

International Conference on Calcined Clays for Sustainable Concrete

5 – 7 July 2022, Lausanne, Switzerland

Characterisation Of Rice Husk And Kaolinitic Clay Blends

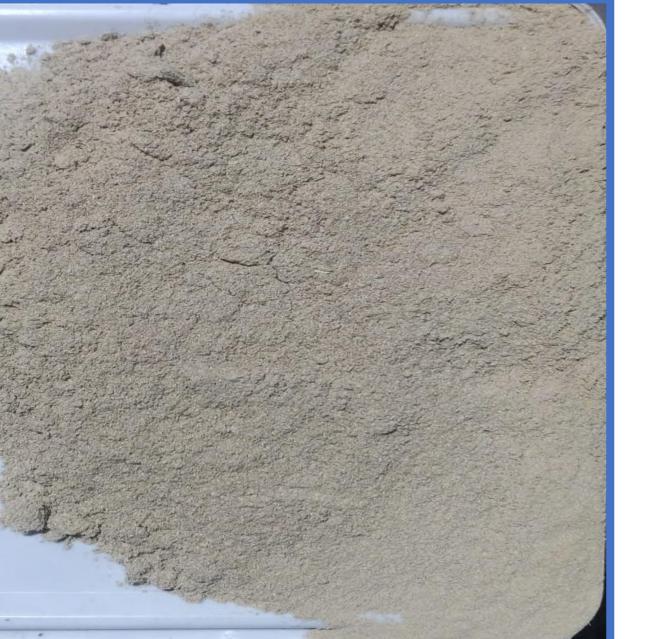
Mani Kalyani Ambatipudi¹ Priyanshu Sinha², Arun Appadurai³, Piyush Chaunsali², Varunkumar S¹

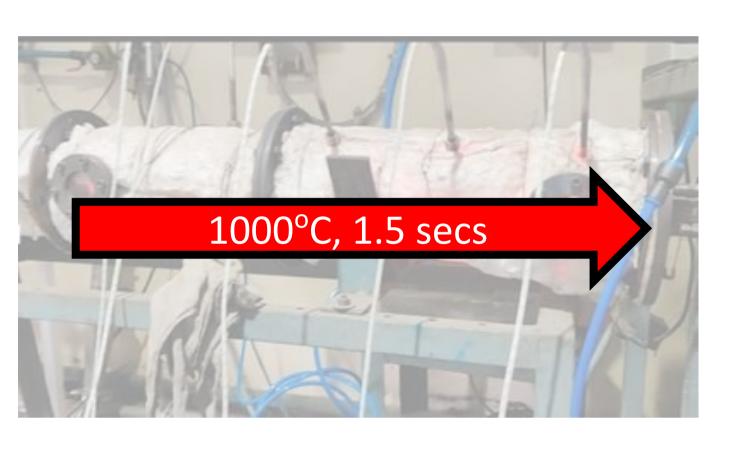
¹ Department of Mechanical Engineering, IIT Madras, Chennai, India

² Department of Civil Engineering, IIT Madras, Chennai, India

³ FLSmidth Private Limited, Chennai

Abstract.


- Product obtained by simultaneous co-firing of kaolin clay and rice-husk is characterized in this study.
- Calcination is performed in a nearly isothermal reactor with a 1:1 blending of biomass and clay with a nominal fuel feed rate of 5 6 kg/h.
- The suitability of the obtained product was characterized using:
- (i) **furnace tests**
 - (ii) thermogravimetric analysis (TGA), and


(iii) X-ray diffraction studies.

Kaolin clay

Rice Husk

Calcined Product

Conclusion

- The conversion of biomass is assessed using a combination of TGA, XRD, and muffle furnace analysis.
- XRD analysis shows that the product lacks crystalline phases and can be used as a substitute for clinker.
- Overall, the characterization of the product sample shows its suitability as an SCM.

References

1. A Mani Kalyani, Priyanshu Sinha, Arun Appadurai, Piyush Chaunsali, Varunkumar S, Kaolinitic clay and powdered biomass ash blends as supplementary cementitious material – experimental studies on continuous simultaneous calcination and reactivity assessment, Private communication (2022).