rejected for a 10.0m wide road based on 

data from multiple sites. It must be noted that the matrices present probabilities of 

rejecting a particular crossing opportunity and not, as individual values, the 

probability of electing whether or not to cross the road at a particular instant in time 

when presented with a set of crossing opportunities (as illustrated in Figure 1). 

Figure 2 

2.3 ANN Models 

The first stage of this research was to determine how well an ANN model 

could perform when presented with crossing opportunity data from the observed data 

sets and required to determine the gap acceptance decision for each opportunity. The 

data set consisted of a series of sub-sets representing data collected from several sites 

in South Glamorgan, Wales (the matrices in Figure 2 are based on these and other 

sites from different regions). The Predict software was used to develop 

backpropagation-based ANN models. 
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The data sub-set for a single site was first used (with the assumption that 

modelling performance might be better when using site specific data to develop the 

model). The data were divided in two with half the examples used to train and test the 

ANN and the remaining data used for validation.  

For the single site the overall accuracy of classification of gap acceptance 

decisions was 95 % (for the validation data). An ANN developed subsequently using 

the multiple site data set produced a classification accuracy of 92 % suggesting that 

site specific characteristics were not markedly influencing gap acceptance decision 

making. 

In view of these promising results, a more detailed ANN approach was 

considered that involved presenting the ANN with raw data i.e. vehicle arrival times 

as they would be recorded in practice. 

 

3 Development of Gap Acceptance Models Using Simulated Data 

The raw data were not available for the observed data sets used previously. An 

approach was therefore adopted in which the raw vehicle arrival data were generated 

using an algorithm and the corresponding crossing decisions in practice made by an 

average pedestrian were determined based on the look-up tables. It should be noted 

that model performance now reflects that of modelling the average pedestrian and not 

the ability to model decisions of individual pedestrians on street. 

 

3.1 Vehicle Arrival Data 

When standing at the kerbside waiting to cross a road a pedestrian’s 

immediate consideration is the first vehicle to approach on the nearside and the first 

vehicle to approach on the farside of the carriageway. In addition to the first farside 

vehicle, subsequent farside vehicles are relevant as the pedestrian may choose to 

leave the nearside kerb and then allow one or more farside vehicles to cross his/her 

path before crossing to the farside kerb. This is addressed using the look-up tables by 

considering a set of crossing opportunities associated with different pairs of farside 

vehicles. 

Inputs to the ANN model had to effectively include all farside vehicle arrivals 

that would be included in a set of crossing opportunities. Further to this, an ANN 

must have a fixed number of inputs. An appropriate number of inputs was selected 
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that would generally represent all relevant crossing opportunities. However, some 

examples will have fewer associated crossing opportunities, i.e. when fewer farside 

vehicles are in the pedestrian’s field of view. For such examples an input value must 

still be assigned to farside vehicles that are not 'present'. 

Based on the assumption of vehicle detectors in practice positioned 150m 

from the crossing it was determined that 5 farside vehicle arrivals would be 

considered for ANN input and that a default value equal to a gap of 10s would be 

assumed for a vehicle that was not 'present'. The value of 10s was chosen because it 

would be large enough to always be interpreted as an acceptable gap and would 

minimise any degradation of ANN performance. The ANN normalises all inputs 

based on the minimum and maximum values found in the training database associated 

with each input. A very large default value could effectively distort the normalised 

values by reducing the differences between the real values for that input (although 

Predict does have built in capability to separate out outlying clusters of input data). 

The input variables (all with units of seconds) considered were: 

N (the arrival time of the first nearside vehicle) 

F1 (the arrival time of the first farside vehicle) 

F2 (the gap between the first and second farside vehicles) 

F3 (the gap between the second and third farside vehicles) 

F4 (the gap between the third and fourth farside vehicles) 

F5 (the gap between the fourth and fifth farside vehicles) 

 

Vehicle arrival data were generated for two directions of travel using the 

displaced negative exponential distribution and a random number generator (Salter 

and Hounsell, 1996). Random headways were produced based on an assumed traffic 

flow of 600 veh/h/direction. To produce pedestrian crossing decision examples the 

following steps were then taken using these data. 

For each second in time and for each direction of travel: 

1. Calculate values for N, F1, F2, F3, F4 and F5 based on vehicle arrivals at the 

nominal crossing point. The random generation of gaps is assumed to take place at 

the detector location for each direction of travel. It is then assumed in turn that 

calculation of vehicle arrivals at the crossing point are based on a cruise journey 

time from each detector of 15s. 



