

phage annotation workshop

Evelien Adriaenssens

Dann Turner

Andrew Kropinski

Who are we?

Evelien Adriaenssens

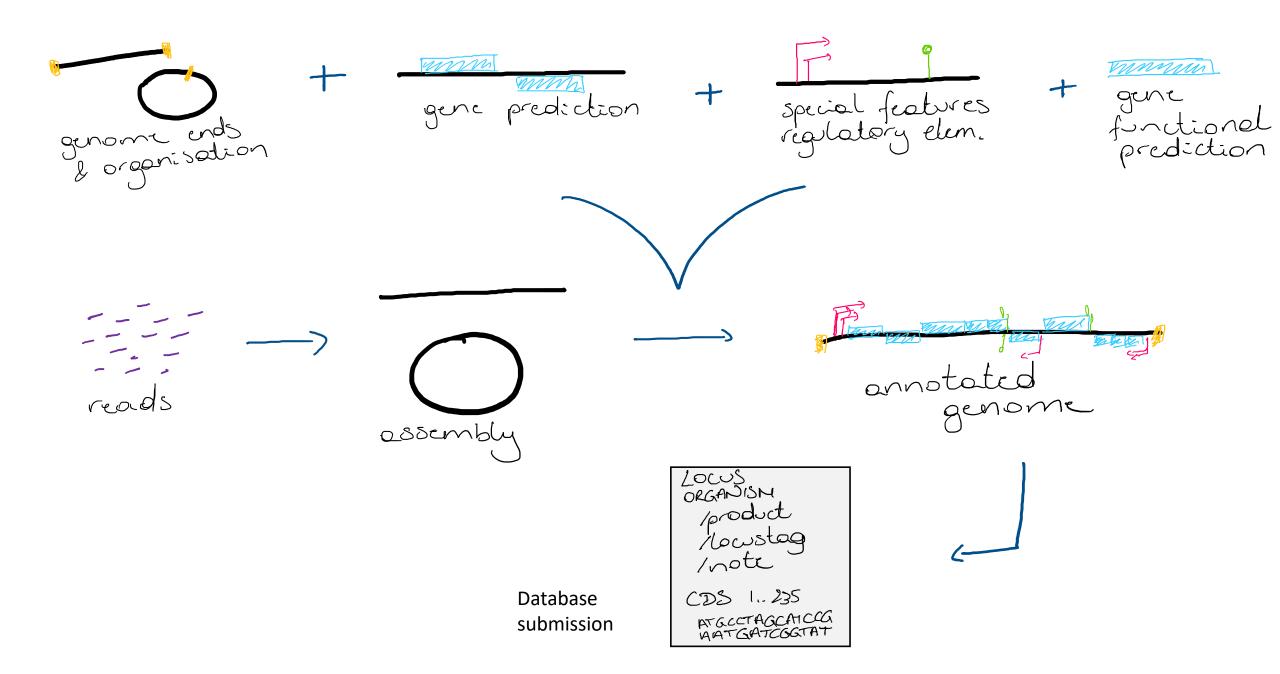
Group Leader, Quadram Institute Bioscience, Norwich, UK Chair Bacterial Viruses Subcommittee ICTV

NCBI Genomes Advisor

Dann Turner

Lecturer, University of the West of England, Bristol, UK

Vice Chair Bacterial Viruses Subcommittee ICTV


Caudoviricetes Study Group Chair

Andrew Kropinski

Emeritus professor, University of Guelph, Canada former Chair Bacterial and Archaeal Viruses Subcommittee ICTV NCBI Genomes Advisor

Workshop overview

- Introduction
- Sequencing and assembly
- Genes in phage genomes (annotation)
- Intro to classification & taxonomy

Resources

- PHAGE journal Special Issue on Phage Informatics & AI
 - <u>https://www.liebertpub.com/doi/10.1089/phage.2021.00</u>
 <u>13</u>
 - <u>https://www.liebertpub.com/doi/10.1089/phage.2021.00</u>
 <u>15</u>

- Phage Annotation Workshop: QIB & AAFC Canada Partnership
 - <u>https://github.com/quadram-institute-bioscience/phage-annotation-workshop/wiki</u>
- Phage Annotation Workshop by Andy Millard (Sep 2022), contact Andy for more info

Phage Annotation Guide: Guidelines for Assembly and High-Quality Annotation

Dann Turner 🝺 , Evelien M. Adriaenssens 🝺 🖂 , Igor Tolstoy, and Andrew M. Kropinski 🍺

Published Online: 16 Dec 2021 | https://doi.org/10.1089/phage.2021.0013

♠ PHAGE > Vol. 2, No. 4 > Perspectives

Free Access

Phage Genome Annotation: Where to Begin and End

Anastasiya Shen and Andrew Millard 🝺 🖂

Published Online: 16 Dec 2021 | https://doi.org/10.1089/phage.2021.0015

phage annotation
workshop

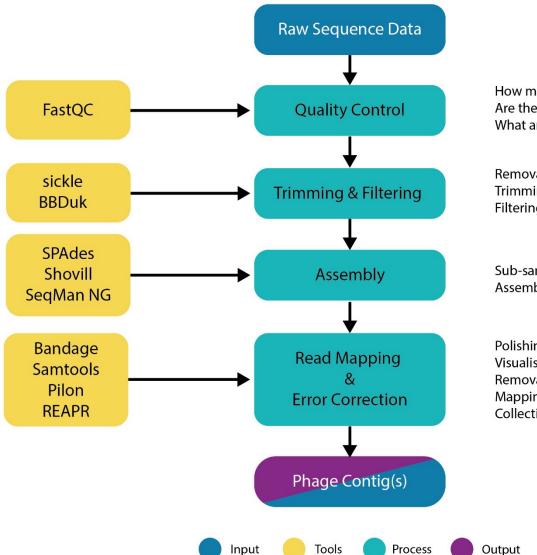
Phage Genome Sequencing and Assembly

Dann Turner (dann2.turner@uwe.ac.uk)

Overview

- Sequencing and assembly
- Orientating phage genomes
- Frameshift errors
- Genome termini

Errors in Submitted Sequences in 2022


- Sequence errors (43%)
 - Frameshifts, genome too long or too short
- Incorrect taxonomy (29%)
 - TEM micrograph does not match sequence
 - Not identified as a prophage
 - Wrong host identified
- Chimeric genomes (21%)
 - Two phages, co-assembly of 16S rDNA, mitochondrial DNA present
- Duplicated or incorrect phage names (7%)
- Genome not colinear with type phage (very common)
- Genome identified as circular (very common)

Sequencing Platforms

Platform		Pros	Cons	
Illumina		Lowest error rates	Long sequencing runs	
		Widely used and range of instruments	Polymerase bias	
		Lowest per-Gb cost	High instrument costs	
		High output yield		
PacBio		Long reads	Low output yield	
		Fast sequencing runs	High(ish) error rates	
		Detection of base modifications	Massive instrument cost	
ONT		Fast	High error rate	
	A A A A A A A A A A A A A A A A A A A	Longest read length	Sensitivity of nanopores	
		Low cost of instrument and consumables	Technical expertise required for data analysis	
ol. Rev. 30(4):1015		Detection of base modifications		

Adapted from Clin. Microbiol. Rev. 30(4):1015

Sequencing and Assembly Overview

How many reads are available? Are there adaptors present? What are the quality statistics like?

Removal of adaptors Trimming of low-quality bases (5' and 3') Filtering of low-quality reads

Sub-sample reads to 30-100x coverage Assembly

Polishing for error correction Visualise assembly graph with Bandage Removal of small and very low coverage contigs Mapping of reads back to assembled contigs Collection of reads that do not map to the phage contig

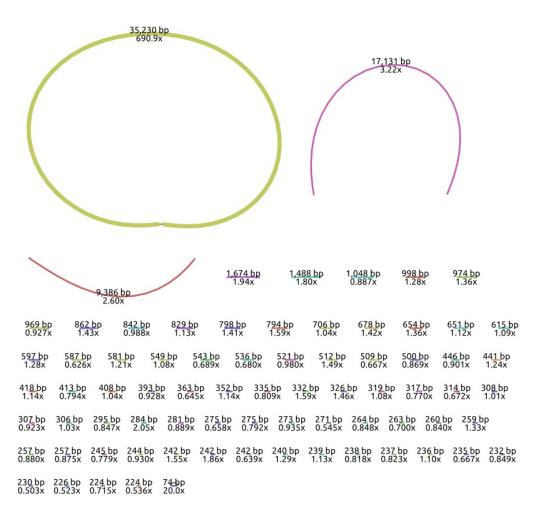
Library preparation and coverage

- Avoid library preparation kits that rely upon transposon-mediated shearing and adaptor ligation (e.g. NexteraXT)
- Use multiplexing to take advantage of HTS platform yield
- Remember that excessive coverage can be detrimental to assembly
- Coverage of ~100x is recommended

number of reads = $\frac{(\text{coverage} \times \text{genome size (bp)})}{\text{read length (bp)}}$

Assembly

Short or long-reads

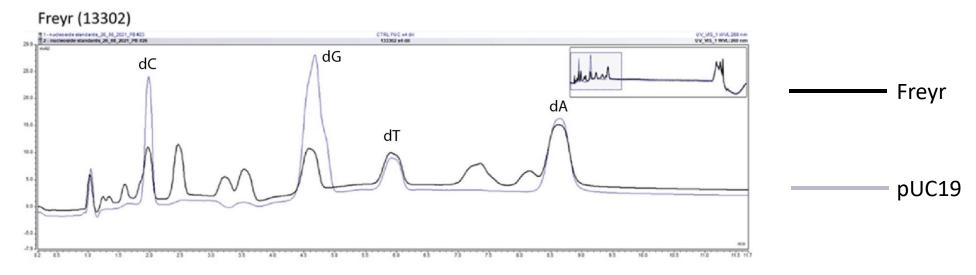

- SPAdes: for assessment see Rihtman et al., PeerJ 4:e2055
- PacBio/ONT: Canu, Flye, Miniasm
- Commercial GUI options: SeqMan NG/CLC Genomics

• Hybrid assembly?

