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Abstract 
 
 
Self-adaptation has been widely used in 
Evolution Strategies (ES) and Evolutionary 
Programming (EP), where it has proved useful in 
varying the mutation step size for continuous 
objective variables.  To date, relatively little 
work has been performed on applying self-
adaptation to the canonical Genetic Algorithm 
(GA).  This research applies a simple discrete 
model of self-adaptation to test functions with 
differing characteristics.  We show that the 
discrete model is able to provide more reliable 
problem solving than the classical lognormal 
self-adaptation scheme on the test problems 
examined.  We find that although self-adaptation 
parameter choices representing conventional 
thinking perform best for unimodal functions, 
very different parameter settings are required for 
optimum performance on multimodal functions.  
These results are discussed in terms of the 
strategy parameter variety needed for self-
adaptation to work effectively and we outline a 
self-adaptation mechanism designed to capitalize 
on these findings. 

1 INTRODUCTION 
In a self-adaptive Evolutionary Algorithm (EA), the 
representation for individuals in the population is 
extended to include strategy parameter information.  The 
EA operates as normal, evolving the population according 
to the fitness of its members, with the additional step of 
stochastically varying the strategy parameters of 
individuals selected for reproduction.  Self-adaptation of 
mutation rates is possibly the most common application of 
self-adaptation, largely stemming from its widespread use 
in ES (Schwefel, 1981) and EP (Fogel, Fogel & Atmar, 

1991).  For the purposes of self-adaptation, the main 
difference between GAs and ES/EP is that GAs usually 
employ a binary representation.  With such a 
representation, a per-bit mutation rate is used to control 
the rate of bit-flipping mutations applied to an individual.  
For a non-adaptive GA, this parameter is fixed across the 
population and throughout the course of a run.  However 
it is natural extension to encode the mutation rate into 
each individual, to allow it to vary across the population 
and in time.  Bäck (1992) used these ideas and performed 
seminal work showing that self-adaptation in GAs is 
possible.  Following Bäck's work, several authors have 
experimented with self-adaptation of mutation rates in 
GAs (see for example, Bäck & Schütz, 1996; Smith & 
Fogarty, 1996; Hinterding, 1997).   Design decisions that 
must be addressed with this approach are the choice of 
representation for the strategy parameter and, related to 
this, the means by which the strategy parameter is itself 
varied to allow adaptation to occur.  Bäck's early work 
remained close to the traditional interpretation of a GA 
and used a binary encoding of the strategy parameters 
with corresponding bitwise mutation.  Current thinking is 
that a real-valued representation is preferable (Glickman 
& Sycara, 1998).  This then allows the use of lognormal 
adaptation of strategy parameters as shown in (1) where 
the o parameter controls the step size of mi, the 
individual's mutation rate. 
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Recent empirical (Liang et al. 1998; Glickman & Sycara 
2000) and theoretical (Rudolph 1999) work has shown 
that self-adaptation schemes which adapt too quickly can 
lead to premature convergence to low step sizes, with the 
search getting 'stuck' at local optimum.  This has lead to 
an interest in alternative variation schemes. 
Smith (2001) introduces a dynamical systems model of a 
GA with self-adaptation of mutation rates.  The model is 



 

used to predict mean fitness of an evolving population 
over time.  To make the mathematics computationally 
tractable, there are two key differences between the model 
and the self-adaptive GAs just described. Firstly, rather 
than using a binary or real-valued representation, strategy 
parameters are represented by a single allele of alphabet 
q, where q is small.  Smith uses a value of 10 and this is 
also the value used in the present work.  A consequence 
of this is that the mutation rate attached to an individual 
can only take on one of q possible values, as opposed to 
the large or effectively infinite number available with 
binary or real-valued representations. Secondly, because 
of the discrete nature of the strategy parameter 
representation, the lognormal scheme in (1) cannot be 
used to vary the strategy parameters.  Although it would 
be possible to provide some discrete variant of this 
algorithm, for simplicity Smith uses a scheme that 
modifies every individual's strategy parameter with 
probability z and equal likelihood of changing to each of 
the q possible alleles.  Because it is possible for the 
modified strategy parameter to retain the same allele as 
the original one, the probability Pa that the strategy 
parameter is altered is given by: 
 

qqzPa /)1( <u=    (2) 
 

