2	NONLINEARITY OF INERTERS IN A TWO-STAGE VIBRATION ISOLATOR
3	Wei Dai
4 5 6	School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China <u>daiwei699@hust.edu.cn</u>
7	Baiyang Shi
8 9 10	Department of Engineering Design and Mathematics, University of the West of England, Bristol, BS16 1QY, United Kingdom. <u>baiyang.shi@uwe.ac.uk</u>
11	Tianyun Li
12 13 14	School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China <u>ltyz801@hust.edu.cn</u>
15	Xiang Zhu
16 17 18	School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China <u>zhuxiang@hust.edu.cn</u>
19	Jian Yang*
20 21 22	Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China jian.yang@nottingham.edu.cn
23 24	Received Day Month Year Revised Day Month Year
25 26 27 28 29 30 31 32 33 34 35 36	This research proposes a two-stage vibration isolation system (TS-VIS) exploiting geometrical nonlinearity by inerters for performance enhancement. Lateral inerters are added to upper and lower stages creating geometric nonlinearity. The transmissibility and power flow indices are obtained for the performance evaluation. It is demonstrated that the inerters in both stages of the TS-VIS can enhance substantially the effectiveness of isolation at low frequencies by bending and shifting the resonance peaks in the force and energy transmission curves to the left while reducing the peak heights in these curves. It shows the use of inerters introduces a local minimum in the transmissibility curve which can be exploited for significant reduction in vibration transmission at a desirable frequency. By tailoring the inertance ratios for both stages of the TS-VIS, further improvements on the performance can be achieved by extending the frequency range of effective isolation. This work shows the benefits of using nonlinear inerters in the TS-VIS to obtain superior low-frequency isolation performance, which is potentially applicable in engineering systems such as floating raft structures.
37 38	Keywords: Inerter; Nonlinear vibration isolator; Power flow; Force transmissibility; Geometric nonlinearity.

PERFORMANCE ENHANCEMENT BY EXPLOITING GEOMETRICAL

* Corresponding author

1

39 1. Introduction

40 Vibration isolators are in great demand for efficient suppression of low-frequency vibration 41 transmission from operating machines to foundation structures in automobile and marine 42 engineering [Qiu et al., 2022]. For example, excessive vibrations induced by the hosts and 43 auxiliary machineries in underwater vehicles can be transmitted via the mounting structure 44 to the hull resulting in structure-borne noise [Chen et al., 2021]. Effective isolations and 45 absorptions of low-frequency vibration are needed to reduce vibration transmission and 46 noise radiation [Yang et al., 2021; Zhang et al., 2021]. For a conventional spring-mass-47 damper isolator having natural frequency of $\omega_{\rm p}$, effective isolation is achieved when the 48 excitation frequency $\omega > \sqrt{2\omega_p}$ [Ye and Ji, 2022]. Therefore, a compromise has to be made 49 between having a low stiffness for low-frequency isolation and having a high stiffness for 50 good load-carrying capacity [Niu and Chen, 2022].

51 To achieve better performance than that of linear isolators, geometric nonlinearities 52 have been exploited in the designs of passive vibration isolators for superior performance. 53 For instance, quasi-zero-stiffness (QZS) structures containing lateral linear springs [Zhao 54 et al., 2020] and linkage mechanisms comprising rigid rods and springs were proposed 55 [Wang et. al., 2020; Dai et al., 2021]. Geometrically nonlinear structures can be used to 56 provide negative dynamic stiffness so that a low linearized natural frequency [Yan et al., 57 2022] is obtained. Recent studies have shown that compared to the linear and single-stage 58 nonlinear isolation systems, a nonlinear two-stage vibration isolation system (TS-VIS) can 59 have performance benefits by providing a wider effective isolation frequency band [Li and Xu, 2018]. Lu et al., [2016] proposed a nonlinear QZS-based TS-VIS and found the 60 61 isolation frequency band is enlarged. Wang and Li et al., [2017] compared the effectiveness 62 of the single-stage and two-stage QZS nonlinear isolation systems and showed that the 63 latter can exhibit a larger unity isolation frequency band. Moreover, a TS-VIS with 64 mechanical mechanisms [Wang and Zhou et al., 2017], one for gravity wave detectors 65 [Matichard et al., 2015] and active/hybrid ones [Xie et al., 2019] have been studied. 66 Floating raft vibration isolation structures have also been developed based on TS-VIS for 67 reducing radiated noise of submarines [Lei et al., 2018].

68 To further enhance the isolation performance, a recently developed passive device, the 69 inerter, can be used [Smith, 2002]. The inerters have been realized in various ways using 70 rack-pinion mechanisms, hydraulic fluid through a helical channel, or ball-screw 71 mechanisms [Alujević et al., 2018]. It was found that the addition of inerter can effectively 72 improve the performance of isolators [He et al., 2021; Morales, 2022; Wang et. al., 2022; 73 Dong et al., 2021] or absorbers [Zhao et al., 2021; Zhang et al., 2020]. Wang et. al., [2018] 74 proposed eight different configurations of single-stage inerter-based linear isolators and 75 assessed their isolation effectiveness by using response displacement and force 76 transmissibility. The optimal parameters of structural design are obtained. Single-stage 77 vibration isolators and tuned-mass-damper-inerter (TMDI) with geometrically nonlinear 78 inerters have also been developed, demonstrating possible further enhancement on the 79 vibration suppression compared to the structures with linear inerter, especially for the low-80 frequency vibration [Dai et al., 2022a; Shi et al., 2022; Liu et al., 2022]. However, there

are very few investigations on adding the inerter to TS-VIS [Yang *et al.*, 2019]. The use of
 geometrically nonlinear inerters in a TS-VIS has not been explored for enhancing vibration
 isolation performance [Yang *et al.*, 2017], despite being potentially applicable to typical
 engineering systems such as floating raft isolation structure.

85 In this research, a nonlinear inerter-based TS-VIS is proposed. After obtaining the responses of the TS-VIS, the transmissibility and power flow indicators are used for 86 87 performance assessment and to reveal the vibration transmission mechanisms [Wang et al., 88 2019; Zhao et al., 2018]. The vibration power flow takes both force and velocity into 89 account and makes a good performance index to quantify the vibration transmission 90 [Goyder and White, 1980]. This method has been developed and used as an effective 91 analysis tool in the investigation of linear systems [Renno et al., 2019; Zhu et al., 2021] 92 and nonlinear systems such as vibration absorbers [Shi et al., 2022], floating raft vibration 93 isolation system and ship propulsion shafting system [Dai et al., 2022a]. Recently, the 94 power flow indices have been employed as fault diagnosis indicators in rotating machinery. 95 Different severity of rub-impact faults can be detected by analysing the instantaneous or 96 time-averaged energy transmission between the rotor and stator [Zhang et al., 2023].