- Not really necessary for phage genomes (additional expense)
- If using: short-read first vs long-read first (Unicycler and Trycycler)

Assembly Validation

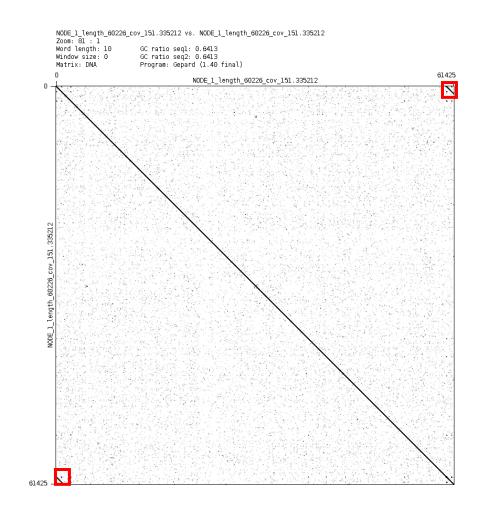
- Bandage: visualising the assembly graph
- Mapping reads:
 - Calculation of coverage
 - Identification of areas of low/high coverage
 - Identification of areas for targeted Sanger sequencing
 - Identification of reads not mapping to the phage contig – host DNA, prophages, mixed sample?
 - QUAST, BWA-MEM, Bowtie2, Minimap2


A. baumannii prophage assembly graph

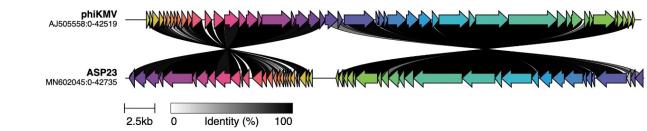
Troubleshooting

- An incomplete assembly can result from a number of factors
 - 1. Read coverage is excessive
 - 2. Mol G+C% bias
 - 3. Repeat sequences (e.g. IS elements)
 - 4. Presence of multiple similar phage genomes (high micro-diversity)
- Resolutions?
 - 1. Down sample number of reads before assembly
 - 2. PCR amplification method
 - 3. Normally only an issue when high amounts of background host DNA
 - 4. Mapping of reads

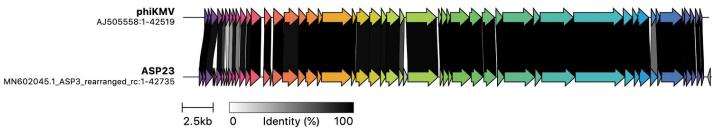
Strategies for "hard to sequence" phages


- Some phages with hypermodified bases are refractory to traditional sequencing methods, e.g.
 - YerA41 (Viruses 2020;12:620)
 - Roseophages (Curr. Biol. 2021; 31:3199)

- RNA-seq to reconstitute the genome from phage transcripts (expensive)
- Rolling circle amplification


Orientating genomes

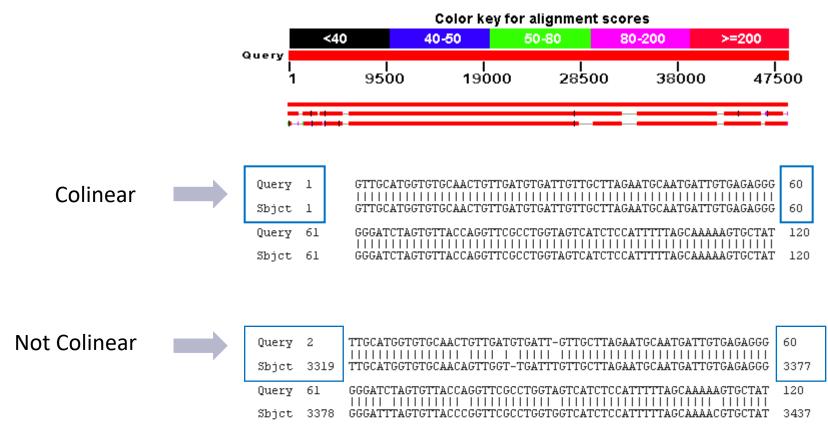
- Genomes of almost all known dsDNA phages are packaged as <u>linear</u> molecules
- Many assemblers will result in an apparently circular consensus contig
- Circularity is an artefact of the assembly process (but generally indicates a complete genome!)
- Reorientation may require reverse complementation and/or breaking and rejoining of the contig
- Important to assess genome termini first


Why Orientate?

- Makes sequence comparisons more intuitive
- Allows for better pairwise visualisation (e.g. cLinker/EasyFig)

A Incorrect assembly and orientation

B Manual rearrangement and reverse complementation

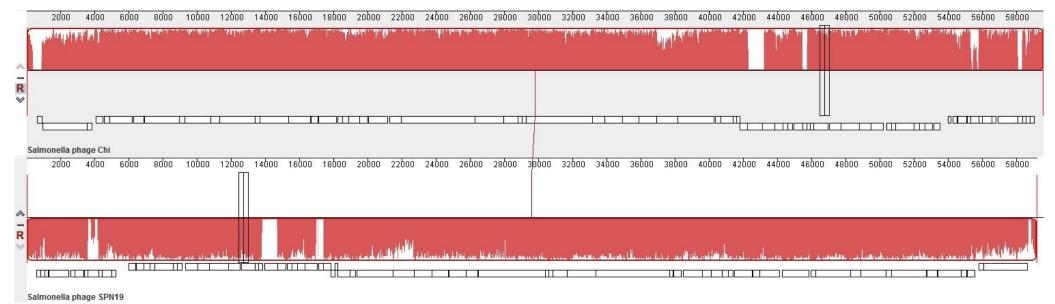


- Conventions
 - Orientate using genome termini (more on this next...)
 - Open at small or large terminase subunit (whichever is identifiable)
 - Open at rIIA gene (*Straboviridae*)

Tools for orientation

BLASTn

Phage vB_EcoP_AMK is closely related to three genomes

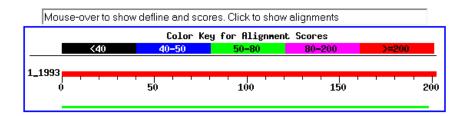


• Limit searches to *Caudoviricetes* (taxid: 2731619) in Organism field

Tools for orientation

Progressive Mauve

A bit problematic thanks to Java


Cutting, pasting and rejoining

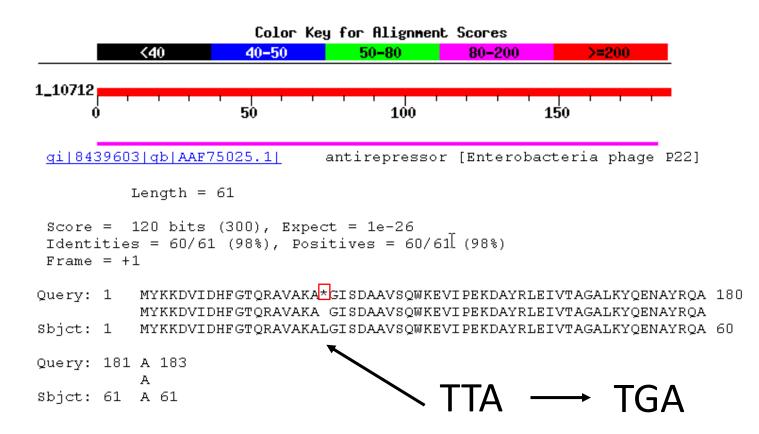
- http://reverse-complement.com/
- http://www.bioinformatics.org/sms/rev_comp.html
- http://www.cellbiol.com/scripts/complement/dna_sequence_reverse_complement.php
- https://notepad-plus-plus.org/downloads/

Frameshifts

- BLASTx can be used to identify potential frameshifts if similar phages are available
- Might need to split the contig (<u>http://bioinfo.nhri.org.tw/cgi-bin/emboss/splitter</u>)
- Limit searches to *Caudoviricetes* (taxid: 2731619) or the reference genome

Distribution of 2 Blast Hits on the Query Sequence

□ <u>gi|11611120|emb|CAC18561.1|</u> putative 0.45 protein [Bacteriophage phiYeO3-12]

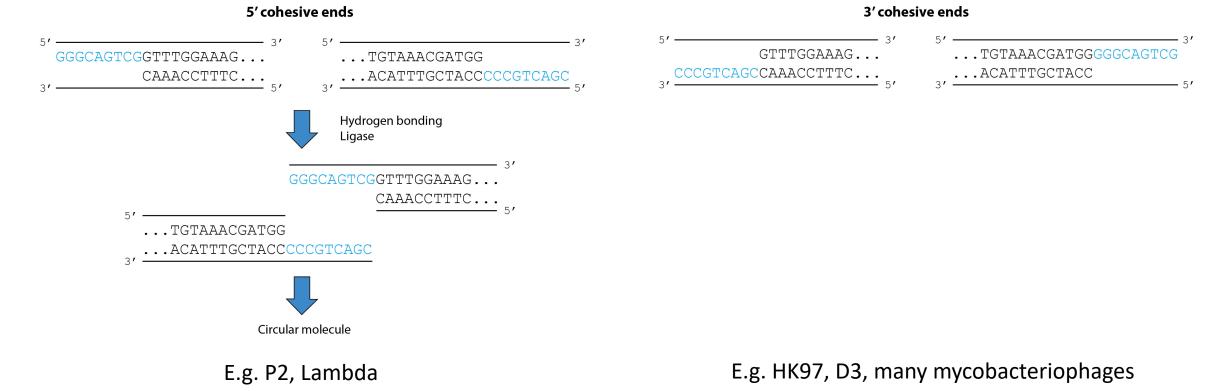

Length = 66

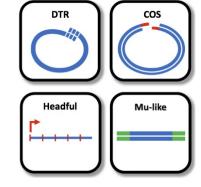
```
Score = 75.1 bits (183), Expect(2) = 4e-29
Identities = 35/36 (97%), Positives = 36/36 (100%)
Frame = +1
Query: 1 MSKLLATSKIEGQCTVTLREYYHGSMGSTYVVRYGQ 108
MSKLLATSKIEGQCTVTLREYYHGSMGSTYVVRYGH
Sbjct: 1 MSKLLATSKIEGQCTVTLREYYHGSMGSTYVVRYGK 36
Score = 74.3 bits (181), Expect(2) = 4e-29
Identities = 31/31 (100%), Positives = 31/31 (100%)
Frame = +2
Query: 107 KQVTHWVNPILAQEDYQSCVLHQTTCAGWND 199
KQVTHWVNPILAQEDYQSCVLHQTTCAGWND 199
```

sbjct: 36 KQVTHWVNPILAQEDYQSCVLHQTTCAGWND 66

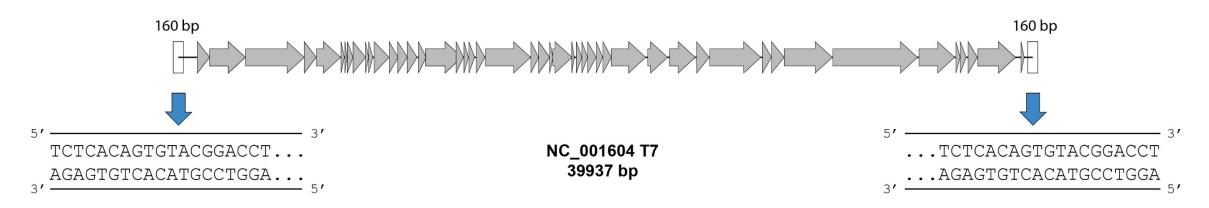
Internal Stop Codons

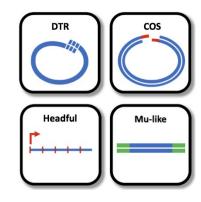
- Easy to miss using BLASTx
- Mis-called base substitutions can cause internal stop codons