Control over the degree of change of the inherited 
strategy parameter is provided by z, an external parameter 
known as the innovation rate.  This provides the variation 

needed for selection to choose preferable strategy 
parameters.  The conventional view is that a non-uniform 
distribution is desirable, for example, the lognormal 
scheme in (1), to generate many small perturbations of 
strategy parameter value with larger variations being 
possible, but less likely.  This is in order to provide 
occasional large changes in value to prevent the EA from 
getting stuck when searching rugged landscapes.  As 
presented, Smith's model represents a considerable 
departure from this view since it uses a uniform 
distribution that provides equal opportunity for large or 
small perturbations1.  In the present work we examine the 
implications of this variation scheme and the effects of 
varying the innovation rate on the performance of the GA.  
We do not attempt to demonstrate the need for self-
adaptation, as this has been done elsewhere (see for 
example, Stephens et al, 1998). 

2 EXPERIMENTAL SETUP 
The GA used for the experiments provides a real-valued 
strategy parameter linked to each individual in the 
population.  For discrete adaptation schemes, the strategy 
parameter encodes one of ten representative mutation 
rates in the range minrate to maxrate for the individual.  
Each strategy parameter is initialized to a random allele 
and varied according to (2).  For continuous adaptation 
schemes, the strategy parameter encodes an arbitrary 

                                                           
1 Although it should be noted that this is not a requirement of the model. 
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mutation rate for the individual, initialized to a random 
value in the range minrate to maxrate and variation of the 
strategy parameter is performed by the multiplicative 
lognormal function (1).  To provide consistency with the 
discrete scheme, the resulting mutation rate is limited to 
the range minrate to maxrate. 
The GA is generational because short-term regression is 
desirable with self-adaptation to allow adequate learning 
of strategy parameters (Schwefel, 1997).  Selection is 
performed using either truncation (extinctive) selection or 
fitness proportionate (preservative) selection sampled 
using Baker's (1987) SUS algorithm.  The differences 
between extinctive and preservative selection mechanism 
are discussed in (Bäck & Hoffmeister, 1991).  A 
population of 500 individuals is maintained to reduce the 
variance of results and to allow adequate sampling of 
strategy parameters in the mating pool even with high 
selection pressure.  (100,500) truncation selection is used, 
based on results from ES (Schwefel, 1981).  Genetic 
operators are single point crossover applied with a rate of 
0.7 or zero and bitwise mutation applied with the 
probability given by the individual's strategy parameter.  
All results presented are the mean of 50 runs unless 
otherwise noted. 
Five functions with a broad range of characteristics were 
used for these experiments.  These are detailed in Table 1. 
Experiments were run on each of the functions with 
innovation rates of 0.01, 0.05 and 0.1 to 1 in steps of 0.1 
using two selection pressures: (100,500) truncation 
selection and fitness proportionate selection.  The ten 
standard mutation rates used for these experiments were 
0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 
0.075 and 0.1.   
For each set of experiments, two metrics were used to 
compare results.  Reliability was measured using the 
number of times the global optimum was found out of 50 
runs.  Time to optimum was used to measure the ability of 
the GA to solve the problem.  Our stance is that a self-
adaptive GA must achieve reliability before time to 
optimum issues can be addressed.  This is particularly 
important in online applications of self-adaptation, where 
the luxury of multiple runs is not feasible, for example in 
process control or robotics applications. 