For the rest of the paper, a TS-VIS with nonlinear inerters is firstly presented in Section
In Section 3, the solution process of system responses is illustrated and the measures of
evaluating the performance of the nonlinear isolator are defined. The effectiveness of the
nonlinear TS-VIS is examined and discussed in Section 4, followed by conclusions.

101 2. Modelling of the Nonlinear Inerter-based TS-VIS

The TS-VIS with geometrically nonlinear inerters is shown in Figure 1(a). The upper stage 102 103 comprises a harmonically excited machine of mass m_1 , a vertical spring k_1 , a vertical 104 damper c_1 , a vertical inerter of inertance b_1 and two identical lateral inerters b_2 . The lower stage has a mass m_2 , a vertical spring k_2 , a vertical damper c_2 , a vertical inerter b_3 and 105 106 two identical lateral inerters b_4 . The frequency and amplitude of the excitation force 107 applied to m_1 are f_0 and ω , respectively. In the equilibrium state, the lateral inerters b_2 108 and b_4 are horizontal. The distance of two terminals of the lateral inerters when orientated 109 horizontal is l.

Figure 1(b) shows the system with masses m_1 and m_2 having displacements x_1 and x_2 , respectively. Fig. 2(c) and (d) plots force directions of two pairs of lateral inerters, respectively. The terminals O_1 and O_2 are attached to m_1 and m_2 , respectively, θ_1 and θ_2 are the angles between AO₁ and AB and between CO₂ and CD with $\sin\theta_1 = (x_1 - x_2)/\sqrt{l^2 + (x_1 - x_2)^2}$ and $\sin\theta_2 = x_2/\sqrt{l^2 + x_2^2}$.

115

116Figure 1. Schematics of (a) the proposed nonlinear TS-VIS at equilibrium state, (b) the proposed TS-VIS under117deformation, (c) force analysis in the upper stage and (d) force analysis in the lower stage.

118 The governing equations of the nonlinear inerter-based TS-VIS are:

119
$$m_1 \ddot{x}_1 + b_1 \ddot{x}_r + c_1 \dot{x}_r + k_1 x_r + f_{s1} \left(x_r, \dot{x}_r, \ddot{x}_r \right) = f_0 e^{i\omega t}, \qquad (1)$$

120
$$(m_2 + b_3)\ddot{x}_2 - b_1\ddot{x}_r - c_1\dot{x}_r - k_1x_r - f_{s1}(x_r, \dot{x}_r, \ddot{x}_r) + f_{s2}(x_2, \dot{x}_2, \ddot{x}_2) + c_2\dot{x}_2 + k_2x_2 = 0, (2)$$

121 where $x_r = x_1 - x_2$, $\dot{x}_r = \dot{x}_1 - \dot{x}_2$, $\ddot{x}_r = \ddot{x}_1 - \ddot{x}_2$ and $f_{s1}(x_r, \dot{x}_r, \ddot{x}_r)$ and $f_{s2}(x_2, \dot{x}_2, \ddot{x}_2)$ are 122 the nonlinear forces generated by the lateral inerters in the two stages. From Fig. 1(c) and 123 (d), the relative velocity between two terminals of the lateral inerter b_2 and b_4 can be 124 expressed as $v_1 = \dot{x}_r \sin\theta_1$ and $v_2 = \dot{x}_2 \sin\theta_2$, respectively. Then the inerter forces f_{sv1} and 125 f_{sv2} of inerters b_2 and b_4 can be determined as $f_{sv1} = b_2 (dv_1 / dt)$ and $f_{sv2} = b_4 (dv_2 / dt)$, 126 respectively. Considering the symmetry of the structure, the total forces applied on two 127 masses will be vertical and expressed as [Yang *et al.*, 2019]:

128
$$f_{s1}(x_{\rm r},\dot{x}_{\rm r},\ddot{x}_{\rm r}) = 2f_{sv1}\sin\theta_1 = 2b_2\left(\frac{x_{\rm r}^2\ddot{x}_{\rm r}}{l^2 + x_{\rm r}^2} + \frac{l^2x_{\rm r}\dot{x}_{\rm r}^2}{\left(l^2 + x_{\rm r}^2\right)^2}\right),\tag{3}$$

129
$$f_{s2}(x_2, \dot{x}_2, \ddot{x}_2) = 2f_{sv2}\sin\theta_2 = 2b_4 \left(\frac{x_2^2 \ddot{x}_2}{l^2 + x_2^2} + \frac{l^2 x_2 \dot{x}_2^2}{\left(l^2 + x_2^2\right)^2}\right).$$
(4)

130 The Eqs. (1) and (2) can be organized as:

131
$$\begin{pmatrix}
m_{1}+b_{1} & -b_{1} \\
-b_{1} & m_{2}+b_{3}+b_{1}
\end{pmatrix}
\begin{cases}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{pmatrix}
+
\begin{bmatrix}
k_{1} & -k_{1} \\
-k_{1} & k_{2}+k_{1}
\end{bmatrix}
\begin{cases}
x_{1} \\
x_{2}
\end{pmatrix}
+
\begin{bmatrix}
c_{1} & -c_{1} \\
-c_{1} & c_{2}+c_{1}
\end{bmatrix}
\begin{cases}
\dot{x}_{1} \\
\dot{x}_{2}
\end{pmatrix}
+
\begin{cases}
f_{s1}(x_{r},\dot{x}_{r},\ddot{x}_{r},\ddot{x}_{r}) \\
-f_{s1}(\ddot{x}_{r},\dot{x}_{r},x_{r}) + f_{s2}(x_{2},\dot{x}_{2},\ddot{x}_{2})
\end{pmatrix}
=
\begin{cases}
f_{0}e^{i\omega t} \\
0
\end{cases}$$
(5)

133
$$\omega_1 = \sqrt{\frac{k_1}{m_1}}, \quad \omega_2 = \sqrt{\frac{k_2}{m_2}}, \quad \mu = \frac{m_2}{m_1}, \quad \gamma = \frac{\omega_2}{\omega_1}, \quad \zeta_1 = \frac{c_1}{2m_1\omega_1}, \quad \zeta_2 = \frac{c_2}{2m_2\omega_2}, \quad F_0 = \frac{f_0}{lk_1},$$

134
$$\Omega = \frac{\omega}{\omega_1}, \quad \lambda_1 = \frac{b_1}{m_1}, \quad \lambda_2 = \frac{b_2}{m_1}, \quad \lambda_3 = \frac{b_3}{m_1}, \quad \lambda_4 = \frac{b_4}{m_1}, \quad X_1 = \frac{x_1}{l}, \quad X_2 = \frac{x_2}{l}, \quad X_r = \frac{x_r}{l},$$