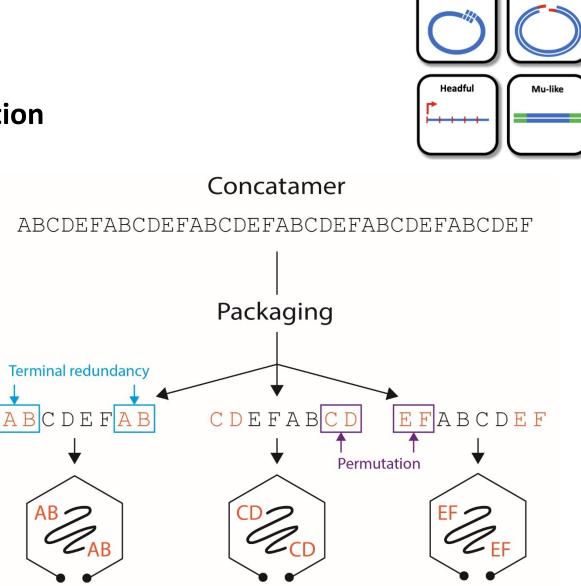

Introns and Inteins


- Relatively rare
- Gene encoding the DNA polymerase in vB_SenS-Ent1. Some members of the *Jerseyvirinae* lack the intein coding region.

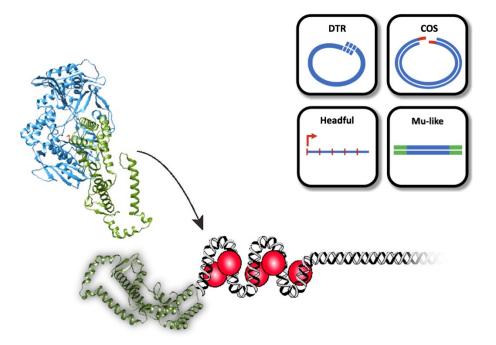
Query seq.	DiveQ_like_axcs average	PF DNA_po	ortalytic sits L_A superfamily	500	625	⁷ 7 ⁴	075 1000 143
	Distril	1	Q	Blast Hits or	-		es
		200	400	600	800	1000	


- Difficult to predict splice sites
 - InBase: <u>https://inbase.ligsciss.com/iwai/InBase/tools.neb.com/inbase/identify.html</u>
 - ISSPred: <u>https://webs.iiitd.edu.in/raghava/isspred/index.html</u>

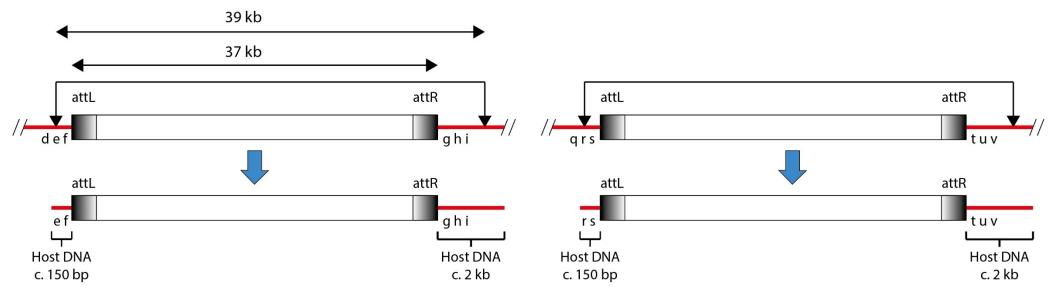

- Cohesive Ends 5' or 3' extensions
- Site specific packaging
- Determine by primer walking, annealing of restriction fragments (Casjens & Gilcrease, 2009; <u>https://phagesdb.org/blog/posts/25/</u>)



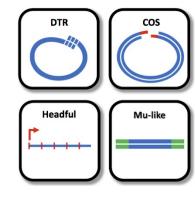
- Terminal redundancy Direct repeats
- Autographiviridae (e.g. T7, SP6, φKMV), T5, A511
- Vary in length (long/short repeats)
 - Escherichia phage T7 160 bp
 - Listeria phage A511 3,125 bp
 - Escherichia phage T5 10,219 bp
 - Bacillus phage SPO1 13,185 bp



- Terminal redundancy with circular permutation
- T4, P1
- Characteristic of headful packaging
- Length of redundancy varies according to the phage
- Open genome according to convention
 - 1st nucleotide of small Terminase subunit
 - 1st nucleotide of rIIA

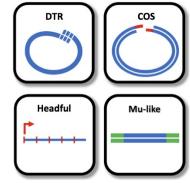


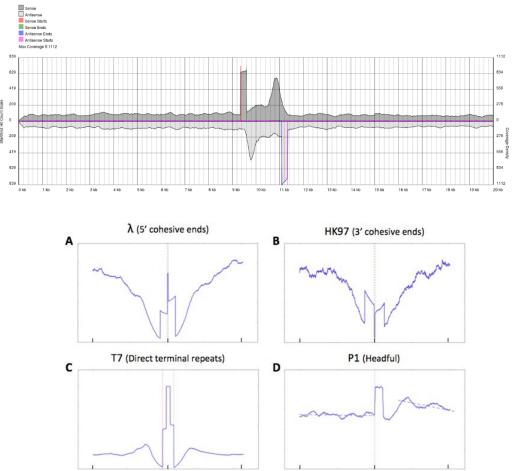
- Terminal proteins
- Protein-primed replication of linear dsDNA
- Terminal proteins show low sequence homology
- Requires in vitro approaches
 - Migration in gels +/- protease treatment



Virus	Family	Host	TP Genbank accession number
Φ29	Podoviridae	B. subtilis	P03681.1
Nf	Podoviridae	B. subtilis	ACH57070.1
GA-1	Podoviridae	B. subtilis	NP_073686.1
PRD1	Tectiviridae	E. coli and other Gram-	P09009.1
		negative	
Bam35	Tectiviridae	B. thuringiensis	NP_943750.1*
Cp-1	Podoviridae	S. pneumoniae	NP_044816.1
Av-1	Podoviridae	Actinomyces sp	YP_001333658*
ΦCP24R	Podoviridae	Clostridium perfringens	AEW47836.1*
AsccΦ28	Podoviridae	Lactococcus lactis	ACA21480.1*
ΦYS61	Myoviridae	Thermus thermophilus	YP_006560295.1*

- Host DNA
- Replicative transposition Mu, D108, B3 and others
- Random integration results in variable ends of host DNA
- B3/Mu: primer walk-out strategy loss of base identification after terminal 5'-TG dinucleotides




Adapted from http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/transposons/Mu.html

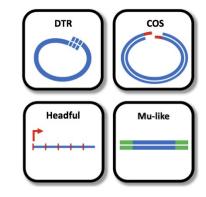
Computational Prediction of Termini

- Use biases in numbers of reads
- PAUSE (Pileup Analysis Using Starts and Ends)
 - Center for Phage Technology

2000

0

1000

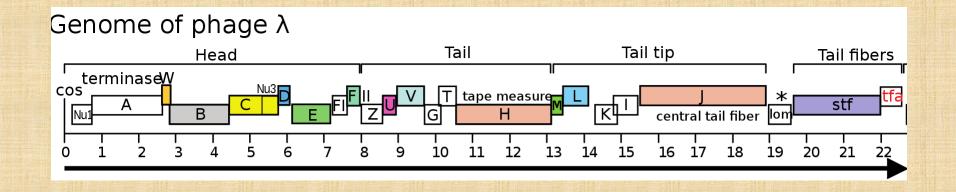

2000

1000

- PhageTerm
 - Requires assembled genome and sequence reads

Genome Termini: Lab methods

- Restriction sites
 - NEBcutter (<u>https://nc3.neb.com/NEBcutter/</u>)
 - Do the predicted fragments from the assembly exist physically?
- BAL-31 exonuclease
 - Fragments with defined ends will show a reduction in length
 - Circularly permuted ends will show
- Fast/slow cooling
 - Annealing of fragments with cohesive ends can be problematic depending upon sequence composition
- Sanger sequencing
 - Walk-out methods from genome termini



The final(ish) product

- I have a finalised genome, what's next?
- Annotation (Andrew Kropinski)
 - What genes does my phage code for?
 - What are the gene products?
- Classification (Evelien Adriaenssens)
 - Where does my phage fall in the phage biosphere?
 - Is it new or is it a representative of an existing family/genus/species?