 8

2. Translate the N, F1, F2, F3, F4 and F5 data into a set of (Near, Far1, Far2) 

crossing opportunities. 

3. Use Figure 2 to obtain an associated probability of each opportunity in the set 

being rejected. If at least one opportunity in the set has a probability of less than 

0.5 then it is assumed that when presented with this set of crossing opportunities 

at a given point in time the average pedestrian elects to cross the road. 

4. Output N, F1, F2, F3, F4 and F5 plus the crossing decision determined from steps 

2 and 3. 

Data were generated for a 1 hour period - this produced 7148 examples (= 

3600 seconds x 2 directions - 52 examples with no vehicles between detectors and 

crossing location). The mix of data generated is dependent on the selected flow of 600 

veh/h. To check that a representative mix of examples had been generated, 

frequencies corresponding to the cells of the matrices in Figure 2 were determined. 

All cells were found to contain an acceptable number of examples. 

 

3.2 ANN Model Results 

Data were split between train/test data (first 3598 examples) and validation 

data (remaining 3550 examples). Backpropagation-based ANN models were 

developed using Predict. 

An ANN trained using all 6 input parameters achieved a prediction accuracy 

of 90 % on the validation data. It was subsequently found, when considering the 

relative importance of the available input parameters that by only using N and F1 for 

the same model development data sets, a comparable prediction accuracy of 89 % was 

achieved. This suggested initially that most of the causal information associated with 

the gap acceptance decision is provided by these two variables. To determine the 

validity of this finding the validation data examples were considered according to the 

input variables N and F1 as shown in Figure 3. 

Figure 3 

Figure 3 highlights some very clear classification boundaries in the data. It 

must be noted that this clarity has arisen in part because the data represent decision 

outcomes for an average pedestrian. In practice it is likely that, for example, ‘accept’ 

decisions will be made by some pedestrians faced with a situation defined by N<5s. 

However, all such situations for the average pedestrian are rejected as shown in 



 9

Figure 3. The typical walking speed of a pedestrian can be taken as 1.2 m/s. At this 

speed it would take just over four seconds to cross the nearside lane of a 10.0m wide 

road. The decision making resulting from the model is therefore intuitively sensible. 

When N>6s and F1<6s there is not a single gap acceptance decision for the average 

pedestrian, with both reject and accept decisions being made depending upon the 

values of F2-F5. 

The Figure broadly indicates that only situations that are represented by N>6s 

and F1<6s have, collectively, an inconclusive outcome. The majority of examples can 

be explained by N and F1 alone. Visualisation of the data and model performance as a 

2-dimensional space portrayed in Figure 3 suggests that the predominance of 

examples whose associated outcome is determined by the N =5-6s boundary has 

saturated the model development process.  This has effectively prevented the more 

subtle distinctions between examples in the bottom right corner from being 

recognised during model development. 

 

3.2.1 Data sub-set analysis 

To determine the importance of the F1-F5 variables a series of further models 

were built. For the building of these models different (sub)sets of input variables were 

available and different data sets were used.  

Table 2 

Table 2 highlights the predominant use, when the entire data set is used, of the 

N input in model development with only marginal improvements in response 

accuracy when any or all of F1-F5 are also included as inputs. Indeed the model 

development process completely rejects F3 and F5 as usefully contributing inputs. 

However, when the subset of data is considered (N>6s, F1<6s) the variables F1-F5 

become much more important. Model 4 rejects the use of F1. This is intuitively 

sensible for F1<6 and for a 10.0m wide road since F1 will not be used by the average 

pedestrian as a gap through which to cross. The reduction in misclassifications in 

Model 4 (for N>6s, F1<6s examples) appears to be more-or-less uniform across the 

input environment space. To check this, a further subdivision of the data was made 

according to whether F2 was more or less than six seconds. Two separate models 

were trained using the subdivided data but only a marginal difference in performance 

was found. 
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Table 3 compares the prediction errors of two models. The first is a pure ANN 

model (Model 1) that is trained and tested using all the data. The second (Model 4) is 

effectively a hybrid rule-based/ANN model. If N<6s then the situation is rejected by 

the average pedestrian. If N>6s and F1>6s then the situation is accepted by the 

average pedestrian. If, however, N>6s and F1<6s then an ANN trained and tested 

using only examples corresponding to this situation (Model 4) is used to determine 

the average pedestrian’s decision. The Table reveals a marked improvement in 

classification performance between the first and second model for examples where 

N>6s and F1<6s. Overall model performance is also improved with nearly 94 % of 

situations being correctly classified. 