135
$$\tau = \omega_1 t , \qquad (6)$$

136 where ω_1 and ω_2 represent linearized resonant frequencies of subsystems in the upper and 137 lower stages without inerters, respectively, μ and γ are the mass and natural frequency 138 ratios, respectively, ζ_1 and ζ_2 are the damping coefficients, F_0 is the dimensionless 139 excitation amplitude, Ω is dimensionless excitation frequency, λ_1 , λ_2 , λ_3 and λ_4 are 140 the inertance ratios of the corresponding inerters, X_1 , X_2 and X_r are the dimensionless 141 displacements and the relative displacement of the masses, and τ is the dimensionless 142 time. The governing equation is then transformed to a dimensionless form:

143
$$\begin{bmatrix}
1 + \lambda_{1} & -\lambda_{1} \\
-\lambda_{1} & \mu + \lambda_{3} + \lambda_{1}
\end{bmatrix}
\begin{bmatrix}
X_{1}^{*} \\
X_{2}^{*}
\end{bmatrix} +
\begin{bmatrix}
1 & -1 \\
-1 & \mu\gamma^{2} + 1
\end{bmatrix}
\begin{bmatrix}
X_{1} \\
X_{2}
\end{bmatrix} +
\begin{bmatrix}
2\zeta_{1} & -2\zeta_{1} \\
-2\zeta_{1} & 2\mu\gamma\zeta_{2} + 2\zeta_{1}
\end{bmatrix}
\begin{bmatrix}
X_{1}^{*} \\
X_{2}^{*}
\end{bmatrix} +
\begin{bmatrix}
143 \\
F_{sl}(X_{r}, X_{r}^{'}, X_{r}^{'}) \\
-F_{sl}(X_{r}, X_{r}^{'}, X_{r}^{'}) + F_{s2}(X_{2}, X_{2}^{'}, X_{2}^{*})
\end{bmatrix} =
\begin{bmatrix}
F_{0}e^{i\Omega \tau} \\
0
\end{bmatrix}$$
(7)

144 where

$$F_{\rm sl}\left(X_{\rm r}, X_{\rm r}, X_{\rm r}\right) = 2\lambda_2 \left(\frac{X_{\rm r}^2 X_{\rm r}}{1 + X_{\rm r}^2} + \frac{X_{\rm r} X_{\rm r}^{'2}}{\left(1 + X_{\rm r}^2\right)^2}\right),\tag{8}$$

$$F_{s2}\left(X_{2}, X_{2}^{'}, X_{2}^{''}\right) = 2\lambda_{4}\left(\frac{X_{2}^{2}X_{2}^{''}}{1+X_{2}^{2}} + \frac{X_{2}X_{2}^{'2}}{\left(1+X_{2}^{2}\right)^{2}}\right).$$
(9)

147

146

145

148 **3. Dynamic Responses and Performance Indices**

149 **3.1.** Response analysis

To solve the governing equation (7), the analytical and alternating-frequency-time (AFT)
harmonic balance methods (HBM) are applied. Moreover, a numerical Runge-Kutta (RK)
Dormand-Prince method with variable step size is also applied for validation. When using

analytical HBM, the relative responses X_r , X_r and X_r^* of two masses as well as the responses X_2 , X_2 and X_2^* of the mass in the lower stage are approximated by

155
$$X_{\rm r} = H_1 \cos\left(\Omega \tau + \alpha\right), X_2 = H_2 \cos\left(\Omega \tau + \beta\right), \tag{10}$$

156
$$X'_{r} = -H_1 \Omega \sin(\Omega \tau + \alpha), X'_2 = -H_2 \Omega \sin(\Omega \tau + \beta) , \qquad (11)$$

157
$$X_{r}^{\dagger} = -H_{1}\Omega^{2}\cos(\Omega\tau + \alpha), X_{2}^{\dagger} = -H_{2}\Omega^{2}\cos(\Omega\tau + \beta) \quad , \tag{12}$$

158 respectively, where H_1 and H_2 are the response amplitudes while α and β are the phase 159 angles. By substituting Eqs. (10-12) into Eqs. (8) and (9), the nonlinear forces F_{s1} and F_{s2} 160 can be approximated by Taylor expansion:

161
$$F_{s1}(X_{r}, X_{r}, X_{r}) \approx -\frac{\lambda_{2}\Omega^{2}H_{1}^{3}(H_{1}^{2}+2)}{2}\cos(\Omega\tau+\alpha), \qquad (13)$$

162
$$F_{s2}\left(X_{2}, X_{2}, X_{2}\right) \approx -\frac{\lambda_{4}\Omega^{2}H_{2}^{3}\left(H_{2}^{2}+2\right)}{2}\cos\left(\Omega\tau+\beta\right).$$
(14)

By substituting Eqs. (10-14) into Eq. (7), we have the following algebraic equations byusing HBM:

165

$$-2H_{1}\Omega\zeta_{1}\sin\alpha + H_{1}\left\{1 - 2\lambda_{2}\frac{\Omega^{2}H_{1}^{2}}{4}(H_{1}^{2} + 2)\right\}\cos\alpha + \Omega^{2}\lambda_{1}H_{2}\cos\beta - , \quad (15a)$$

$$\Omega^{2}(1 + \lambda_{1})(H_{1}\cos\alpha + H_{2}\cos\beta) = F_{0}$$

166
$$H_{1}\left\{2\lambda_{2}\frac{\Omega^{2}H_{1}^{2}}{4}\left(H_{1}^{2}+2\right)-1\right\}\sin\alpha-2\Omega\zeta_{1}H_{1}\cos\alpha+\Omega^{2}\left(1+\lambda_{1}\right)\left(H_{1}\sin\alpha+H_{2}\sin\beta\right),\\-\Omega^{2}\lambda_{1}H_{2}\sin\beta=0$$

(15b)

$$2\Omega\zeta_{1}H_{1}\sin\alpha - 2H_{2}\Omega\mu\gamma\zeta_{2}\sin\beta + \mu\gamma^{2}H_{2}\cos\beta + H_{1}\left\{2\lambda_{2}\frac{\Omega^{2}H_{1}^{2}}{4}\left(H_{1}^{2}+2\right) + \lambda_{1}\Omega^{2}-1\right\}\cos\alpha - \Omega^{2}H_{2}\left\{2\lambda_{4}\frac{H_{2}^{2}}{4}\left(H_{2}^{2}+2\right) - \mu - \lambda_{3}\right\}\cos\beta = 0,$$
169
(15c)

170

$$2\Omega\zeta_{1}H_{1}\cos\alpha - 2H_{2}\Omega\mu\gamma\zeta_{2}\cos\beta + H_{1}\left\{1 - 2\lambda_{2}\frac{\Omega^{2}H_{1}^{2}}{4}(H_{1}^{2} + 2) - \lambda_{1}\Omega^{2}\right\}\sin\alpha + \left\{\Omega^{2}(\mu + \lambda_{3}) - \mu\gamma^{2} + 2\lambda_{4}\frac{\Omega^{2}H_{2}^{2}}{4}(H_{2}^{2} + 2)\right\}H_{2}\sin\beta = 0$$
(15d)

171 By using the Newton-Raphson method to solve Eq. (15), we can determine solutions of 172 H_1 , H_2 , α and β for further performance evaluation of the nonlinear isolator.