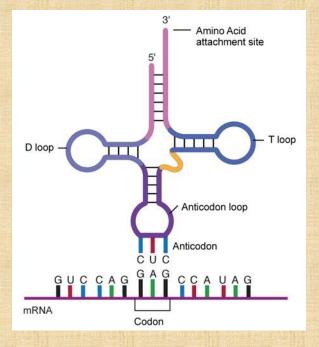
Resources

- <u>http://phagesdb.org/workflow/Sequencing/</u>
- Shen & Millard (2021) PHAGE, 2(4):183
- http://millardlab.org/lab-members/alumni/lucy-gannon/lucys-beginner-guide-tobacteriophage-genome-assembly/
- Russell (2018) Methods in Molecular Biology, 1681:109
- Turner, Adriaenssens, Tolstoy, Kropinski (2021) PHAGE, 2(4)170
- Online Analysis Tools: <u>http://molbiol-tools.ca</u> (thank you Andrew!)
- CPT Phage Galaxy: <u>https://cpt.tamu.edu/galaxy-pub</u>
- CLIMB: <u>https://www.climb.ac.uk/getting-started/</u>

Genes in Phage Genomes

Andrew M. Kropinski

Phage.Canada@gmail.com



Genes

Identification of tRNA-encoding sequences
 Identification of open reading frames (ORFs) coding for proteins (CDSs)

N.B. CDSs and tRNA genes don't overlap

tRNAs in Phage Genomes

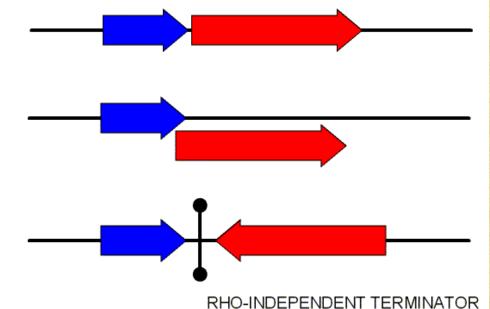
Can be found using:

- tRNAscan-SE 2.0 (<u>http://lowelab.ucsc.edu/tRNAscan-SE/</u>)
- ARAGORN (<u>http://130.235.46.10/ARAGORN/</u>)
- Please note that occasionally automated annotation programs miss tRNAs (e.g. MyRAST)

ORF vs CDS

an ORF is a sequence that has a length divisible by three and is bounded by stop codons

stop codons - TAA, TAG or TGA


may not specify a protein

(Sieber P, Platzer M, Schuster S. 2018. The Definition of Open Reading Frame Revisited. Trends in Genetics, 34 (3): 167-170)

CDS has an important upstream feature – ribosome-binding site or Shine-Dalgarno box (GGAGGT)


Arrangement of Genes

Common

Arrangement of Genes (cont.)

Rare – heavily overlapped or embedded genes

More common in the case of the lysis cassette

Automated Annotation

A good way to start

U Web:

- RAST (<u>http://rast.nmpdr.org/</u>)*
- DFAST (<u>https://dfast.nig.ac.jp/</u>)
- PATRIC (<u>https://www.patricbrc.org/app/Annotation</u>)* uses RASTtk

PROKKA*

(https://kbase.us/applist/apps/ProkkaAnnotation/annotate contigs /release?gclid=EAIaIQobChMI-93RvvOJ-

AIVGxXUAR2e4gTBEAAYASAAEgJWw D BwE

* requires free registration

DFAST is incredibly fast, the others depend

upon how busy the server is.

desired output – GenBank flatfile (*.gb or *.gbk)

Comments on Autoannotation

□ Can you believe the autoannotation results?

No:

- a) Adequate at defining correct initiation codons
- b) Adequate at defining product function
- c) But, bad at identifying small CDSs
 - Insertion of missed genes e.g. λ Ral (28 aa) and Sf6 gp45 (27 aa)
 - Correction for wrong initiation codons
 RBS INITIATION CODON
 COACCT (N2 10) ATC/CTC TTC)
 - GGAGGT (N3-10) ATG(GTG,TTG)xxxx
 - Correction of names of annotated genes products

Freeware for Manual Genomic Annotation

Artemis – old and reliable (Unix, PC, Mac) <u>http://www.sanger.ac.uk/science/tools/artemis</u>

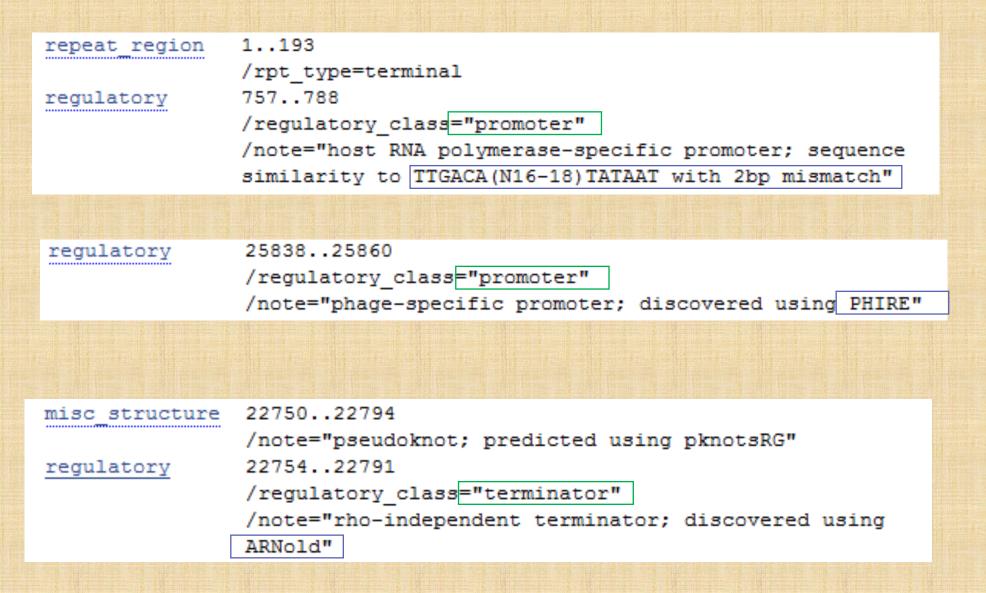
DNA Master – used by the SEA PHAGES group <u>https://seaphages.org/blog/2016/11/16/dna-master-updated-use-secure-ncbi-connections/</u>

UGENE – continually updated (Unix, PC, Mac) <u>http://ugene.net/</u>

> What you want minimally is software which will display DNA sequence and the translated sequence (protein) simultaneously

Accurate GenBank File

Yersinia phage vB_YenM_TG1, complete genome Good title			
GenBank: KP	202158.1		
FASTA Grap	<u>phics</u>		
<u>Go to:</u> ♥			
LOCUS	KP202158 162101 bp DN	A linear PHG	31-JAN-2015
DEFINITION	Yersinia phage vB_YenM_TG1, complete	genome.	
ACCESSION	KP202158		
VERSION	KP202158.1 GI:746946382		
KEYWORDS			
SOURCE	Yersinia phage vB_YenM_TG1		
ORGANISM	Yersinia phage vB YenM TG1		
	Viruses; dsDNA viruses, no RNA stage;	Caudovirales; Myov	viridae.
	1 (bases 1 to 162101)		
AUTHORS		en,S., Griffiths,M.	.W. and
	Odumeru, J.A.	Carl a hundred have as	
TITLE	Complete genome sequence of vB_YenM_T		ange
TOUDNAT	bacteriophage which infects Yersinia	enterocolítica	
JOURNAL Unpublished			
Bacteriophage LKD16 complete genome, specific host Pseudomonas aeruginosa			
Pseudomonas phage phi-2, complete genome, isolated from Pseudomonas			
fluoresc	fluorescens SBW25 Circular		


Accurate GenBank File 2

complement (35649...37331) gene /locus tag="YenMTG1 064" complement (35649..37331) CDS /locus tag="YenMTG1 064" /note="T4-like gp46" /codon start=1 /transl table=11 /product="recombination-related endonuclease I" /protein id="AJD81872.1" /db xref="GI:746946444" /translation="MKNFKLNRIKYQNIMSVGGQAIDLQLDKTHKSLITGKNGGGKST MLEAITFALFGKPFRDIKKGLLVNTTNKKALLTELWMEYDGHSYYIKRGOKPTVFEIE RDGEKLNESAGSKDFOSYFESLIGITYNAFKOIVVLGTAGYTPFMALTTPARRKLVED LLEVSVLAEMDKLNKSNIREINQSVQIIDTKKDGILQQIKIYQDNAERQKKMGEENVA RFQSMYDDFVSEAQGHKAKIEILTDELLNLVISDDPSESCRQLDQKMYGIQSEMSNFT RVLGLYKDGGNCPTCLONLEAHGNVVSTIQSKHTALNENLNIIKTORDELKEIONKFA EQSRVAQTTKTNIANHKAQAIEAITKAKKVKTLIEQAAQEFIDNSHDVIMLQTEHDKI VATKTELVMEKYHRGIITEMLKDSGIKGAIIKKYIPLFNKQINHYLKILEADYSFNLD EEFNETIKSRGREEFMYASFSEGEKSRIDISLMFTWRDIASKVSGMNISSLFLDEVFD GSFDSDAVKCVANIINGMKDANIFIISHKDHDPQDYGQHIQMKKVGRFTVME" complement(64620..64692) /product="tRNA-Gly"

/note="codon recognized GGA"

tRNA

Accurate GenBank File 3

Locus tag

□ The locus_tag is a systematic gene identifier that is assigned to each gene. Each genome project have the same unique locus_tag prefix to ensure that a locus_tag is specific for a particular genome project. The locus_tag prefix must be 3-12 alphanumeric characters and the first character may not be a digit. Additionally locus_tag prefixes are case-sensitive. The locus_tag prefix is followed by an underscore and then an alphanumeric identification number that is unique within the given genome. Other than the single underscore used to separate the prefix from the identification number, no other special characters can be used in the locus_tag. Locus_tags must only be used in combination with a gene feature.

https://www.ncbi.nlm.nih.gov/genomes/locustag/Proposal.pdf

Use you phage name as the locus tag.