3 GA WITH NO RECOMBINATION 
Figure 1 shows the time to optimum of the GA for each 
function using a high selection pressure.  The graph is 
annotated with reliability data, where the optimum was 
not found in all 50 runs.  It shows that high innovation 
rates provide the most reliable problem solving.  These 
results can be separated according to whether the function 
is unimodal or multimodal.  For the purposes of this work, 
we classify f5 (Royal Road) as multimodal, since its 
fitness landscape consists of a series of peaks connected 

by ridges2, which produce similar effects to the local 
optima of multimodal functions.  Under this classification 
the only unimodal function in the test suite, f1 (OneMax) 
achieves the best performance with an innovation rate of 
0.05.  Higher innovation rates tend to impact 
performance, although not excessively so.  In contrast, the 
multimodal functions show a trend towards both faster 
and more reliable performance as the innovation rate 
increases. 
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Figure 2 - Generations to Optimum against Innovation 

Rate for Low Selection Pressure 
 
Results for the same set of experiments performed under 
low selection pressure are show in Figure 2.  Results are 
                                                           
2 The exact details of the fitness landscape depend on the operators 
employed. 



 

not shown for f1 (OneMax) since fitness proportionate 
selection failed to find the optimum in any of the 50 runs.  
However, the low selection pressure is an advantage for 
f3 (Deb's Deceptive function) and reliability is much 
improved over high selection pressures.  The graphs are 
somewhat noisier than their high selection pressure 
counterparts due to the lower number of runs in which the 
optimum was found for some functions and innovation 
rates.  In general, reliability is still improved with high 
innovation rates, with the exception of f2 (Rastrigin's 
function), but unlike the case with high selection pressure, 
time to optimum appears to peak at an innovation rate 
lower than one. 

4 GA WITH RECOMBINATION 
Experiments on a GA with recombination were performed 
using an inheritance mechanism, which selects one of the 
two parental strategy parameters at random with equal 
probability for the offspring prior to innovation.  This 
choice is discussed further in (Stone, 2001). 
Figures 3 and 4 show the effects of innovation on 
reliability and time to optimum of the GA with crossover.  
With fitness proportionate selection the optimum for 
function f1 (OneMax) was never located in any of the 50 
runs, so no results are shown for these experiments.  With 
high selection pressure, reliability tends to improve as 
innovation rate increases whilst time to optimum remains 
relatively flat due to the effects of crossover.  With low 
selection pressure, it seems that high innovation rates 
although still providing reliable operation are generally 
detrimental to time to optimum. 
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Figure 3 - Generations to Optimum against Innovation 

Rate for Random Inheritance with High Selection 
Pressure 
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Figure 4 - Generations to Optimum against Innovation 

Rate for Random Inheritance with Low Selection Pressure 

5 COMPARISON OF DISCRETE 
INNOVATION TO CONTINUOUS 
INNOVATION 

To compare the performance of the discrete innovation 
scheme with the more mainstream continuous innovation 
scheme we used various settings for the continuous 
innovation scheme's o parameter.  The ES literature 
suggests the following formula for setting o: 
 

nc /=o     (3) 
 
where n is the number of objective variables and c is a 
problem-specific constant.  However, this rule of thumb 
has not, to our knowledge, been exhaustively tested in a 
GA environment.  In ES, n is the number of objective 
variables in the representation, whereas in the case of a 
GA it is the length of the string in bits.  It is not apparent 
that the rule can be directly mapped from ES to GA 
representations.  Glickman & Sycara (1998) use a value 
of 0.1 for o on a string of length 1000.  This corresponds 
to a value of c of 3.16.  In contrast, Hinterding, 
Michalewicz & Peachey (1996) use a fixed value of 0.013 
in their self-adaptive GA.  In the absence of other 
information, we tried values for c of 0.5, 1, 2, 3 and fixed 
rates of 0.013 and 0.02.  For the former values the 
problem length (in bits) is taken into account when 
arriving at the actual rates used, whereas the latter two are 
fixed rates across all functions. 



 

We ran the same set of mutation-only experiments as 
performed for the discrete scheme, using (100,500) 
truncation selection and limiting each run to the same 
number of generations as before (see Table 1). Table 2 
compares the best result for each function from the 
discrete and continuous schemes.  Here, best is defined as 
the result showing most reliability followed by smallest 
time to optimum for the function.  The discrete scheme 
provides reliable results and acceptable time to optimum 
for all functions, whereas the continuous scheme, 
although apparently capable of providing superior time to 
optimum, displays poorer reliability.  It is also interesting 
that the best results for all of the multimodal problems 
arise with a value of c of approximately 0.1.  This 
suggests that the relationship in (3) may also hold for GAs 
with a bitstring representation.  However, the range of 
problem lengths, l, tested is quite restricted.  Further work 
is needed to determine if this pattern extends to other 
multimodal problems and values of l. 