173 When the displacements of the masses become large, the inertial nonlinearity becomes 174 stronger and the use of analytical HBM of relative low orders may lead to reduced accuracy of the results. To improve the approximation accuracy of the system response, a higher 175 176 order of harmonic terms is needed. However, due to the complexity of function of nonlinear 177 force, it is challenging to obtain the high order terms of nonlinear forces analytically. 178 Therefore, in determination of the approximated nonlinear force expression, a specific form 179 of HBM, namely HBM-AFT (alternating frequency time) scheme is used here to obtain the 180 Fourier coefficients of nonlinear forces numerically. In practice, assuming that the responses of two masses can be expressed by Q-order Fourier series: 181

182
$$X_{1} = \sum_{q=0}^{Q} \tilde{J}_{(1,q)} \exp(iq\Omega\tau), \qquad X_{2} = \sum_{q=0}^{Q} \tilde{J}_{(2,q)} \exp(iq\Omega\tau), \quad (16a, 16b)$$

183 where q is an integer within the range of [0,Q], $\tilde{J}_{(1,q)}$ and $\tilde{J}_{(2,q)}$ are the approximated q184 -th order complex Fourier coefficients of the responses. The nonlinear forces F_{s1} and F_{s2} 185 of the inerter-configuration can be also approximated as

186
$$F_{s1}(X_{r}, X_{r}, X_{r}) = \sum_{q=0}^{Q} \tilde{S}_{(1,q)} \exp(iq\Omega\tau), \qquad (17a)$$

187
$$F_{s2}(X_2, X_2, X_2) = \sum_{q=0}^{Q} \tilde{S}_{(2,q)} \exp(iq\Omega\tau), \qquad (17b)$$

188 where $\tilde{S}_{(1,q)}$ and $\tilde{S}_{(2,q)}$ are the approximated q -th order complex Fourier coefficients. 189 Here the AFT technique is implemented to obtain the coefficients $\tilde{S}_{(1,q)}$ and $\tilde{S}_{(2,q)}$ of the 190 nonlinear forces. The approximated displacement responses in Eq. (16), and velocity 191 responses and acceleration responses obtained by the differentiation of Eq. (16), are 192 substituted into Eq. (17), to obtain the time histories of the nonlinear forces. Then the time-193 domain expression of nonlinear forces can be Fourier transformed into frequency domain 194 and the coefficients $\tilde{S}_{(1,q)}$ and $\tilde{S}_{(2,q)}$ can be determined.

The approximated responses and nonlinear forces in Eqs. (16) and (17) can be substituted into the governing equation (7). Based on HBM, the terms with the same order are balanced. For the q-th order harmonic balance, we have [Dai et al., 2022b]

$$\begin{pmatrix} -(q\Omega)^{2} \begin{bmatrix} 1+\lambda_{1} & -\lambda_{1} \\ -\lambda_{1} & \mu+\lambda_{3}+\lambda_{1} \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & \mu\gamma^{2}+1 \end{bmatrix} + \mathbf{i}(q\Omega) \begin{bmatrix} 2\zeta_{1} & -2\zeta_{1} \\ -2\zeta_{1} & 2\mu\gamma\zeta_{2}+2\zeta_{1} \end{bmatrix} \begin{pmatrix} \tilde{J}_{(1,q)} \\ \tilde{J}_{(2,q)} \end{pmatrix} \\ = \begin{cases} F_{0} - \tilde{S}_{(1,q)} \\ \tilde{S}_{(1,q)} - \tilde{S}_{(2,q)} \end{cases}$$

$$(18)$$

199

198

200Therefore, 2(2 Q + 1) algebraic equations are obtained. Here the Newton-Rapson method is201used for solving those equations. In order to track the possible branches of solution, the202numerical continuation method is applied to calculate the solutions [Colaïtis and Batailly,2032021; Dai *et al.*, 2020].

204

205 **3.2.** Isolation performance indicators

To assess the performance of TS-VIS, the force transmissibility is used as an index to evaluate the level of vibration transmission. The force transmissibility is defined as the maximum magnitude of the transmitted forces to that of the input force. The force transmissibilities to the lower stage and to the ground are defined as

210
$$TR_{i} = \frac{|F_{i}|_{max}}{F_{0}} , \qquad TR_{f} = \frac{|F_{if}|_{max}}{F_{0}} , \qquad (19)$$

211 respectively, where F_{ti} and F_{tf} are the corresponding transmitted forces. In this paper, the 212 vibration generated by the machine m_1 is transmitted via inerters b_1 , b_2 , spring k_1 and 213 damper c_1 to the lower stage m_2 . The vibration of lower stage is transmitted via inerters 214 b_3 , b_4 , spring k_2 and damper c_2 to the ground. Therefore, the total transmitted force to 215 the lower stage and to the ground can be obtained as the total vertical transmitted force 216 between m_1 and m_2 and between m_2 and ground, respectively, which can be derived as

217
$$F_{ti} = F_{s1} \left(X_{r}, X_{r}, X_{r}, X_{r} \right) + X_{r} + 2\zeta_{1} X_{r} + \lambda_{1} X_{r} = 2\lambda_{2} \left(\frac{X_{r}^{2} X_{r}}{1 + X_{r}^{2}} + \frac{X_{r} X_{r}^{2}}{\left(1 + X_{r}^{2}\right)^{2}} \right) + X_{r}, \quad (20)$$
$$+ 2\zeta_{1} X_{r} + \lambda_{1} X_{r}$$