□Not added by RAST, DFAST or PATRIC

Massaging *.gbk files

You will have to do this in all cases
 Be suspicious of gaps
 are protein homologs the same size
 do you have homing endonucleases – be suspicious of fragmented genes

Massaging RAST Data

LOCUS Yersini	a 41449 bp DNA linear UNK
DEFINITION Contig	Yersinia from Yersinia phage TG1-C651
ACCESSION unknown	1
FEATURES	Location/Qualifiers
source	141449
	/mol_type="genomic DNA"
	/db_xref="taxon: 1206556"
	/genome_md5=""
	/project="kropinsk_1206556"
	/genome_id="1206556.3"
	/organism="Yersinia phage TG1-C651"
CDS	10231328
	/db_xref="SEED:fig 1206556.3.peg.1"
	/translation="MDIKTQKARYKRSAKLETLHQTLSAEAMTREGQAARKRRKELST
	VKLIPQVISSNDFSDKGNMRKTAAKSNQGNVRAIGNKTDSKINSYWKSKRGDNLPRK" /product="hypothetical protein"
CDS	18962426
CDS	/db xref="SEED:fig 1206556.3.peg.2"
	/translation="MTATAKIVIAKPTMTIAAMDKELTSVIKDSNKLQDRIQTLAVAI
	MLHCYAHNEFQRAQALVDGLGKGMRRTALVEWFQQAGLKVSKEEGKFNGFNKAKMEDK
	WGKCLAEPWYTMKPENPFAGFDLEAELKRLIAKAEKAMKKDADTPEDGRAEGYKMSCS
	AEOLASLRKLAGVTLO"
	/product="Phage protein"
CDS	24892776
	/db_xref="SEED:fig 1206556.3.peg.3"
	/translation="MNKNARRKNKLAVICNARGMQRYKDYLSFRVLADLYGEYKATVM
	MQDAERTRDGFHDEWDKGTEPCALLTWAESNYCDEWMDADLHYCRNRERFH"
	/product="hypothetical protein"
CDS	28363102
	/db_xref="SEED:fig 1206556.3.peg.4"
	/translation="MMAIEAIQFRARVPVTNDDGATLKWHYQVTRFTLGVGRCGKNVT
	DLRLNYRAGWVDVIQSHDDGTFYEFAYKRSDILGRIQIERRIYG"
	/product="hypothetical protein"
Neat but	definition wrong & no locus tags
or cono is	dontifiars in WordDad
or gene in	dentifiers in WordPad

Massaging RAST Data 3

STREET AND STREET	NAME OF COMPANY	
LOCUS	Yersinia	
DEFINITION	Yersinia	phage TG1-C651
ACCESSION	unknown	
FEATURES		Location/Qualifiers
source		141449
		/mol type="genomic DNA"
		/organism="Yersinia phage TG1-C651"
CDS		10231328
020		/Locus tag="TG1C651 01"
		/translation="MDIKTQKARYKRSAKLETLHQTLSAEAMTREGQAARKRRKELST
		VKLIPQVISSNDFSDKGNMRKTAAKSNQGNVRAIGNKTDSKINSYWKSKRGDNLPRK"
000		/product="hypothetical protein"
CDS		18962426
		/Locus_tag="TG1C651_02"
		/translation="MTATAKIVIAKPTMTIAAMDKELTSVIKDSNKLQDRIQTLAVAI
		MLHCYAHNEFQRAQALVDGLGKGMRRTALVEWFQQAGLKVSKEEGKFNGFNKAKMEDK
		WGKCLAEPWYTMKPENPFAGFDLEAELKRLIAKAEKAMKKDADTPEDGRAEGYKMSCS
		AEQLASLRKLAGVTLQ"
		/product="hypothetical protein"
CDS		24892776
		/Locus tag="TG1C651 03"
		/translation="MNKNARRKNKLAVICNARGMQRYKDYLSFRVLADLYGEYKATVM
		MQDAERTRDGFHDEWDKGTEPCALLTWAESNYCDEWMDADLHYCRNRERFH"
		/product="hypothetical protein"
CDS		28363102
		/Locus_tag="TG1C651_04"
		/translation="MMAIEAIQFRARVPVTNDDGATLKWHYQVTRFTLGVGRCGKNVT
		DLRLNYRAGWVDVIQSHDDGTFYEFAYKRSDILGRIQIERRIYG"
		/product="hypothetical protein"
		Abroader Whothericar brocern

Perfect

Comments on Autoannotation

□ Can you believe the autoannotation results?

No:

- a) Adequate at defining correct initiation codons
- b) Adequate at defining product function
- c) But, bad at identifying small CDSs
 - Insertion of missed genes e.g. λ Ral (28 aa) and Sf6 gp45 (27 aa)
 - Correction for wrong initiation codons
 RBS INITIATION CODON
 GGAGGT (N3-10) ATG(GTG,TTG)xxxx
 - Correction of names of annotated genes products

Comments on Autoannotation 2

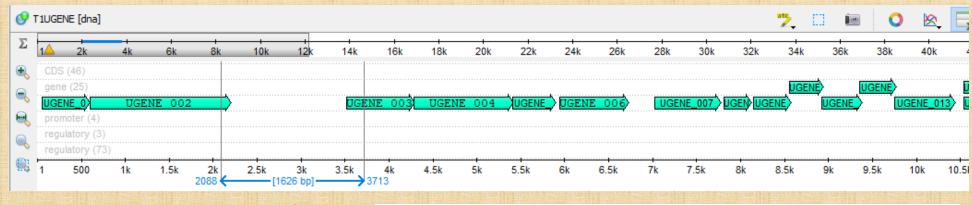
□ What next?

"Manual" checking of results using software package that will present DNA sequence and overlay CDSs:

- Artemis: Genome Browser and Annotation Tool
- DNA Master
- Unipro UGENE (<u>http://ugene.net/</u>)

Using UGENE to proof-read

Open *.gbk file in UGENE

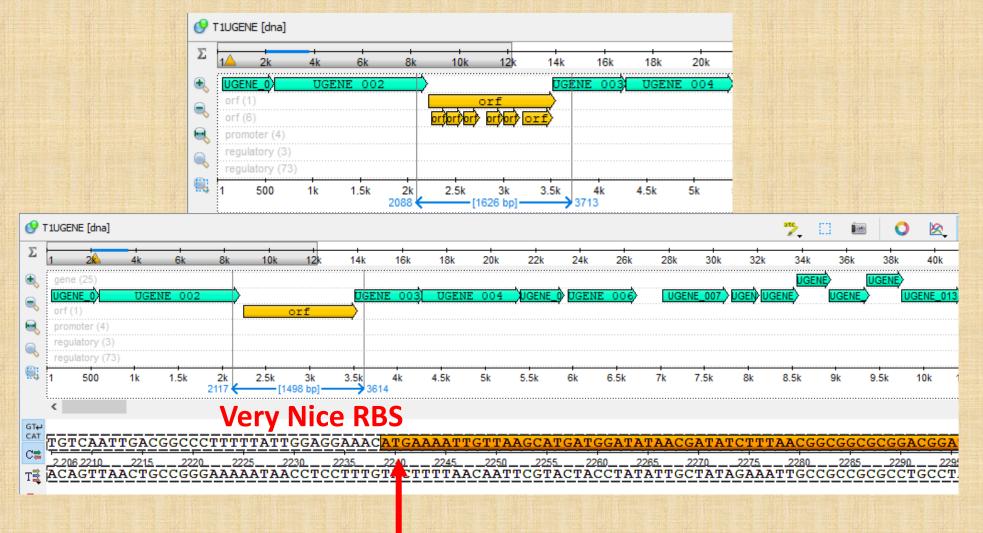


Gaps are interesting! Is something missing?

Two possibilities:

- Missing CDS
- Upstream initiation codon

Using UGENE to proof-read 2



ORF Marker

% ORF Marker				
Settings Output				
Strand	Search Settings	Preview		
O Both	 Min length, bp: 100 Must terminate within region Must start with init codon 	Clear results		
Oirect	Allow overlaps			
○ Complement	└── Include stop codon └── Max result 25 🗣			
11. The Bacterial and Plant Plastid Code				
Start codons ATG Alternative start codons TTG CTG ATT AT Stop codons TAA TAG TGA				
Region Custom region V	2088 -	3713		

Using UGENE to proof-read 3

ORF Marker

Section 2 – naming gene products

What do I call the gene product (i.e. phage protein)?

□ "phage hypothetical protein" – redundant □ "gp87" (gp = gene product) \rightarrow hypothetical protein

- gp200 describes radically different proteins in Listeria, Enterococcus, Mycobacterium, Rhodococcus, Sphingomonas, Pseudomonas, Bacillus and Synechococcus phage genomes
- Add /note="similar to gp43 of Escherichia phage T4"

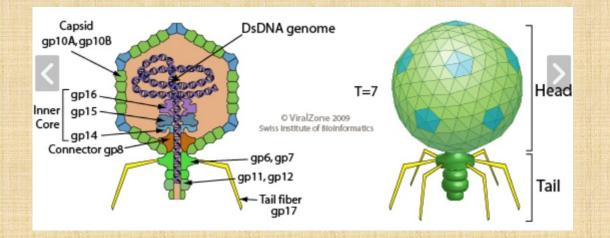
Gene Product Nomenclature 2

/product="UboA"; "Mcp"; "NrdA"; "hypothetical protein SA5_0153/152"; "ORF184" (as bad as gp184); "RNAP1"; "32 kDa protein"; "DUF2732 domain phage protein"; <u>Bad</u> because they don't mean anything to the casual (or informed) reader.

Do not use the descriptive "putative" ever

Unless you are a bioinformatician or biostatistician be very conservative in recording "hits." Could you convince your grandmother (avó)?, if not, list as a "hypothetical protein"

Resources


UniProt Knowledgebase (UniProtKB) is a catalog of information on proteins with is manually curated and reviewed (check **Proteomes**). (<u>https://www.uniprot.org/</u>). Includes a BLAST feature.

Entry 🗘	Entry name 🗘		Protein names 🗢 🛛 🕨	🛛 Gene names 🗘	Organism 🖨
P00806	ENLYS_BPT7		Endolysin	3.5	Enterobacteria phage T7 T7)
P00581	DPOL_BPT7	☆	DNA-directed DNA polymerase	5	Enterobacteria phage T7 T7)
P03696	DNBI_BPT7	☆	Single-stranded DNA-binding protein	2.5	Enterobacteria phage T7 T7)
P03726	EXLYS_BPT7	₽	Peptidoglycan transglycosylase gp16	16	Enterobacteria phage T7 T7)
P00638	EXRN_BPT7	<mark>☆</mark>	Exonuclease	6	Enterobacteria phage T7 T7)
P00969	DNLI_BPT7	X	DNA ligase	1.3	Enterobacteria phage T7 T7)
P00641	ENDO_BPT7	<mark>☆</mark>	Endonuclease I	3	Enterobacteria phage T7 T7)
P19726	CAPSA_BPT7	X	Major capsid protein	10	Enterobacteria phage T7 T7)

e.g. "capsid protein" versus head protein

Resources 2

 ViralZone (<u>https://viralzone.expasy.org/</u>) - a knowledge resource to understand virus diversity. Click on proteome for any viral genus.
 Linked to UniProt Knowledgebase (UniProtKB)

Section 3 – Protein properties

Protein data extraction from gbk files

Sequence Manipulation Suite: GenBank Trans Extractor (<u>http://www.bioinformatics.org/sms2/genbank_trans.html</u>) – may not number the proteins!

