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Abstract. This paper presents and examines the behaviour of a system
whereby the rules governing local search within a Memetic Algorithm
are co-evolved alongside the problem representation. We describe the
rationale for such a system, and the implementation of a simple version
in which the evolving rules are encoded as (condition:action) patterns
applied to the problem representation, and are e�ectively self-adapted.
We investigate the behaviour of the algorithm on a test suite of problems,
and show signi�cant performance improvements over a simple Genetic
Algorithm, a Memetic Algorithm using a �xed neighbourhood function,
and a similar Memetic Algorithm which uses random rules, i.e. with the
learning mechanism disabled.
Analysis of these results enables us to draw some conclusions about the
way that even the simpli�ed system is able to discover and exploit di�er-
ent forms of structure and regularities within the problems. We suggest
that this \meta-learning" of problem features provides a means both of
creating highly scaleable algorithms, and of capturing features of the
solution space in an understandable form.

1 Introduction

The performance bene�ts which can be achieved by hybridising Evolutionary Al-
gorithms (EAs) with Local Search(LS) operators, so-called Memetic Algorithms

(MAs), have now been well documented across a wide range of problem domains
such as combinatorial optimisation [1], optimisation of non-stationary functions
[2], and multi-objective optimisation [3]. See [4] for a comprehensive bibliogra-
phy. Commonly in these algorithms, the Local Search improvement step is per-
formed on each of the products of the generating (recombination and mutation)
operators, prior to selection for the next population.

There are three principal components which a�ect the workings of the LS
algorithm. The �rst is the choice of pivot rule, which is usually either Steepest
Ascent or Greedy Ascent. The second component is the \depth" of local search,
which can vary from one iteration, to the search continuing to local optimality.
Considerable attention has been paid to studying the e�ect of changing these
parameters within MAs e.g. [5].



The third factor is the choice of neighbourhood function, which can be
thought of as de�ning a set of points that can be reached by the application
of some move operator to a point. We can consider the graphs de�ned by di�er-
ent move operators as \�tness landscapes" [6]. Merz and Freisleben [7] discuss
a number of statistical measures which can be used to characterise �tness land-
scapes, and have been proposed as potential measures of problem diÆculty. They
show that the choice of move operator can have a dramatic e�ect on the eÆciency
and e�ectiveness of the Local Search, and hence of the resultant MA.

In some cases, domain speci�c information may be used to guide this choice.
However, it has recently been shown that the optimal choice of operators can
be not only instance speci�c within a class of problems [7, pp254{258], but also
dependant on the state of the evolutionary search [8]. The idea that periodically
changing the move operator may provide a means of escape from local optima by
rede�ning the neighbourhood structure, has been demonstrated in the Variable
Neighbourhood Search algorithm [9].

The aim of this work is to provide a means whereby the de�nition of the
local search operator used within a MA can be varied over time, and then to
examine whether evolutionary processes can be used to control that variation,
so that a bene�cial adaptation takes place. In order to accomplish this aim, we
must address four major issues. The �rst of these is the representation of LS
operators in a form that can be processed by an evolutionary algorithm, and
the choice of of initialisation and variation operators. The second is the credit
assignment mechanism for assigning �tness to the LS population members. The
third is the choice of population structures and sizes, along with selection and
replacement methods for managing the LS population. Finally, we require a set
of experiments, problems and measurements designed to permit evaluation and
analysis of the behaviour of the system. This paper represents the �rst stage of
this analysis.

2 Rule-Based Adaptation of Move Operators

The representation chosen for the LS operators is a tuple<Search Depth, Pivot Rule,

Pairing, Move>. The �rst two elements are self-explanatory. Values for Pairing
are taken from the set fLinked, Random,Fitness Basedg. When the Local Search
phase is applied to a member of the solution population, the value of the Pair-
ing in the corresponding member of the LS population is examined. If the value
is Linked then that LS member is used to act on the solution. If the Pairing

takes one of the values Random or Fitness Based then a selection is made from
the available (i.e. unlinked)members of the LS population according. By making
this variable part of the rule and subject to evolution, the system can be varied
between the extremes of a fully unlinked system,(in which although still inter-
acting the two populations evolve separately), and a fully linked system. In the
latter the LS operators can be considered to be extra genetic material which is
inherited and varied along with the problem representation, in an exactly anal-
ogous way to the inheritance of strategy parameters in Self Adapting EAs. We



note that \Self-Adaptation" can be considered as co-evolution with hereditary
symbiosis, i.e. where the two populations share a common updating mechanism.