6 DISCUSSION 

6.1 INTERPRETATION OF RESULTS 
Results for the discrete model suggest that with a high 
selection pressure, a low innovation rate is appropriate for 
unimodal problems, whereas an innovation rate of one 
gives the best results for multimodal problems.  The 
former represents conventional thinking whereas the latter 
result is novel and requires some explanation.  For low 
selection pressures it appears that the optimal innovation 
rate to achieve reliability is lower and the best 
performance is worse than for high selection pressure.  
We conducted ANOVA analysis which showed that the 
effects of innovation rates were a statistically significant 
factor in the time to optimum, and post-hoc tests with a 
variety of measures confirmed the difference in 
performance between high and low innovation rates. 
In the following discussions, we assume a causal 
relationship between mutation rate and any resulting 

mutation.  That is, that the change in fitness of an 
individual resulting from a mutation is, in general, 
directly related to the mutation rate in force for that 
individual. The innovation scheme presently used mutates 
strategy parameters with a uniform distribution, so any 
resulting value is equally likely.  However, when the 
innovation rate is less than one, there is an increased 
probability for the inherited strategy parameter to escape 
innovation and be transmitted to the next generation.  This 
results in a non-uniform overall distribution for the 
innovation mechanism, with existing mutation rates being 
preferred.  Thus, we may classify a low innovation rate as 
one that exploits existing strategy parameter information.  
In contrast, an innovation rate of one generates each 
strategy parameter allele with equal probability and is 
explorative. 
We can therefore summarize these results by saying that 
unimodal problems require an exploitative algorithm, 
whilst multimodal problems perform best with an 
explorative algorithm.  This finding supports that of Bäck 
(1992) who reached a similar conclusion regarding the 
results of using single versus multiple strategy parameters 
in a self-adaptive GA.  
The continuous innovation scheme does not appear to 
provide the same degree of reliability as the discrete 
scheme in mutation-only experiments.  This suggests that 
for difficult problems, the search gets stuck in local 
optima, from which it cannot escape in a reasonable 
amount of time.  The lognormal scheme perturbs the 
inherited strategy parameter such that the perturbation is 
small with high probability.  Unlike the discrete scheme, 
which has only a few possible mutation rates, the 
continuous scheme provides effectively an infinite choice 
of mutation rates. However since the strategies are 
encoding for bitwise mutation probabilities, rather than 
step sizes, many of these rates will have very similar 
effects in terms of the number of allele values changed in 
the representation.  Thus although this scheme provides 
variety within the population that does not exist in the 
discrete scheme, when we consider the likely number of 
bits mutated, a specific point in the search can vary its 

Table 2: Comparison of Best Results for Discrete and Continuous Self-Adaptation 
 
 

 Discrete Self-Adaptation Continuous Self-Adaptation 

 Time to 
Optimum 

Successful 
Runs 

z Time to 
Optimum 

Successful
Runs 

o c 

f1 (OneMax) 68 50 0.05 66 50 0.0631 2.00 

f2 (Rastrigin's) 137 50 1 84 34 0.013 0.10 

f3 (Deb's Deceptive) 1680 29 0.9 20 8 0.020 0.11 

f4 (Matching Bits) 608 50 1 231 40 0.020 0.10 

f5 (Royal Road) 298 50 1 159 50 0.013 0.10 

 



 

associated search strategy by a large amount with only 
low probability.  This is comparable to the case of the 
discrete scheme with a low innovation rate and produces 
similar results. 
6.2 PREMATURE CONVERGENCE 
Multimodal problems have landscapes containing local 
optima and search information built up in previous 
generations may not be particularly useful, since the 
search can be attracted towards false optima.  What is 
good for an individual at a certain stage of the search (i.e., 
a low mutation rate) may not necessarily be optimal for 
the overall search longer term, especially since the self-
adaptive algorithm is inherently a greedy adaptive 
process, as evidenced by the need for non-elitist schemes.  
To counter this tendency, higher mutation rates must be 
available if the search is to escape from local optima. 
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Figure 5 – Premature Convergence of Mutation Rates for 

f2 (Rastrigin's function) 
 