Genome2D Conversions (<u>http://genome2d.molgenrug.nl/g2d_tools_conversions.html</u>) – choose «Genbank --> Proteins»

Basic properties of your proteins

 Number of amino acid residues, mass and pl
 Sequence Manipulation Suite: Protein Isoelectric Point (<u>http://www.bioinformatics.org/sms2/protein_iep.html</u>)

Sequence Manipulation Suite: Protein Molecular Weight (<u>http://www.bioinformatics.org/sms2/protein_mw.html</u>)

Section 4: Motif searching

Protein motifs 1

□You cannot trust BLASTp homolog descriptions

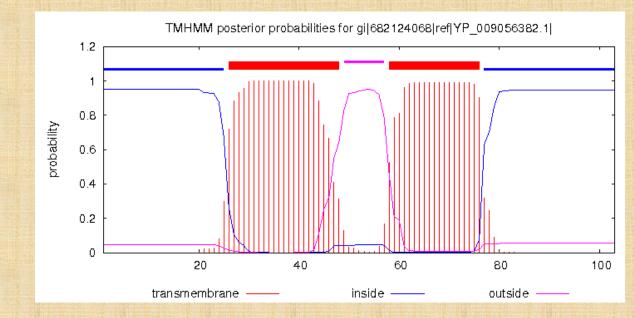
Protein motifs:

(a)Batch protein sequence vs profile-HMM database search (<u>https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan</u>) – offers Pfam, TIGRFAM, Gene3D, Superfamily, PIRSF, & TreeFam. Hits should only be considered if E-value ≤ 0.0001

(b)Batch Web-CD Search Tool

(<u>https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi</u>) adjust Evalue to 0.0001

Protein motifs 2

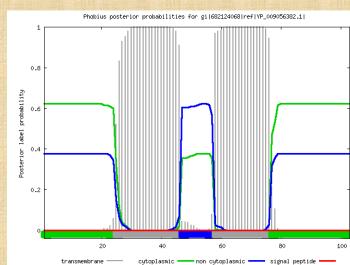

Protein motifs:

(c) INTERPRO Query Page (<u>http://129.175.105.74/genomics/lbmgeiprscan.html</u>). Unfortunately no Evalues for hits

□ Be cautious in interpreting results – employ the grandmother rule

Protein motifs 3 – TMD 1

□ Transmembrane domains – always use ≥ 2 different servers (chosen from: <u>http://molbiol-</u> <u>tools.ca/Protein secondary structure.htm</u>): (a) TMHMM


>YP_009056382.1 | holin [Bacillus phage Bobb] MENKKETVTQVVEVPTEAPKVEPKMVVLTIVYLVAIINAAAAYLGFDAFNLSVDSERLYEG VSLFFGVAAFIGAYWKNHDVSKSARIKAAAAKQVDVKQDKVN

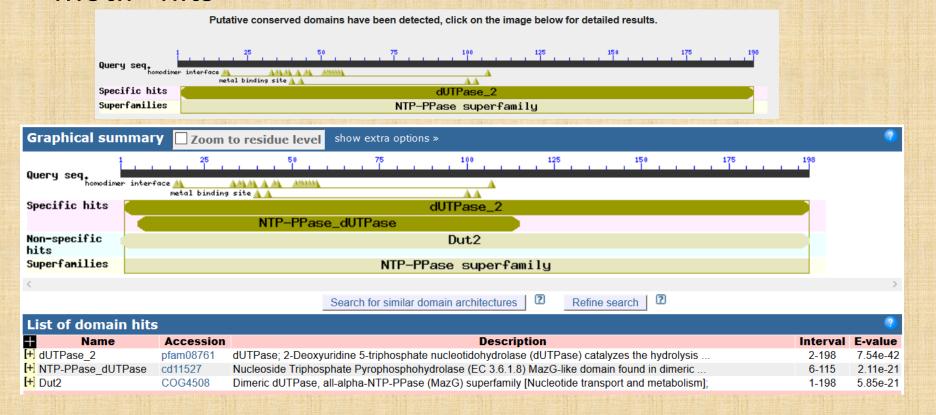
Protein motifs 4 – TMD 2

□ Transmembrane domains – always use ≥ 2 different servers (chosen from: <u>http://molbiol-</u>

tools.ca/Protein secondary structure.htm):

(b) Phobius

If they both agree record the protein as a "hypothetical membrane protein"


If the function is know i.e. holin, record data in GenBank file with the following:

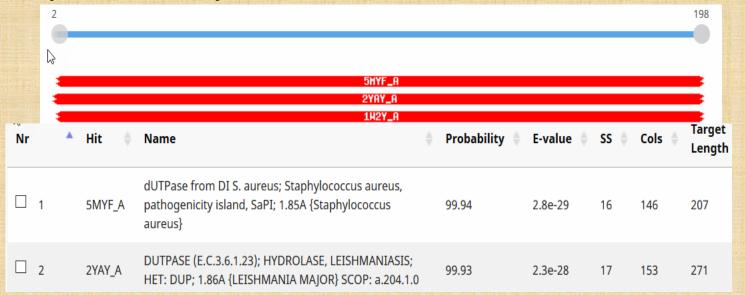
/note="2 transmembrane domains discovered using TMHMM &
Phobius"

Example – Bacillus phage dUTPase

>AJK28117.1 dUTPase [Bacillus phage Palmer] MNLKELFEIQAGLDAEILKNHPIQPGEDRLEKKHAALLVELGEMFNEWRAFKFWSHDKEPRMAVKCPECEGAAARQASDGSYVECGTCDGAGTIDKVL KELVDCLHFVLSIGLEHEFDTKLNMVIEPILFSRSDDGNNIIAQFIELLKVEWELVGRHYKEGLELFIGFCEMLGYTWEQVREAYLIKNQENHYRQMNGY

BLASTp vs nr and Viruses (taxid:10239) databases – motif "hits"

Low E-value hits to three motif databases


HHpred – Homology detection & structure prediction by HMM-HMM comparison

"It is well known that sequence search methods such as BLAST, FASTA, or PSI-BLAST are of prime importance for biological research because functional information of a protein or gene can be inferred from homologous proteins or genes identified in a sequence search. But quite often no significant relationship to a protein of known function can be established.

It is less well known that in cases where conventional sequence search methods fail, the recently developed, highly sensitive methods for homology detection or structure prediction quite often allow to one to make inferences from more remotely homologous relationships."

□ <u>https://toolkit.tuebingen.mpg.de/#/tools/hhpred</u>
 □ Single protein, no batch mode unless you download program & database
 □ Retain information if "Prob" is ≥ 90% & hit is to phage protein

Example – Bacillus phage dUTPase 2 HHpred analysis

 High scoring "hits" to proteins all called dUTPases
 Structure
 SMYF can be visualized at NCBI (https://www.ncbi.nlm.nih.gov/Structure/)
 RCSB PDB (https://www.rcsb.org/)

Bottom line

Good evidence here that this protein is a deoxyuridine triphosphatase (dUTPase)
 But, if you couldn't convince your grandmother that a protein is a "dUTPase" describe it as a "hypothetical protein"

Questions?

Intro to classification & taxonomy

Evelien Adriaenssens

evelien.adriaenssens@quadram.ac.uk

Aim

- Provide you with the information and tools to fill in the <ORGANISM> section of a GenBank file
- → Gets automatically updated after taxonomy updates

- → Fill in lineage to closest available taxon and then add "unclassified"
- → Don't use taxonomy information in the phage name! (DEFINITION field)

LOCUS DEFINITION ACCESSION	FR687252 44546 bp DNA linear PHG 12-MAY-2011 Pantoea phage LIMElight complete genome. FR687252
VERSION	FR687252.1 GI:308071837
KEYWORDS	complete genome.
SOURCE	Pantoea phage LIMElight
ORGANISM	
	Viruses; dsDNA viruses, no RNA stage; Caudovirales; Podoviridae;
	Autographivirinae; unclassified phiKMV-like phages.
REFERENCE	1
AUTHORS	Adriaenssens, E.M., Ceyssens, P.J., Dunon, V., Ackermann, H.W., Van Vaerenbergh, J., Maes, M., De Proft, M. and Lavigne, R.
TITLE	Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, Belonging to the 'phiKMV-Like Viruses'
JOURNAL	Appl. Environ. Microbiol. 77 (10), 3443-3450 (2011)
PUBMED	21421778
	File from my computer 2011

LOCUS	FR687252 44546 bp DNA linear PHG 12-MAY-2011
DEFINITION	Pantoea phage LIMElight complete genome.
ACCESSION	FR687252
VERSION	FR687252.1
KEYWORDS	complete genome.
SOURCE	Pantoea phage LIMElight
ORGANISM	<u>Pantoea phage LIMElight</u>
	Viruses; Duplodnaviria; Heunggongvirae; Uroviricota;
	Caudoviricetes; Caudovirales; Autographiviridae; Limelightvirus.
REFERENCE	1
AUTHORS	Adriaenssens,E.M., Ceyssens,P.J., Dunon,V., Ackermann,H.W., Van
	Vaerenbergh,J., Maes,M., De Proft,M. and Lavigne,R.
TITLE	Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans,
	Belonging to the 'phiKMV-Like Viruses'
JOURNAL	Appl. Environ. Microbiol. 77 (10), 3443-3450 (2011)
PUBMED	21421778
	Screenshot 2022