The representation chosen for the move operators was as condition:action

pairs, which specify a pattern to be looked for in the problem representation,
and a di�erent pattern it should be changed to. Although this representation
at �rst appears very simple, it has the potential to represent highly complex
moves via the use of symbols to denote not only wildcard characters but also
the speci�cations of repetitions and iterations. Further, permitting the use of
di�erent length patterns in the two parts of the rule gives scope for cut and
splice operators working on variable length solutions.

While the framework that we have describe above is intended to permit a
full exploration of several research issues, we shall initially restrict ourselves to
considering a simple system, and examining its behaviour on a well understood
set of binary encoded test problems. For these initial investigations we therefore
restricted the LS operators to a single improvement step, a greedy acceptance
mechanism, and full linkage. This restriction to what are e�ectively self-adaptive
systems provides a means of dealing with the credit assignment and population
management isssues noted above.

We also initially restrict ourselves to considering only rules where the condi-
tion and action patterns are of equal length and are composed of values taken
from the set f0,1,#g.The last of these is a \don't care" symbol which is only
allowed to appear in the condition part of the rule.

The neighbourhood of a point i is de�ned by �nding the (unordered) set
of positions where the substring denoted by condition is matched in the rep-
resentation of i. For each of these a new string is then made by replacing the
matching substring with the action pattern. To give an example, if we have a
solution represented by the binary string 1100111000 and a rule 1#0:111, then
this matches the �rst, second, sixth and seventh positions, and the neighbour-
hood is the set f1110111000, 11111111000, 1100111100,1100111110g. Note that
in this initial work we do not considered the string as toroidal.

3 Related Work

The COMA system can be related to a number of di�erent branches of research,
all of which o�er di�erent ways of perspectives and means of analysing it's be-
haviour. Space constraints preclude a full discussion of each of these, so we will
brie
y outline some of these perspectives.

Although we are not aware of other algorithms in which the LS operators
used by an MA are adapted in this fashion, there are other examples of the
use of multiple LS operators within evolutionary systems. Krasnogor and Smith
[8] describe what they call a \MultiMemetic Algorithm", in they used a simple
Self-Adaptive mechanism to evolve the choice of which a �xed set of static LS
operators (\memes") should be applied to individual solutions. They report that
their systems are able to adapt to use the best meme available for di�erent
instances of TSP.



As noted above, if the populations are of the same size, and are considered
to be linked, then this instantiation of the COMA framework can be considered
as a type of Self Adaptation. The use of the intrinsic evolutionary processes
to adapt search strategies, and the conditions necessary, is well documented
e.g. for mutation step sizes [10, 11], mutation probabilities [12], recombination
operators[13, 14] and general variation operators [15], amongst many others.

If the two populations are not linked, then we have a co-operative coevo-
lutionary system, where the �tness of the members of the LS population is
assigned as some function of the relative improvement they cause in the \so-
lution" population. Co-operative co-evolutionary (or \symbiotic") systems have
been used with good reported results for function optimisation [16{18] and Bull
conducted a series of more general studies on the conditions necessary for co-
operative co-evolution to occur [19{21]. These issues will be explored in future
work.

If we were to simply apply the rule selected from in the LS population (possi-
bly iteratively) to transform an individual solution, without considering a pivot
rule, then we could also view the system as a type of \developmental learning"
akin to the studies in the evolution of Genetic Code [22]

COMA di�ers from the last two paradigms because the LS population can
potentially modify the genotypes within the solution population. This phase of
improvement by LS can be viewed as a kind of lifetime learning, which leads nat-
urally to the question of whether a Baldwinian approach might be preferable to
the Lamarkian Learning currently implemented. However, even if a Baldwinian
approach was used, the principal di�erence between the COMA approach and
the co-evolutionary systems above lies in the use of a pivot rule within the LS,
such that detrimental changes are rejected.

Finally, and perhaps most importantly, we should consider that if the same
rule has an improving e�ect on di�erent parts of a solution chromosome over as
number of generations, then the evolution of rules can be seen as a process of
learning generalisations about patterns within the problem representation, and
hence the solution space. This point of view is akin to that of Learning Classi�er
Systems. For the case of unlinked �tness-based selection of LS operators, insight
from this �eld can be used to guide the credit assignment process.

4 The Test Suite and Experimental set-up

In order to examine the behaviour of the system it was used with a set of variants
of a test function whose properties are well known. This was a sixty four bit
problem composed of 16 subproblems of Deb's 4-bit fully deceptive function
given in [23]. The �tness of each subproblem i is given by its unitation u(i) (i.e.
the number of bits set to 1):

f(i) =

�
0:6� 0:2u(i) : u(i) < 4

1 : u(i) = 4
(1)

In addition to a \concatenated" version (which we will refer to as 4-Trap), a
second \distributed"version (Dist-Trap)was used in which the subproblems were



interleaved i.e. sub-problem i was composed of the genes i; i+ 16; i+ 32; i+ 48.
This separation ensures that even the longest rules allowed in these experiments
would be unable to alter more than one element in any of the subfunctions.