218
$$F_{tf} = F_{s2} \left(X_{2}, X_{2}^{'}, X_{2}^{'} \right) + \mu \gamma^{2} X_{2} + 2\mu \gamma \zeta_{2} X_{2}^{'} + \lambda_{3} X_{2}^{'} = 2\lambda_{4} \left(\frac{X_{2}^{2} X_{2}^{'}}{1 + X_{2}^{2}} + \frac{X_{2} X_{2}^{'2}}{\left(1 + X_{2}^{2} \right)^{2}} \right), \quad (21)$$
$$+ \mu \gamma^{2} X_{2} + 2\mu \gamma \zeta_{2} X_{2}^{'} + \lambda_{3} X_{2}^{''}$$

respectively. By the substitution of Eqs. (10-14) into Eq. (20) and (21), the analytically approximated transmitted forces F_{ti} and F_{tf} are

(23)

221
$$F_{\rm ti} \approx H_1 \left(-\frac{\lambda_2 \Omega^2 H_1^2 (H_1^2 + 2)}{2} - \lambda_1 \Omega^2 + 1 \right) \cos(\Omega \tau + \alpha) - 2\Omega \zeta_1 H_1 \sin(\Omega \tau + \alpha), \quad (22)$$

222
$$F_{\rm tf} \approx H_2 \left(\mu \gamma^2 - \frac{\lambda_4 \Omega^2 H_2^2 \left(H_2^2 + 2 \right)}{2} - \lambda_3 \Omega^2 \right) \cos\left(\Omega \tau + \beta\right) - 2\Omega \mu \gamma \zeta_2 H_2 \sin\left(\Omega \tau + \beta\right).$$

223

224 Therefore, the corresponding force transmissibilities are approximated as

225
$$TR_{i} = \frac{\left|F_{t_{i}}\right|_{max}}{F_{0}} \approx \frac{H_{1}\sqrt{\left(-\frac{\lambda_{2}\Omega^{2}H_{1}^{2}\left(H_{1}^{2}+2\right)}{2} - \lambda_{1}\Omega^{2}+1\right)^{2} + \left(2\zeta_{1}\Omega\right)^{2}}}{F_{0}}, \qquad (24)$$

226
$$TR_{\rm f} = \frac{\left|F_{\rm ff}\right|_{\rm max}}{F_0} \approx \frac{H_2 \sqrt{\left(-\frac{\lambda_4 \Omega^2 H_2^2 \left(H_2^2 + 2\right)}{2} - \lambda_3 \Omega^2 + \mu \gamma^2\right)^2 + \left(2\mu \gamma \zeta_2 \Omega\right)^2}}{F_0} \quad (25)$$

Equations (24) and (25) show that for the linear undamped isolation system with $\lambda_2 = \lambda_4 = \zeta_1 = \zeta_2 = 0$, the force transmissibilities TR_i and TR_f are zero, at the excitation frequencies of

230
$$\Omega = \Omega_1 = \sqrt{1/\lambda_1} \qquad \Omega = \Omega_2 = \sqrt{\mu\gamma^2/\lambda_3} , \qquad (26a, 26b)$$

231 respectively. For the current nonlinear TS-VIS with weak damping, TR_i and TR_f will take 232 quasi-zero values at Ω_1 or Ω_2 . It is noted that the values of Ω_1 and Ω_2 for ultra-low 233 force transmission can be tuned by changing the inertance ratios λ_1 and λ_3 . This 234 characteristic demonstrates that by designing inertances of vertical and lateral inerters, the 235 force transmission can be significantly suppressed.

237
$$P_{\rm in} = \mathsf{R}\left\{F_0 \mathrm{e}^{\mathrm{i}\Omega\tau}\right\} \mathsf{R}\left\{X_1\right\} = \mathsf{R}\left\{F_0 \mathrm{e}^{\mathrm{i}\Omega\tau}\right\} \mathsf{R}\left\{\sum_{q=0}^{Q} \mathrm{i}q\Omega \tilde{J}_{(1,q)}\exp(\mathrm{i}q\Omega\tau)\right\},\tag{27}$$

where R {} represents real part of the variable. The corresponding time-averaged input
 vibrational power is

240
$$\overline{P}_{in} = \frac{1}{\tau_p} \int_{\tau_0}^{\tau_0 + \tau_p} P_{in} d\tau = \frac{1}{\tau_p} \mathsf{R} \int_{\tau_0}^{\tau_0 + \tau_p} \left\{ F_0 e^{i\Omega \tau} \right\} \mathsf{R} \left\{ X_1 \right\} d\tau = \frac{1}{2} F_0 \mathsf{R} \left\{ \left(i\Omega \tilde{J}_{(1,1)} \right)^* \right\}, \quad (28)$$

241 where τ_{p} is defined as an excitation cycle in the steady state, i.e., $2\pi/\Omega$, and ()* denotes 242 the complex conjugate of the variable. Using approximate expressions of the velocity 243 shown by Eq. (11), we have the approximated time-averaged input vibrational power

244
$$\overline{P}_{in} = \frac{1}{\tau_p} \int_{\tau_0}^{\tau_0 + \tau_p} \left(X_1 F_0 \cos \Omega \tau \right) d\tau \approx -\frac{F_0 \Omega}{2} \left(H_1 \cos \alpha + H_2 \cos \beta \right).$$
(29)

245 The power transmission to the lower stage is dissipated by c_2 , therefore, we can define 246 the instantaneous power transmission P_t and time-averaged power transmission \overline{P}_t 247 expressed as

248
$$P_{t} = 2\zeta_{2}\mu\gamma(\mathsf{R}\{X_{2}\})^{2} = 2\zeta_{2}\mu\gamma(\mathsf{R}\{\sum_{q=0}^{Q}iq\Omega\tilde{J}_{(2,q)}\exp(iq\Omega\tau)\})^{2}, \qquad (30)$$

249

$$\overline{P}_{t} = \frac{1}{\tau_{p}} \int_{\tau_{0}}^{\tau_{0}+\tau_{p}} 2\zeta_{2} \mu \gamma (\mathbb{R}\{X_{2}^{'}\})^{2} d\tau = \frac{1}{\tau_{p}} \int_{\tau_{0}}^{\tau_{0}+\tau_{p}} 2\zeta_{2} \mu \gamma (\mathbb{R}\{\sum_{q=0}^{\varrho} iq\Omega \tilde{J}_{(2,q)} \exp(iq\Omega \tau)\})^{2} d\tau = \frac{1}{2} \mathbb{R} \left\{ \left(\sum_{q=0}^{\varrho} iq\Omega \tilde{J}_{(2,q)} \right)^{*} \left(2\zeta_{2} \mu \gamma \sum_{q=0}^{\varrho} iq\Omega \tilde{J}_{(2,q)} \right) \right\} = \zeta_{2} \mu \gamma \left| \sum_{q=0}^{\varrho} iq\Omega \tilde{J}_{(2,q)} \right|^{2},$$
250
(31)

250

251 respectively. By a substitution of Eqs. (10)-(12) to Eq. (31), the analytically approximated 252 transmitted power to the lower stage is expressed as