Recent resources

Communication How to Name and Classify Your Phage: An Informal Guide

Evelien M. Adriaenssens ^{1,2,*} and J. Rodney Brister ^{2,3}

Communication

A Roadmap for Genome-Based Phage Taxonomy

Dann Turner¹, Andrew M. Kropinski^{2,3} and Evelien M. Adriaenssens^{4,*}

Naming your phage

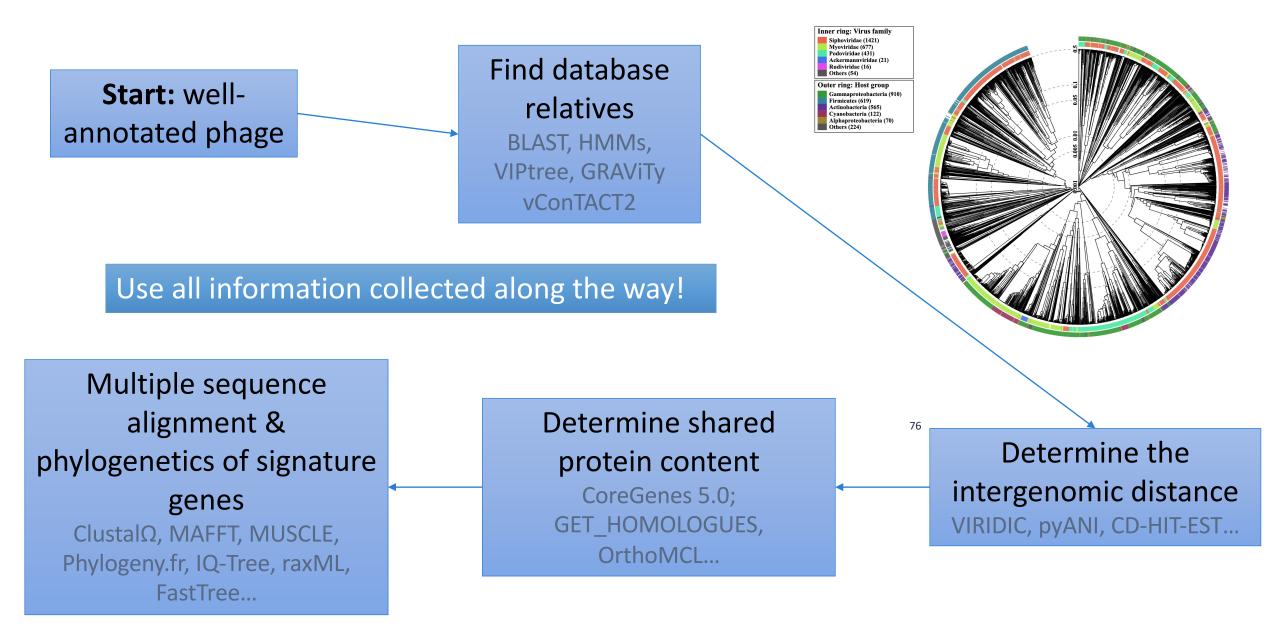
- No official rules about naming phage/virus isolates
- BUT lots of rules for official taxon names (e.g. no hyphens or slashes, no Greek letters...)
- BE UNIQUE!
- ICTV BVS has used the exemplar isolate name as basis for the species and/or genus names in the past

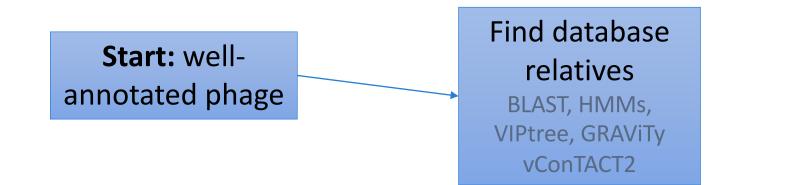
Remember: species != phage

all domestic dogs member of the species *Canis lupus*

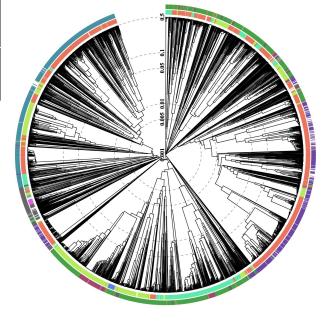
Binomial species naming system

Use genus name plus species epithet to refer to virus species in freeform format

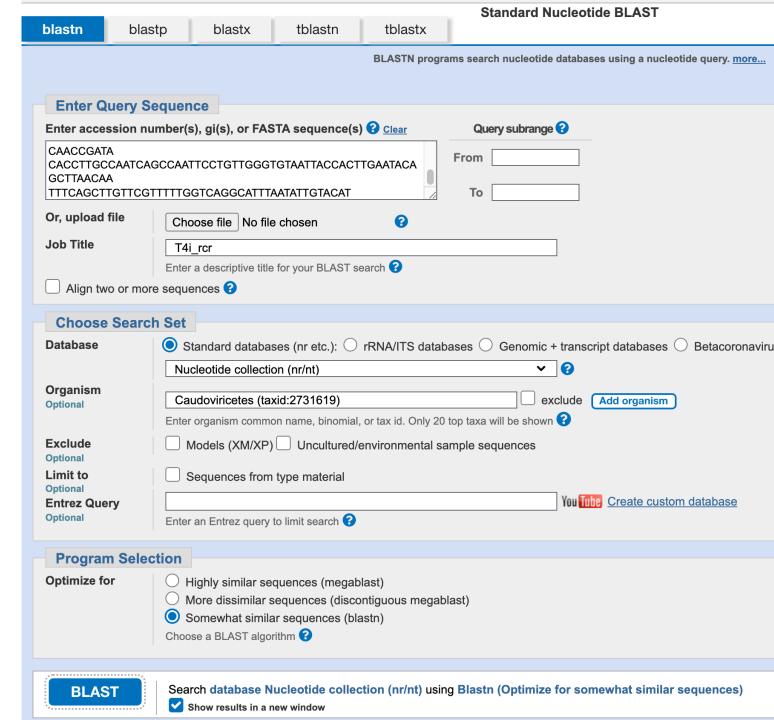

Examples:


Salmonella phage P22, member of genus *Lederbergvirus*, exemplar isolate of species *Lederbergvirus P22* Enterobacteria phage MS2, member of genus *Emesvirus*, exemplar isolate of species *Emesvirus zinderi*

Clear difference between phage isolate and species!


75

In practice: my phage is called Salmonella phage Tweedledum and it belongs to the species *Lederbergvirus P22*.



Step 1: find relatives How closely related are they?

Using BLAST

- **BLASTn:** compare genome to genome
- → Limit search to subset of organisms (eg. viruses or Caudoviricetes)
- → Use "somewhat similar sequences" first
- **BLASTx:** compare genome to protein database
- \rightarrow If BLASTn doesn't yield a result
- **tBLASTx:** compare translated genome with translate genome
- → Very computationally demanding, not recommended online

Alternative online location to start BLAST: NCBI Virus

- https://www.ncbi.nlm.nih.gov/labs/vir us/vssi/#/
- Automatically limited to virus database
- \rightarrow Easy refinement of search results
- \rightarrow Extensive metadata in tabular form
- \rightarrow More detailed investigation possible of search results
- \rightarrow Easy download of selected search results

14,735 **RefSea Nucleotides**

Help ~ About Us ~ Find Data ∽ How to Participate ∽ Submit Sequences ~ Contact Us

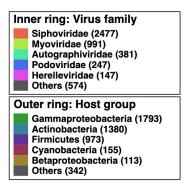
Ouick Access to SARS-CoV-2 Data

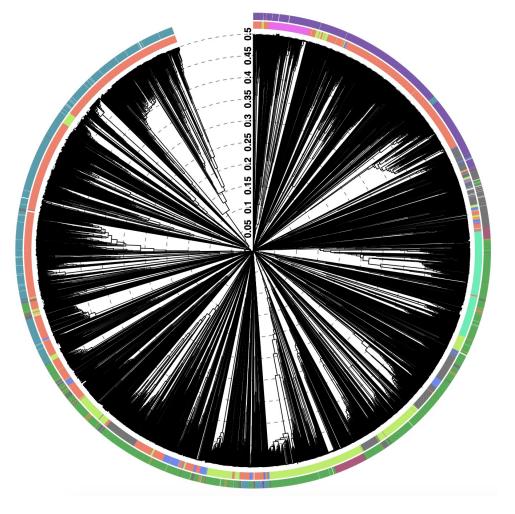
- Novel Severe acute respiratory syndrome coronavirus 2 <u>RefSeg genomes</u>, <u>nucleotide</u>, and <u>protein</u> sequences.
- View our new SARS-CoV-2 interactive dashboard.
- A new page to submit SARS-CoV-2 sequences is now available.

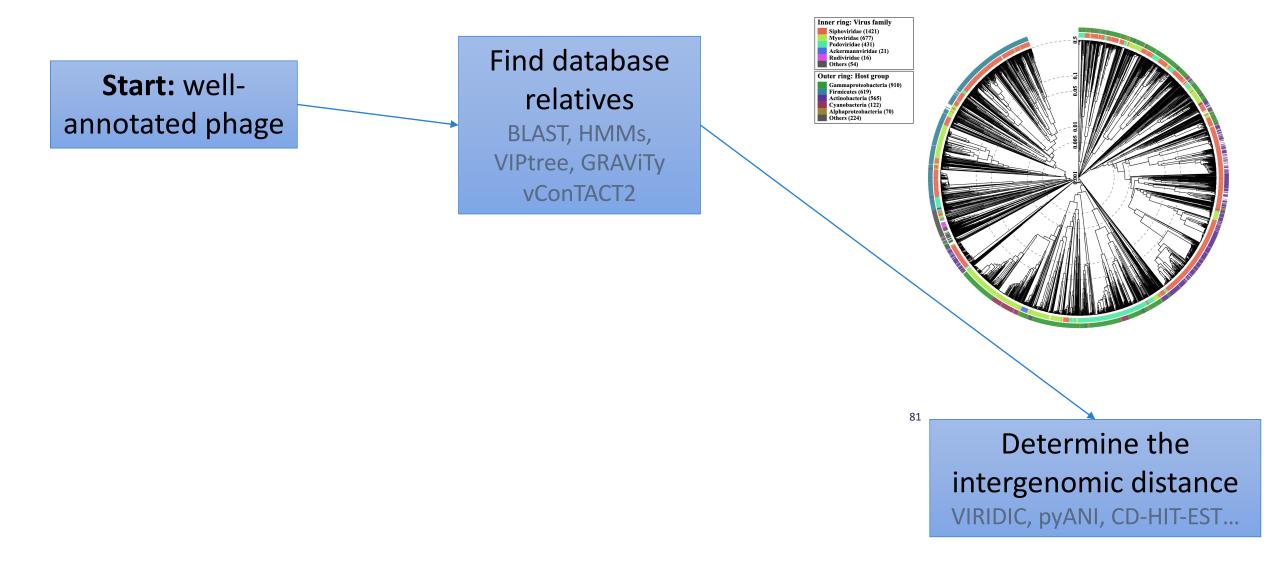
NCBI Virus is a community portal for viral sequence data from RefSeq, GenBank and other NCBI repositories. To find, retrieve and analyze data, please select an option below.