A third variant of this problem (Shifted-Trap) was designed to be more dif-
�cult than the �rst for the COMA algorithm to learn a single generalisation,
by making patterns which were optimal in one sub-problem, sub-optimal in all
others. This was achieved by noting that each sub-problem as de�ned above is
a function of unitation, and therefore can be arbitrarily translated by de�ning
a 4-bit string and using the Hamming distance from this string in place of the
unitation. Since we have 16 sub-problems, we simply used the binary coding of
the sub-problem's index as basis for its �tness calculation.

We used a generational genetic algorithm, with deterministic binary tourna-
ment selection for parents and no elitism. One Point Crossover (with probability
0.7) and bit-
ipping mutation (with a bitwise probability of 0.01) were used on
the problem representation. These values were taken as \standard" from the lit-
erature, bearing in mind the nature of the 4-Trap function. Mutation was applied
to the rules with a probability of 0.0625 of selecting a new allele value in each
locus (the inverse of the maximum rule length allowed to the adaptive version).

For each problem, 20 runs were made for each population size f100,250,500g.
Each run was continued until the global optimum was reached, subject to a max-
imum of 1 million evaluations. Note that since one iteration of LS may involve
several evaluations, this allows more generations to the GA, i.e. we compare
algorithms strictly on the basis of the number of calls to the evaluation function.

The algorithms used are: a \vanilla" GA i.e. with no use of Local Search
(GA), a simple MA using one iteration of greedy ascent over the neighbourhood
at Hamming distance 1 (MA), a version of COMA using a randomly created
rule in each application, (i.e. with the learning disabled) (RandComa), variants
of COMA using rules of �xed lengths in the ranges f1; : : : ; 9g (1-Coma,: : :,9-
Coma), and �nally an adaptive version of COMA (A-Coma). For A-Coma the
rule lengths are randomly initialised in the range [1,16]. During mutation, a
value of +=� 1 is randomly chosen and added with probability 0.0625, subject
to staying in range.

5 Comparison Results

Figure 1 shows the results of these experiments as a plot of mean time to opti-
mum for 4-Trap with three di�erent population sizes. When an algorithm failed
to reach the optimum in all twenty runs, the mean is taken over the successful
runs, and this number is shown. The error bars represent one standard deviation.
It should be noted that the scale on the y-axis is logarithmic. We can see that
the GA and MA,and 1-Coma algorithms fail to �nd the optimum as frequently,
or when they do as fast, for the smaller population sizes. For all population sizes
there is greater variance in the performance of these three algorithms than for
the other variants.



Because the variances are unequal, we applied the conservative Tamhane's T2
test to the solution times for the successful runs to detect statistically signi�cant
di�erences in performance. The GA, MA and 1-coma algorithms are signi�cantly
slower than the rest at the 5% level for a population of 100. For a population size
of 250 the GA and MA algorithms are signi�cantly slower. When the population
size is increased to 500, the worse performance seen with the GA and MA is no
longer signi�cant, according to this conservative test. However, the Rand-Coma
is now signi�cantly slower than all but the GA, MA and 2-Coma. 1-Coma is
signi�cantly slower than all but the GA, and 2-Coma is slower than all but GA,
MA and Rand-Coma.

In short, what we can observe is that for �xed rule lengths of between 3 and
9, and for the adaptive version, the COMA system derives performance bene�ts
from evolving LS rules. Signi�cantly, and unlike the GA and MA, the COMA
algorithm does not depend on a certain size population before it is able to solve
the problem reliably. This is indicative of a far more scaleable algorithm.

Figure 2 shows the results of the experiments on the variants of the trap
functions. For the \Shifted" trap function, the performances of the GA and MA
are not signi�cantly di�erent from those on the unshifted version. this refelects
the fact that these algorithms solve the sub-problems independently and are
\blind" to whether the optimal string for each is di�erent. When we examine
the results for the COMA algorithms, we see slower solution times than on the
previous problem, resulting from the fact that no one rule can be found which will
given good performance in every subproblem. However we see a similar pattern
of reliable problem solving for all but 1-Coma and 2-Coma. Analysis reveals that
even these last two are statistically signi�cantly better than GA or MA for all
but the largest population size. Interestingly, the RandComa algorithm performs
well here, probably as a natural consequence of using a random rule every time,
so promoting diversity in the rule base.