253
$$\overline{P}_{t} = \frac{1}{\tau_{p}} \int_{\tau_{0}}^{\tau_{0}+\tau_{p}} 2\zeta_{2} \mu \gamma \Omega^{2} H_{2}^{2} \sin^{2} \left(\Omega \tau + \beta\right) d\tau \approx \zeta_{2} \mu \gamma \Omega^{2} H_{2}^{2}.$$
(32)

255
$$R_{t} = \frac{\overline{P}_{t}}{\overline{P}_{in}} = \frac{F_{0} \mathsf{R} \left\{ \left(i\Omega \tilde{J}_{(1,1)} \right)^{*} \right\}}{2\zeta_{2} \mu \gamma \left| \sum_{q=0}^{Q} iq \Omega \tilde{J}_{(2,q)} \right|^{2}} , \qquad (33)$$

256 and the corresponding approximated power transmission ratio is

257
$$R_{t} = \frac{\overline{P}_{t}}{\overline{P}_{in}} \approx \frac{2\zeta_{2}\mu\gamma\Omega H_{2}^{2}}{-F_{0}\left(H_{1}\cos\alpha + H_{2}\cos\beta\right)}$$
(34)

258

259 4. Results and Discussion

260 This section presents the performance assessment on the TS-VIS. In Fig. 2, the response 261 amplitudes of two masses obtained from analytical HBM, HBM-AFT with harmonic order 262 Q = 4 and numerical integration RK methods are compared. The inertance ratios of the 263 inerters are set as $\lambda_1 = 0.5$, $\lambda_2 = 10$, $\lambda_3 = 1$ and $\lambda_4 = 10$, respectively. A linear system

b а 10^{0} 10^{0} Without inerters Without inerters Response amplitude of m_2 Response amplitude of m_1 Analytical HBM Analytical HBM 10^{-10} - HBM-AFT - HBM-AFT 10-RK RK 10 10^{-2} 10-3 10^{-3} 10-4 0.15∟ 0.33 0.44 0.58 10 10 0.2 0.5 0.2 1.5 2 1.5 0.5 2 1 1 Ω Ω

without using inerters is also considered with the results presented. The other parameters

are fixed at $F_0 = 0.004$, $\mu = \lambda = \gamma = 1$, $\zeta_1 = \zeta_2 = 0.01$ throughout the paper.

266

264

265

Figure 2. Comparison of the response amplitudes of the masses (a) m_1 and (b) m_2 , obtained by different methods. The dashed line denotes the linear case without inerters. Solid line: analytical HBM. Dash-dotted line: HBM-AFT. Stars: RK results.

270 Figure 2 shows that in each response curve, there are two resonant peaks, with both 271 bending left for the nonlinear cases. This behaviour of the proposed isolator is caused by 272 the geometric inertial nonlinearity of the inerters in the upper and lower stages. The figure 273 shows that the analytical HBM and HBM-AFT results agree well. Near the first peak of 274 the curves ($\Omega \approx 0.5$), discrepancies between the results from different methods become 275 noticeable. A comparison of the results obtained from the RK method shown in the 276 enlarged plot in Fig. 2(b) shows that the HBM-AFT with harmonic order of Q = 4 can 277 provide a good approximation of the responses even when the nonlinear isolator undergoes 278 large deflection. Noting that choosing a higher order of Q may further increase the 279 accuracy of response approximation, but the computation cost will also increase. Therefore, 280 by a balanced consideration of efficiency and accuracy, the value of Q is set as 4 281 throughout the paper. In view of this, the results obtained from HBM-AFT and RK methods 282 are used and shown in the rest of this paper for the performance evaluations of the proposed 283 isolator.

In Figs. 3 and 4, the influence of the inerters in the upper stage of the TS-VIS on the effectiveness of the isolator is examined. In Fig. 3, four inertance ratios of the vertical inerter with λ_1 being 0.5, 0.8, 1 and 1.2 are considered while the lateral inerters λ_2 is fixed at 20. In Fig. 4, the inertance ratio λ_2 varies from 5 to 20 while λ_1 is set as 1. The inertance ratios in the lower stage are fixed at 0.

11

289

Figure 3. Variations of the (a) transmissibility and (b) input power under the influence of the inertance ratio λ_1 in the upper stage. The black dotted line denotes the non-inerter case result. Different lines are for the cases with $\lambda_1 = 0.5, 0.8, 1$ and 1.2. The symbols denote RK results.

293 Figure 3(a) shows the inerters in upper stage can lead to left bending of the first peak 294 and introduce an anti-resonance peak in force transmissibility curve. The anti-peak 295 frequency can be approximated by using the analytical expressions of force transmissibilities shown by Eqs. (24) and (25). With the inertance λ_1 and λ_2 at specific 296 297 values, the force transmissibility to the lower stage or to the ground can be tuned and effectively suppressed at designed frequency Ω . In particular, for undamped system with 298 $\lambda_2 = 0$, the analytical predicted anti-peak frequency $\Omega_{anti} = \sqrt{1/\lambda_1}$ being 0.913, 1.118 and 299 1.414 when $\lambda_1 = 1.2$, 0.8 and 0.5, respectively, agreeing well with the marked anti-peak 300 301 frequencies 0.907, 1.126 and 1.424 in Fig. 3(a) determined by using HBM-AFT. This 302 characteristic enables the placement of a notch in the force transmissibility curve at 303 particular frequencies by setting a specific value of λ_1 , desirable for low-frequency 304 isolation of unbalanced machines operating at a low rotational speed.

305 Figure 3(a) also shows increasing the inertance λ_1 can shift resonance peaks to the left. 306 It is shown that the second peak is decreased significantly by using inerters. Only one peak 307 is noticeable in the dash-dotted line with $\lambda_1 = 1$, showing a broad frequency band of 308 effective isolation with $TR_{\rm c}$ being lower than unity. The reason is that the vertical inerter 309 can generate an anti-resonance peak (i.e., a notch) in force transmissibility curve. The 310 second peak of the corresponding TS-VIS without using inerters can be suppressed by 311 introducing inerters and then setting the anti-peak frequency at the original second peak frequency. An increase in λ_1 can move both peaks of \overline{P}_{in} to the left with lower peak 312 heights, as shown in Fig. 3(b). Moreover, only one peak is found in the curve with $\lambda_1 = 1$. 313 314 It demonstrates that vibrational energy input can be reduced significantly by designing the 315 value of the vertical inertance λ_1 in the upper stage.

316

Figure 4. Variations of transmissibility (a) to lower stage and (b) to foundation under the influence of the inertance ratio λ_2 in the upper stage. The black dotted line denotes the non-inerter case result. Different lines denote the cases with λ_2 =5, 10 and 20. The symbols denote RK results.