NCBI Visual Data Dashboard

Using VipTree to situate new phage genome

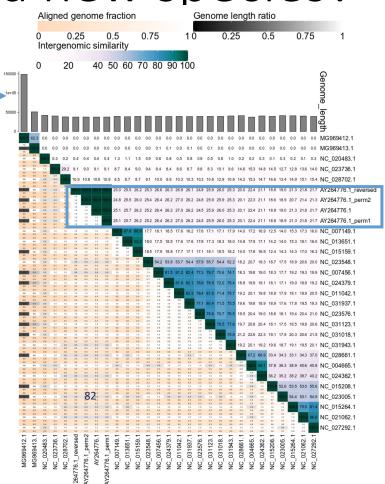

Based on phage proteomic tree approach


Different trees for different virus types


Can upload up to 100 genomes

Branch lengths scaled from 0 to 0.5 (0 identical at amino acid level, 0.5 no similarity)

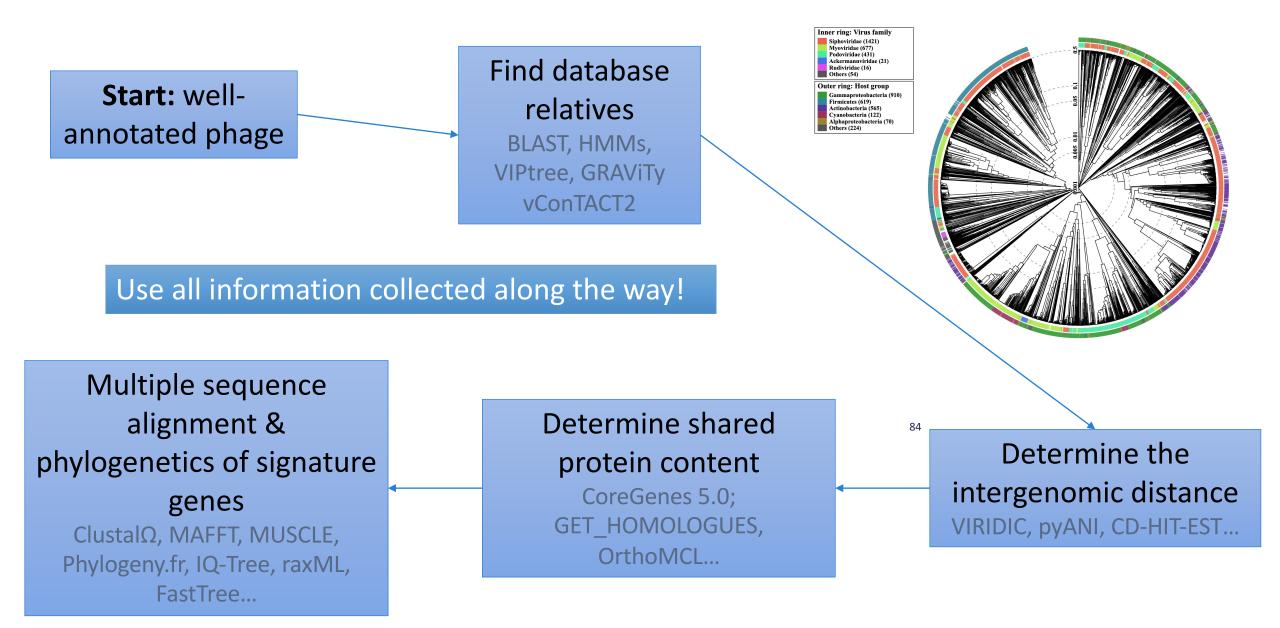
Taxonomy not up to date



Does my new phage represent a new species?

- Main species demarcation criterion for bacteriophages: genome sequence identity of 95%
- → the genomes of two isolates belonging to the same species differ from each other by less than 5% over the genome length
- → Suggested tool to use: VIRIDIC (<u>http://rhea.icbm.uni-oldenburg.de/VIRIDIC/</u>)
- → check for synteny, isolates with high levels of rearrangements do not belong to same species
- ➔ part of existing species: use this taxonomic description to deposit in GenBank/EMBL/DDBJ

VIRIDIC example, Moraru et al 2020, Viruses


Does my phage belong to a new genus?

Genus: cohesive group of viruses sharing a high degree of nucleotide sequence similarity (generally > 70%), monophyletic group in marker gene phylogenetic tree

Other potential defining characteristics:

- average genome length
- average number of CDS
- percentage of shared CDS
- genome organisation
- presence of tRNAs
- presence of certain signature genes

➔ New genus: submit taxonomy proposal with Chair of Subcommittee, or Study Group Chair

Does my phage belong to an existing subfamily & family?

- Assessed with a combination of genomic, proteomic and phylogenetic tools
- Check demarcation criteria for families: <u>https://ictv.global/taxonomy</u>

Virus Taxonomy: 2021 Release

EC 53, Online, July 2021

Email ratification March 2022 (MSL #37)

6 realms, 10 kingdoms, 17 phyla, 2 subphyla, 39 classes, 65 orders, 8 suborders, 233 families, 168 subfamilies, 2606 genera, 84 subgenera, 10434 species

Expand ranks to show: Realm ~ Hide ranks above: Realm ~ Go

• Realm: Adnaviria • Realm: Duplodnaviria		6
		0
- Kingdom: Heunggongvirae Realm: Duplodnaviria		0
+ Phylum: Peploviricota Kingdom: Heunggongvirae	4 orders, 47 families, 98 subfamilies, 1197 genera, 3601 species	9
- Phylum: Uroviricota Kingdom: Heunggongvirae		0
- Class: Caudoviricetes Phylum: Uroviricota		Click for details 🚯
+ Order: Crassvirales Class: Caudoviricetes		9 ≤
+ Order: Kirjokansivirales Class: Caudoviricetes		9 ≤
+ Order: Methanobavirales Class: Caudoviricetes		9 ≠
+ Order: Thumleimavirales Class: Caudoviricetes		₩ 9
+ Family: Ackermannviridae Class: Caudoviricetes		⊨ 6
+ Family: Aggregaviridae Class: Caudoviricetes		₩ 8
+ Family: Assiduviridae Class: Caudoviricetes		₩ 6
+ Family: Autographiviridae Class: Caudoviricetes		9 ¥
+ Family: Casjensviridae Class: Caudoviricetes		€
+ Family: Chaseviridae Class: Caudoviricetes		₩ 8

Hover over for more information

85

Click for details will show the taxonomy proposals:

- demarcation criteria
- marker genes

New subfamily & family?

- Advanced taxonomy
- Contact members of the Bacterial Viruses Subcommittee: <u>https://ictv.global/sc/bacterial</u>

Examples of creating new

families:

Herelleviridae

https://academic.oup.com/sysbio/article/69/1/ 110/5498714

Schitoviridae https://www.mdpi.com/2079-6382/9/10/663 Syst. Biol. 69(1):110-123, 2020

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. DOI:10.1093/sysbio/syz036 Advance Access publication May 25, 2019

Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages

JAKUB BARYLSKI¹, FRANÇOIS ENAULT², BAS E. DUTILH^{3,4}, MARGO B.P. SCHULLER³, ROBERT A. EDWARDS^{5,6}, ANNIKA GILLIS⁷, JOCHEN KLUMPP⁸, PETAR KNEZEVIC⁹, MART KRUPOVIC¹⁰, JENS H. KUHN¹¹, ROB LAVIGNE¹², HANNA M. OKSANEN¹³, MATTHEW B. SULLIVAN^{14,15}, HO BIN JANG^{14,15}, PETER SIMMONDS¹⁶, PAKORN AIEWSAKUN^{16,17}, JOHANNES WITTMANN¹⁸, IGOR TOLSTOY¹⁹, J. RODNEY BRISTER¹⁹, ANDREW M. KROPINSKI^{20,21}, AND EVELIEN M. ADRIAENSSENS^{22,23,*}

antibiotics

Brief Report

From Orphan Phage to a Proposed New Family-the Diversity of N4-Like Viruses

Johannes Wittmann ^{1,*}, Dann Turner ², Andrew D. Millard ³, Padmanabhan Mahadevan ⁴, Andrew M. Kropinski ^{5,6} and Evelien M. Adriaenssens ⁷

Identify the Core Genome for a family

- Number of shared genes will depend on genome size of new family
- Webserver: CoreGenes 5.0 <u>https://coregenes.ngrok.io/</u>

- Command line tools for (bacterial) pangenomics analyses can also be used.
- GET_HOMOLOGUES
- Roary
- PIRATE
- OrthoMCL

87

 \rightarrow Advanced classification, not the scope of this workshop

In summary

To classify a phage:

- Find relatives in public databases
- Identify the relationships at the nucleotide level
- Identify the relationships at the predicted proteome level
- Perform phylogenetics (or phylogenomics)
- Submit a Taxonomy Proposal to Study Group Chair or Subcommittee Chair (Evelien)

Submission to INSDC

- Different workflows for GenBank, ENA and DDBJ
 - GenBank: https://www.ncbi.nlm.nih.gov/books/NBK566995/
 - BankIt: https://www.ncbi.nlm.nih.gov/WebSub/html/requirements.html
 - https://www.ncbi.nlm.nih.gov/WebSub/html/help/feature-table.html
- ENA: <u>https://ena-docs.readthedocs.io/en/latest/submit/general-guide/interactive.html</u>
- <u>https://www.ddbj.nig.ac.jp/ddbj/submission-e.html</u>

Biotechnology and Biological Sciences Research Council

Medical Research Council