Considering Dist-Trap, we �rst note that the GA, MA and Rand-COMA
failed to solve the function to optimality in any run, regardless of population
size. The poor results of the GA can be attributed to the mismatch between the
distributed nature of the representation and the high positional bias of the 1-
point Crossover used. When we consider the action of the bit
ipping LS operator
on a subproblem, this will lead towards the sub-optimal solution, whenever the
unitation is 0,1 or 2, and the greedy search of the neighbourhood will also lead
towards the deceptive optimum 75% of the time when the unitation is 3. This
observation helps us to understand the poor results of the simple MA, and the
1-Coma algorithm.

When we examine the other COMA results, noting that the success rate
is less than for the other problems, we again see the same pattern of better
performance for the adaptive version and �xed rulelengths in the range 3-5,
tailing o� at the extreme lengths. Note that although the mean solution time
drops for long rule length, so too does the number of successful runs which we
take as our primary criterion. We also note that the failure of the RandComa
algorithm indicates that some learning is required here.



6 Discussion and Analysis

The results given above are promising from the point of view of improved opti-
misation performance, but require some analysis and explanation. The deceptive
functions used were speci�cally chosen because GA theory suggests that they are
solved by �nding and mixing optimal solutions to sub-problems. When we con-
sider the results, we can see that the performance is best on 4-Trap, with a rule
length of 4, which would support the hypothesis that the system is \learning"
the structure of the sub-problems. Although not immediately apparent from the
logarithmic scales, the solutions times here are less than half those on the other
problems.

However we should note that the algorithms are not aware of the sub-problem
boundaries. On 4-Trap and Shifted-Trap, for lengths of 4 or less occasionally, and
always for lengths greater than 4, the changes made will overlap several sub-
problems. This must always happen for Dist-Trap. It is clear from the results
with di�erent rule lengths, and from the distributed problem, that there is a
second form of improvement working on a longer timescale., which does not
arise simply from the use of random rules.

In order to examine the behaviour of the algorithm we plotted the population
means of the e�ective rule length (only relevant for A-Coma), the \speci�city"
(i.e. the proportion of values in the condition not set to #) and the \unitation"
(the proportion of bits in the action set to 1), and also the highest �tness in the
population (with 100 as the optimum) as a function of the number of elapsed
generations. Figure 3 shows the A-Coma results averaged over 20 runs on each
of the three problems, with a population of 250. We also manually inspected the
evolving rule bases on a large number of runs for each problem.

For the 4-Trap function (left hand graph), the system rapidly evolves medium
length (3 � 4), general (speci�city < 50%) rules whose action is to set all the
bits to 1 (mean unitation approaches 100%). Note that in the absence of selec-
tive pressure (i.e. the pivot rules meant that the solutions were left unchanged),
all three of these values would be expected to remain at their initial values, so
these changes result from bene�cial adaptation. Closer inspection of the evolv-
ing rulebase con�rms that the optimal subproblem string is being learned and
applied.

For the Shifted-Trap function, where the optimal sub-blocks are all di�er-
ent (middle) the rule length decreases more slowly. The speci�city also remains
higher, and the unitation remains at 50%, indicating that di�erent rules are
being maintained. This is borne out by closer examination of the rule sets.

The behaviour on Dist-Trap is similar to that on 4-Trap, albeit over a longer
timescale. Rather than learning speci�c rules about sub-problems, which cannot
possibly be happening (since no rule is able to a�ect more than one locus of
any subproblem), the system is apparently learning the general rule of setting
all bits to 1.

The rules are generally shorter than for 4-Trap, (although this is slightly
obscured by the averaging) which means that the number of potential neighbours
is higher for any given rule. Equally, the use of wildcard characters, coupled with



the fact that there may be matches in the two parts of the rules, means that
length of the rules used de�nes a maximum radius in Hamming space for the
neighbourhood, rather than a �xed distance from the original solution. Both
of these observations, when taken in tandem with the longer times to solution,
suggest that when the system is unable to �nd a single rule that matches the
problems' structure, a more diverse search using a more complex neighbourhood
is used, which slowly adapts itself to the state of the current population of
solutions.

7 Conclusions

We have presented a framework in which rules governing LS operators to be
used in memetic algorithms can be co-evolved with the population of solutions.
A simple version was implemented which used Self-Adaptation of the patterns
de�ning the move operators, and this was shown to give improved performance
over both GAs and simple MAs on the test set. We showed that the system
was able to learn generalisations about the problem when these were useful.
We also noted that the COMA algorithms were far less dependant on a critical
population size to locate the global optima, and suggested that this indicates a
far more scaleable type of algorithm.

The test set used here was designed to maximise di�erent types of diÆculty
for COMA, namely deception, inappropriate representation ordering, and multi-
ple di�erent optima. Although space precludes their inclusion, we have repeated
these experiments with a wide range of di�erent problem types and found simi-
lar performance bene�ts. Clearly further experimentation and analysis is needed,
and there are many issues to be explored, however we believe that this paper
represents the �rst stage in a promising line of research.
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