Table 3 

3.2.2 No data transformation 

Predict, by default, considers input data transformations in an attempt to 

improve correlations between the input and output parameters. This process can lead 

to improved model performance but not necessarily. If transformations are identified 

the process augments the number of input parameters and hence the pre-processing 

and processing requirements. Model 4 considered above included one additional input 

resulting from inclusion of a transformation. A new model was developed using the 

same data and available input parameters as Model 4 but with no data transformation 

permitted. The resulting model performance was marginally better than that of Model 

4 with 79% correct classification for the validation data. This was repeated but with 

F1 removed (this parameter provides no useful information as explained above). The 

model (Model 8) correctly classified 81 % of validation examples. Using this ANN as 

the ANN in the hybrid model described earlier provides a model that correctly 

classifies 94.5 % of validation examples. Avoidance of transformed inputs means that 

the model can effectively take input data directly from detector output. Since 

performance has not been adversely affected, it was determined not to allow input 

transformations during development of subsequent models. 

 

3.3 Minimising Network Size 

Network size dictates the processing requirements of the deployed ANN 

model. In this application it is desirable to minimise processing requirements and 

hence network size. There are two means of reducing network size: 
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1. reduce the size of the hidden layer in the ANN; and 

2. reduce the number of inputs to the model. 

 

3.3.1 Reducing the size of the hidden layer 

The backpropagation ANN Model 8 had 17 hidden layer PEs. Predict uses a 

technique called Cascade Correlation during the network building stage of model 

development. This process effectively increases the size of the hidden layer 

incrementally until no further performance improvements can be achieved. Two new 

ANNs were developed in which the maximum size of the hidden layer was restricted 

to 10 and 5 PEs. The models were the same as Model 8 in all other respects. The 

performance results are shown in Table 4. With the same number of input parameters 

for all three models, reducing the size of the hidden layer from 17 does compromise 

performance. 

Table 4 

3.3.2 Reducing the number of inputs to the model 

It has already been determined that the input parameter F1 can be excluded 

without any detriment to model performance. The simulated data for model 

development assumed the inclusion of five farside vehicles for model input data with 

a default gap size of 10s for missing values when there were less than five vehicles 

between the detector and the crossing location. Although Predict has elected to 

include all farside input parameters except F1 an attempt was made to see if any 

further parameters could be removed without excessive detriment to performance. 

Figure 4 shows, for data where N>6s and F1<6s, the number of examples in the 

combined train/test/validation data sets where a default value of 10s was used for each 

farside input parameter. 

Figure 4 

Nearly 89 % of examples have only four farside vehicles between the detector 

and the crossing, hence F5 in all these cases has a fixed value of 10s. Consequently an 

ANN identical to Model 8 but with input parameter F5 removed was developed 

(Model 11). The model results are compared in Table 4. The new model has a 

marginally better performance than Model 8 and, probably as a consequence of 

having fewer inputs, also has far fewer hidden layer PEs than Model 8 despite having 

the same limitation on hidden layer size during training. 
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4 Final Model Specification 

Figure 5 shows the hybrid rule-based/ANN pedestrian gap acceptance model 

that has been produced. When presented with unseen validation data the model 

correctly classifies 94.7 % of examples overall. The model represents decisions made 

by the average pedestrian when crossing a 10.0m wide road. The model has been 

developed using simulated input data. Output classifications are based on observed 

data processed into probability matrices. 

Figure 5 

5 Conclusion and Discussion 

This research has produced a pedestrian gap acceptance model that interprets 

input data that could in practice be provided, with minimal processing, from vehicle 

detectors. The model’s performance in the context of the model development data 

used is commendable. 

The classification performance figures quoted in the report must be set into 

context. The figures for the complete data sets are dependent on the mix of examples 

in the data sets. More importantly the results represent the model’s ability to model 

decision making of an average pedestrian. In practice individual pedestrians will 

make different decisions to those of the average pedestrian. Approximately 80 % of 

individual crossing decisions in practice would concur with those of the average 

pedestrian (non N>6s, F1<6s examples). Hence it is likely that Model 11 which 

correctly classified 94.7 % of average pedestrian examples would, in practice, 

correctly classify approximately 75 % of individual pedestrian decisions. Without 

input variables such as age and gender to be able to distinguish between individual 

pedestrians the only course of action is to model the average pedestrian. 