Figure 4 depicts the variations of TR_i and TR_f under different lateral inertance λ_2 . Comparing to the linear non-inerter TS-VIS case containing two well-separated peaks in the transmissibility curve, the force transmissibility of the proposed TS-VIS to the lower stage and that to the ground is lower in a wide frequency band, demonstrating a much better isolation performance. By changing λ_2 from 5 to 20, the first peak in TR_f curve extends further towards left with lower height. The results show that a larger λ_2 can enhance the low-frequency isolation.

327 In Figs. 5 and 6, the effects of the inerters in the lower stage on the performance of TS-328 VIS are investigated. The inertance ratios in the upper stage are set as 0. In Fig. 5, the 329 inertance ratio λ_3 is varied from 0.2 to 1.2 while that of the lateral inerters λ_4 is fixed at 330 5. Fig. 5(a) shows that peaks in transmissibility $TR_{\rm f}$ curve shift towards left as λ_3 331 increases. An anti-resonance peak is found and the corresponding frequency depends on 332 the values of λ_3 and λ_4 , as predicted previously from the analytical derivation of force 333 transmissibility in Eq. (25). For the undamped system with $\lambda_4 = 0$, the anti-peak frequency 334 is $\Omega_{\text{anti}} = \sqrt{\mu \gamma^2} / \lambda_3$. With λ_3 being 1.2 and 0.8, the analytically predicted anti-peak 335 frequencies are 0.913 and 1.118, respectively, which are close to 0.910 and 1.120, 336 determined by the HB-AFT and marked in Fig. 5(a). The results show that the anti-peak 337 frequency of force transmissibility can be designed by adjusting inertance λ_3 based on the 338 dominant low-frequency line spectrum of the working machinery to provide an ultra-low 339 force transmission. Moreover, both peaks of force transmissibility are shifted further to the left when the inertance λ_3 increases. The height of the second peak is reduced when λ_3 340 changes from 0.2 to 0.5 but it increases when λ_3 changes from 0.5 to 1.2. At $\lambda_3 = 0.5$, 341 only one noticeable peak is found in TR_f curve, yielding a much broader frequency band 342 of unity force transmissibility compared to that of the linear non-inerter system. This 343 344 characteristic can be also combined with the effect of the vertical inerter λ_1 in the upper

346

345 stage of the system to provide enhanced isolation performance. Fig. 5(b) presents the power transmission ratio R_{t} to the lower stage of TS-VIS. As inertance λ_{3} varies from 0.5 to 1.2, 347 $R_{\rm t}$ starts to reduce when $\Omega > 0.75$.

348

349 **Figure 5.** Changes of (a) TR_{f} and (b) R_{t} by varying the inertance ratio λ_{3} of the lower stage. The black line 350 denotes the non-inerter case result. The black dotted line denotes the non-inerter case result. Different lines are 351 for $\lambda_3 = 0.2, 0.5, 0.8$ and 1.2 cases. The symbols denote RK results.

352

353 Figure 6. Variations of the (a) transmissibility and (b) energy transmission ratio under changes of the inertance 354 ratio λ_4 in the lower stage. The black dotted line denotes the non-inerter case result. Different lines denote the 355 cases with $\lambda_4 = 5$, 10 and 20. The symbols denote RK results.

356 In Fig. 6, the inertance ratio λ_4 of lateral inerters in the lower stage is changed from 5 357 to 10, and then to 20 while λ_3 of the vertical inerter is set as 0.5. Fig. 6(a) shows that a 358 larger λ_4 will bend the first peak of TR_f to left. Fig. 6(b) shows that the lateral inertance 359 λ_4 has little influence on the R_t when Ω is not in the first resonance region, shown by

the merged curves of power transmission ratio in $\lambda_4 = 5$, 10 and 20 cases. The reason is that the system exhibits significant geometric nonlinearity when the nonlinear isolator undergoes large deflection. From the enlarged plot in Fig. 6(b), the increase of the inertance λ_4 can lead to a higher power transmission ratio. Therefore, the value of λ_4 should be better controlled in a relatively low value to restrain the amount of the energy transferred to the lower base.

366 Here, the use of inerters in both stages is considered to seek further improvement on 367 the performance. In Figs. 7 and 8, vibration transmission indicators of four different 368 configurations of the inerter-based TS-VIS are compared. In configurations C1 and C2, the 369 inerters are applied in the upper stage only and in the lower stage only, respectively. The 370 parameters are selected as $\lambda_1 = 1$, $\lambda_2 = 5$, $\lambda_3 = \lambda_4 = 0$ and $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = 0.5$, $\lambda_4 = 5$, represented by the solid(red) and dashed(blue) lines, respectively. In configurations C3 and 371 372 C4, the inerters are used in both stages. The parameters are set as $\lambda_1 = 0.5$, $\lambda_2 = 5$, $\lambda_3 = 1$, 373 $\lambda_4 = 5$ and $\lambda_1 = 2$, $\lambda_2 = 5$, $\lambda_3 = 1$, $\lambda_4 = 5$, denoted by the dash-dotted(green) and dash-374 dot-dot(pink) lines, respectively. The results for the corresponding linear TS-VIS without 375 inerters (i.e., non-inerter case) are also added as black dotted line.

376 Figure 7(a) depicts that the curves of transmissibility in configurations C1 and C2 377 almost coincide with each other. It is shown that the inerters in the upper and lower stages 378 share a similar effect on the force transmission. The values of $TR_{\rm f}$ for configurations C1 379 and C2 are much smaller than those of the corresponding linear non-inerter cases in the 380 mid- and low- frequency ranges. For configurations C3 and C4, the value of $TR_{\rm f}$ is further reduced when $0.5 < \Omega < 1.5$, compared to the corresponding value associated with 381 382 configurations C1 and C2. There is a local minimum in the curve of TR_{f} . It is also possible 383 to design the corresponding frequency by adjusting the inertance ratios. It is demonstrated 384 that a combined use of the inerters in upper and lower stages can suppress force 385 transmission, especially for the low-frequency vibration isolation.

Figure 7(b) shows that the \overline{P}_{t} curve for configuration C1 has a similar trend, compared 386 387 to that of configuration C4. However, the configuration C4 case demonstrates a better 388 isolation performance than configuration C1 by further reducing the \overline{P}_{t} values in a wide 389 frequency band. This beneficial characteristic originates from the combined use of inerters 390 in upper and lower stages. For configuration C2, there is a peak shifting effect caused by 391 the addition of the inerters, while in the configuration C3 case, an anti-peak is generated, 392 which can be applied for achieving exceptional vibration isolation at the prescribed 393 excitation frequency. The results demonstrate that the inertance values of inerters in both 394 stages of the VIS should be designed simultaneously for enhanced vibration isolation 395 performance.