For high selection pressure, graphs of the proportion of 
each strategy parameter allele present in the population 
with low innovation rates show that the population 
quickly assumes a small number of low mutation rates, 
typically the two or three lowest available rates. As an 
example, Figure 5 shows this for f2 (Rastrigin's function).  
Even though they are being introduced at a fixed rate by 
innovation, higher mutation rates exist in the population 
with very low, possibly zero, probability. 
Liang et al (1998) and Glickman & Sycara (2000) observe 
premature convergence of strategy parameters with 
continuous self-adaptation schemes.  Rudolph (1999) 
shows that convergence of the search to local optima can 

occur if the step size is reduced too rapidly3.  At the level 
of the population, this appears to be the cause of poor 
reliability with the discrete scheme when using a low 
innovation rate.  The fact that we see premature 
convergence of strategy parameters together with poor 
problem solving reliability using the discrete self-
adaptation scheme suggests that this may be an effect 
common to all types of self-adaptation. 
The operation of self-adaptation depends on variety of 
both the individual and its associated strategy parameter.  
Without adequate variety, self-adaptation will proceed 
only slowly.  Variety is provided by the population and 
the self-adaptation algorithm to varying degrees, 
depending on the selection pressure and the nature of the 
self-adaptation scheme in use.  High selection pressure 
has the characteristic of creating multiple copies of an 
individual, the strategy parameters of which are varied by 
innovation.  With a low innovation rate and a GA 
operating without recombination, there are many copies 
of the individual produced with identical strategy 
parameters.  Low innovation rates used with a high 
selection pressure are thus wasteful of function 
evaluations and do not represent a good approach.  
However, they may be a viable approach for low selection 
pressures, because fewer copies are produced of each 
individual and therefore relatively few function 
evaluations are wasted, especially as the nature of the low 
selection pressure is to preserve more of the population’s 
variety. This view is supported by inspection of the 
best/mean/worst fitness (not shown) of low and high 
innovation rate experiments showing that mean fitness is 
roughly the same for both low and high innovation rates.  
However, the best individuals in the population are much 
more fit and the least fit individuals are much poorer with 
a high innovation rate.  In short, the population shows a 
higher fitness variance with a high innovation rate. 

6.3 METHODS FOR PROVIDING VARIETY 
One approach is to assign a variety of strategy parameters 
to copies of the individual, for example by using an 
innovation rate of one.  If the individuals are mutated and 
the results evaluated, now the relative fitness of the 
individual is determined solely by the strategy parameter 
(ignoring the stochastic effects of mutation).  Selection is 
therefore evaluating the match between the individual and 
its assigned strategy parameter.  This provides an 
emphasis on the appropriateness of the strategy parameter 
and hitchhiking of strategy parameters is discouraged.  A 
somewhat similar approach is used in Improved Fast 
Evolutionary Programming (Yao, Lin & Liu, 1997).  This 
variant of EP selects the best of two offspring generated 
from the same individual, one based on a step size 
generated from a Gaussian distribution, the other from a 
step size generated by a Cauchy distribution.  Rudolph 
(1999) suggests the addition of a fixed step size in order 
to escape local optima.  The discrete scheme with an 
                                                           
3 We note that Rudolph's proof is based on an elitist EA and 
Rechenberg's 1/5 success rule. 



 

innovation rate of one takes this one stage further and 
generates multiple offspring from the same individual 
with stochastically selected step sizes. 
A compromise between retaining the inherited strategy 
parameter for testing, yet providing variety, is to pass 
through one copy of the current strategy parameter, 
together with several different choices of strategy 
parameter for selection to test. This scheme 
simultaneously allows exploration of new strategy 
parameters and exploitation of existing information.  
Based on the results of the experiments, these would seem 
to be desirable characteristics of any self-adaptation 
algorithm.  Although this scheme cannot be achieved 
deterministically using the current discrete innovation 
algorithm, it is possible to calculate from (2) the 
probability, Pv, that exactly one of the n (in the present 
case, five) copies retains the inherited strategy parameter, 
with the other four having different random alleles: 
 