The ANN-based model has produced a classification performance nearly as 

good as that produced by the use of probability matrices. The use of the probability 

matrices in practice is inhibited by the data storage and processing requirements that 

would be imposed compared to the ANN alternative. In this feasibility study the two 

approaches are linked by the data used to develop the ANN model. It can be argued 

that this has in fact prevented an ANN approach from performing to its full potential. 

The observed data upon which the matrices are based only considers the first nearside 

vehicle. In practice further nearside vehicle arrivals may provide more causal 
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information to the model. The outcome classifications used for model development 

are derived directly from the probability matrices. The matrices reflect crossing 

opportunities as opposed to crossing situations (comprising a set of opportunities). In 

practice the acceptance or rejection of an individual opportunity is likely to depend 

upon the other opportunities that present themselves in a given crossing situation. In 

this context the probability values in the matrices are governed by the particular 

crossing situations that were observed. There is some potential for confusion in this 

mixing of opportunity based data and crossing situation modelling. Ideally new 

observed data would need to be collected to meet the requirements of the modelling 

approach adopted to determine the model’s true performance ability in practice. 

One issue that arose during model development was the use of default input 

values when no value was available in a particular example. The effect of doing this 

has not been explored explicitly in this study. The default values were selected with 

the intention of their effect on the model’s output being negligible. The overall 

performance of Model 11 appears very good. However, it is possible that the default 

values may adversely affect model performance in some situations. This is not an 

issue unique to this study but remains something that merits separate investigation. 

It must be noted that the gap acceptance decisions used in this study are based 

on observed crossings at random crossing locations. Nonetheless these data are of a 

similar form to those for midblock signalled crossings and the successful development 

of an ANN based model for the random crossing data clearly demonstrates the 

viability of the technique. Taking into account the preceding discussion, this 

feasibility study strongly indicates that it is possible to model pedestrian gap 

acceptance decisions with a high degree of accuracy. The resulting model should 

therefore satisfy the first requirement of the proposed enhanced operating strategies 

for pedestrian crossings. 
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1st crossing opportunity:

2nd crossing opportunity:

3rd crossing opportunity:
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Figure 1.  Representation of gaps defining a set of crossing opportunities for 

a given crossing situation. 



 16

Far2      0-1  1-2  2-3  3-4  4-5  5-6  6-7  7-8  8-9  9-10 10+  Far1
10+   100  100  100  100  100   99   99   97   97   99   65
9-10   100  100  100  100  100  100  100   99   97   94   65
8-9   100  100  100  100  100  100  100   99   97   95   62
7-8    100  100  100  100  100  100  100   98   97   95   60
6-7   100  100  100   99  100  100  100   98   97   95   76
5-6   100  100  100  100  100   99   99   98   96   95   80    6+
4-5    100  100  100  100  100  100   99   98   96   95   83
3-4    100  100  100  100  100   99   98   97   96   95   94
2-3   100  100  100  100  100  100  100  100   99   99   98
1-2    100  100  100  100  100  100  100  100   98  100  100
0-1    100  100  100  100  100  100  100  100  100  100  100

10+   100  100  100  100   95   88   86   73   33   18    7
9-10   100  100  100  100   97   78   60   41   23    4    8
8-9   100  100  100  100   97   81   65   49   33   17    6
7-8   100  100  100  100   97   84   70   57   43   30   17
6-7   100  100  100  100   98   87   76   65   54   42   25
5-6   100  100  100   97   98   90   81   72   64   55   30    4-6
4-5   100  100  100   98   99   93   86   80   74   68   54
3-4   100  100  100  100   99   96   92   88   84   81   78
2-3   100  100  100  100  100   99   97   96   95   93   96
1-2   100  100  100  100   98  100   91  100  100  100   99
0-1   100  100  100  100  100  100  100  100  100  100  100

10+   100  100  100   99   92   74   64   35   22   29    4
9-10   100  100  100  100   88   62   37   11    0    0    0
8-9   100  100   97  100   89   67   45   23    2    0    7
7-8   100  100  100  100   90   72   54   36   18    0   12
6-7   100  100  100  100   91   76   62   48   33   19   26
5-6   100  100  100  100   92   81   70   60   49   38   46    2-4
4-5   100  100  100  100   93   86   79   72   65   58   63
3-4   100  100  100   99   94   90   87   84   80   77   83
2-3   100  100  100   99   95   95   95   96   96   97   99
1-2   100  100  100  100  100  100  100  100  100  100  100
0-1   100  100  100  100  100  100  100  100  100  100  100

10+   100  100  100   99   98   85   57   29   25   14    4
9-10   100  100  100  100   82   60   38   16    0    0   19
8-9   100  100  100  100   84   66   48   29   11    0   19
7-8   100  100  100  100   87   72   57   42   27   12   15
6-7   100   94  100  100   90   78   67   55   44   32   39
5-6   100  100   98  100   92   84   76   68   60   52   58    0-2
4-5   100  100  100  100   95   91   86   81   77   72   82
3-4   100  100  100   99   98   97   96   94   93   92   95
2-3   100  100  100  100  100  100  100  100  100  100  100
1-2   100  100  100  100  100  100  100  100  100  100  100
0-1   100  100  100  100  100  100  100  100  100  100  100

10+   100  100   99   95   79   48   23   16    8    4    2
9-10   100  100  100   82   63   43   24    5    0    0   10
8-9   100  100   98   85   69   53   36   20    4    0    8
7-8   100   99  100   88   75   62   49   35   22    9   18
6-7   100  100   99   92   81   71   61   50   40   30   38
5-6   100  100   99   95   88   80   73   65   58   51   72     =0
4-5   100   99  100   98   94   89   85   80   76   71   94
3-4   100  100  100  100  100   98   97   95   94   92   99
2-3   100  100  100  100  100  100   98  100  100  100  100
1-2   100  100  100  100  100  100  100  100  100  100  100
0-1   100  100  100  100  100  100  100  100  100  100  100
Far2      0-1  1-2  2-3  3-4  4-5  5-6  6-7  7-8  8-9  9-10 10+   Far1

Near  

Figure 2.  Probability matrices for rejection of crossing opportunities for 

10.0m wide roads (Hunt and Griffiths, 1991). 
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Figure 3.  Validation data sets with ANN misclassifications and classification 

boundaries. 
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Figure 4.  Number of examples where N>6s and F1<6s in which input parameter 

values are missing and are defaulted to a value of 10s. 
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current values of
N, F1, F2, F3 and F4

from detectors

is N<6s?

is F1>6s?

DECISION: REJECT (high confidence)

DECISION: ACCEPT (high confidence)

input parameters:
N, F2, F3 and F4

DECISIONANN Model 11

no

yes

yes

no

 

Figure 5.  Hybrid rule-based/backpropagation ANN model specification for gap 

acceptance decisions for an average pedestrian crossing a 10.0m wide road. 
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Decision Near (s) Far1 (s) Far2 (s) 
Reject 20.0 0.0 4.1 
Reject 20.0 4.1 3.2 
Reject 20.0 6.3 1.7 
Reject 20.0 8.0 3.3 
Accept 20.0 11.3 8.0 

Table 1.  A ‘set’ of crossing opportunities presented to a pedestrian at a 
single point in time according to the surrounding pattern of vehicle arrivals. 

 
ANN 
model 

number 

available input 
parameters 

rejected 
input 

parameters 

total no. 
of inputs 
including 

trans-
formations

data set 
examples 

used 

correct 
classification 

rate in 
validation 

(%) 
1 N,F1,F2,F3,F4,F5 F3,F5 4 all 90 
2 N,F1 none 6 all 89 
3 N none 3 all 85 
4 N,F1,F2,F3,F4,F5 F1 7 N>6s, 

F1<6s 
78 

5 N,F1 none 3 N>6s, 
F1<6s 

61 

6 N none 2 N>6s, 
F1<6s 

52 

Table 2.  Performance based on available input parameters and data. 
 

 misclassifications/total number of examples overall  
ANN 
model 

number 

N < 6s 
F1 < 6s 

N < 6s 
F1 > 6s 

N > 6s 
F1 > 6s 

N > 6s 
F1 < 6s 

overall classification 
error in 

validation (%)
1 0/1848 22/702 16/298 309/702 347/3550 9.77 
4 0*/1848 41*/702 20*/298 157/702 218/3550 6.14 

*NN Model 4 was derived using only a subset of the data (N>6s, F1<6s) - the classification is taken to 
be the majority verdict decision 

Table 3. Comparison of pure ANN model and hybrid rule-based/ANN model 
performance for validation data. 

 
ANN 
model 

number 

input parameters imposed 
hidden layer 

size limit (PEs)

resulting 
hidden layer 
size (PEs) 

correct 
classification 

rate in validation 
(%) 

8 N,F2,F3,F4,F5 30 17 81.1 
9 N,F2,F3,F4,F5 10 7 75.9 
10 N,F2,F3,F4,F5 5 5 76.9 
11 N,F2,F3,F4 30 10 81.9 

Table  4.  Models’ performance with varying network size. 