)1()/)(/1( <<+<u= n
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Figure 6 – Probability Pv against Innovation Rate 

 
Figure 6, a plot of this probability against innovation rate, 
shows that for high selection pressure, Pv is negligible for 
low innovation rates, but increases with innovation rate, 
peaking at an innovation rate of approximately 0.89.  An 
innovation rate of one, as used in the experiments gives a 
Pv value higher than any innovation rate below about 
0.74.  
This demonstrates that the discrete scheme, even with an 
innovation rate of one, provides good sampling of 
innovative strategy parameters and still allows 
transmission of inherited strategy parameter information 
with a respectable probability. In addition, we find that 
for low selection pressure, when fewer copies are made of 
each individual, the probability distribution is 
substantially different, peaking at a lower innovation rate 
than that of high selection pressure.  This is again 
consistent with the results reported above. The probability 

of the inherited strategy parameter being passed through 
is also much higher than with the high selection pressure 
over a wide range of innovation rates, such that Pv is 
higher for low selection pressure than for high selection 
pressure for all innovation rates except those approaching 
one.  This provides further reinforcement for the 
importance of selection pressure in the behaviour of self-
adaptation.  
As mentioned earlier, a deterministic version of this self-
adaptation algorithm would provide for Pv=1 by passing 
through a single copy of the inherited strategy parameter, 
whilst testing other choices of strategy parameter.  The 
selection pressure, h/µ, effectively determines the number 
of copies of each individual made and in the present 
experiments this ratio is five.  However, there are ten 
possible mutation rates that could be sampled, meaning 
that some rates will not be tested against each individual 
in a diverse population.  Clearly, it would be possible to 
match the number of possible mutation rates to the 
selection pressure in use, especially for high selection 
pressures.  This has the additional advantage that no 
inheritance mechanism is needed, since all mutation rates 
are tested against each individual.  Further work is needed 
to experiment with such a scheme and determine the 
minimum number of strategy parameter alleles that may 
be successfully used. 

7 CONCLUSIONS 
We showed that Smith's discrete model is able to provide 
effective self-adaptation in a GA across a variety of 
problems with better problem-solving reliability than the 
typical lognormal self-adaptation scheme.  Examination 
of results from the lognormal self-adaptation scheme 
showed that best results came from different values of the 
o  parameter depending on whether the problem had 
unimodal or multimodal characteristics.  Multimodal 
results suggest tentatively that the relationship presented 
in (3) holds for GAs.  Furthermore, we found that the best 
results on all the multimodal problems came from using 
(3) with a setting of c = 0.1. 
A major finding of this work concerns the choice of an 
appropriate innovation rate for the self-adaptation 
mechanism.  We found that although a low innovation 
rate provides the best performance for unimodal 
problems, in nearly all cases an innovation rate of one 
gives the best overall reliability and time to optimum 
figures for landscapes that have local optima or plateaus.  
Our hypothesis for the reasons for the benefits of a high 
innovation rate hinge on the relationship between 
selection pressure and the need for variety across strategy 
parameters in order for self-adaptation to function 
effectively.  High selection pressure and self-adaptation 
algorithms favoring small step sizes have the effect of 
reducing population diversity and encouraging premature 
convergence.  In this situation, self-adaptation schemes 
need to provide a means of stimulating diversity to 
counter the forces of selection.  This is a side effect of 
high innovation rates, but it may be possible to design 



 

parameterless self-adaptation schemes that deliver this 
benefit directly, whilst still providing the advantages of 
traditional low innovation rate schemes, namely the 
transmission of historically successful strategies when 
they are appropriate.  A scheme having these features was 
outlined and it was shown that the discrete model with 
uniform stochastic innovation provides these 
characteristics to a certain extent.  Further 
experimentation with purpose-designed algorithms along 
these lines is needed to determine whether any further 
performance benefits can accrue.  In addition, we need to 
test the strategy parameter diversity hypothesis on other 
problems and self-adaptation schemes. 
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