396

Figure 7. Influence of different configurations of the proposed nonlinear isolator on (a) transmissibility and (b)
 energy transmission. The black line denotes the non-inerter case result. Different lines denote four configurations,
 respectively. The symbols denote RK results.

400 Figure 8 further compares the time history of instantaneous transmitted force and 401 instantaneous power flow at pre-described frequencies between four configurations of C1, 402 C2, C3 and C4. A linear TS-VIS without using inerters is also shown for reference. Fig. 403 8(a) shows the instantaneous transmitted force to the ground in the steady state at $\Omega=1.4$, while Fig. 8(b) shows the instantaneous transmitted force $F_{\rm tf}$ to the ground at Ω =1.6. It 404 405 is found that the amplitude of transmitted force to ground is considerably reduced by using 406 inerters. In addition, the value of transmitted force to the ground in configuration C3 is close to zero, suggesting an ultra-low force transmission to the ground. This phenomenon 407 408 also indicates that the integration of nonlinear inerters in both stages can further enhance 409 the effectiveness of vibration isolation. Fig. 8(c) shows the instantaneous input vibrational 410 power into the system P_{in} and Fig. 8(d) depicts the instantaneous power transfer to the 411 ground P_t . It is found that the use of inerters in two-stage vibration isolation system can 412 largely decrease the amplitude of vibrational energy input and also suppress the amount of 413 vibrational energy transfer to the ground. By a combined analysis of time-averaged power 414 flow and instantaneous power flow indices, it can be summarized that the TS-VIS with 415 nonlinear inerters embedded in two stages can provide a superior vibration isolation 416 performance.

417

418 **Figure 8.** Time history of instantaneous (a) transmitted force F_{tf} to the ground at Ω =1.4, (b) transmitted force 419 F_{tf} to the ground at Ω =1.6, (c) instantaneous input vibrational power P_{in} at Ω =1.6 and (d) instantaneous 420 transmitted power P_t to the ground at Ω =1.6. The black line denotes the non-inerter case result. Different lines 421 denote four configurations, respectively.

422 **5.** Conclusions

423 This research proposed a vibration isolator with geometric nonlinearity created by 424 inerters and evaluated its performance. The system can be considered as a representative 425 model of isolation system in engineering applications such as typical floating raft platform. 426 The force and energy transmission indices were chosen to assess the isolation performance. 427 It is demonstrated that the geometric nonlinearity of inerters can be exploited to yield a 428 leftwards-bending characteristic in response curves. The inerters in the upper stage or lower 429 stage can widen substantially the effective isolation band by shifting resonance peaks to 430 the lower frequencies. The peak values of the force transmissibility can be suppressed by 431 using the proposed inerter-based two-stage vibration isolator. An anti-resonance peak is

432 generated in the force transmission curve and power transmission curve by using inerters 433 such that vibration transmission is significantly attenuated at desired frequency. Moreover, 434 analytical derivations and numerical simulations both demonstrate that the second peak in 435 force transmissibility and energy transmission curves of the corresponding system without 436 inerters can be suppressed by properly selecting the inertance ratios at analytically 437 predicted values. The amount of input energy is reduced and the energy transmission ratio 438 is decreased in a large frequency band. Enhanced performance of vibration isolation can 439 be attained via the combined use and design of inerters in both stages of the isolator.

440

441 Acknowledgments

This work was supported by National Natural Science Foundation of China [Grant numbers 12202152, 12172185, 51839005], by the Zhejiang Provincial Natural Science
Foundation of China [Grant number LY22A020006] and by the Ningbo Municipal Natural Science Foundation [Grant number 2022J174].

446 447

448 **References**

- Alujević, N., Čakmak, D., Wolf, H. and Jokić, M. [2018] "Passive and active vibration isolation systems using inerter," *Journal of Sound and Vibration* 418, 163-183.
- Chen, D., Zi, H., Li, Y. and Li, X. [2021] "Low frequency ship vibration isolation using
 the band gap concept of sandwich plate-type elastic metastructures," *Ocean Engineering* 235, 109460.
- 454 Colaïtis, Y., & Batailly, A. [2021] "The harmonic balance method with arc-length
 455 continuation in blade-tip/casing contact problems" *Journal of Sound and Vibration*456 **502**, 116070.
- 457 Dai, W., Yang, J. and Shi, B. [2020] "Vibration transmission and power flow in impact
 458 oscillators with linear and nonlinear constraints," *International Journal of Mechanical*459 *Sciences* 168, 105234.
- 460 Dai, W. and Yang, J. [2021] "Vibration transmission and energy flow of impact oscillators
 461 with nonlinear motion constraints created by diamond-shaped linkage mechanism,"
 462 *International Journal of Mechanical Sciences* 194, 106212.
- 463 Dai, W., Shi, B., Yang, J., Zhu, X. and Li, T. [2022a] "Enhanced suppression of
 464 longitudinal vibration transmission in propulsion shaft system using nonlinear tuned
 465 mass damper inerter," *Journal of Vibration and Control*, 10775463221081183. Epub
 466 ahead of print 7 May 2022. DOI: 10.1177/10775463221081183.
- 467 Dai, W., Li, T. and Yang, J. [2022b] "Energy flow and performance of a nonlinear vibration
 468 isolator exploiting geometric nonlinearity by embedding springs in linkages," *Acta*469 *Mechanica* 233, 1663-1687.

470	Dai, W., Yang, J., and Wiercigroch, M. [2022c] "Vibration energy flow transmission in
471	systems with Coulomb friction," International Journal of Mechanical Sciences 214,
472	106932.
473	Dong, Z., Chronopoulos, D., Yang, J. [2021] "Enhancement of wave damping for
474	metamaterial beam structures with embedded inerter-based configurations," Applied
475	Acoustics 178, 108013.
476	Goyder, H.G.D. and White, R.G. [1980] "Vibrational power flow from machines into built-
477	up structures, part I: Introduction and approximate analyses of beam and plate-like
478	foundations," Journal of Sound and Vibration 68, 59-75.
479	He, H., Li, Y., Jiang, J.Z., Burrow, S., Neild, S. and Conn A. [2021] "Using an inerter to
480	enhance an active-passive-combined vehicle suspension system," International
481	Journal of Mechanical Sciences 204, 106535.
482	Lei, X., Wu, C. and Wu, H. [2018] "A novel composite vibration control method using
483	double-decked floating raft isolation system and particle damper," Journal of
484	Vibration and Control 24(19), 4407-4418.
485	Li, Y. and Xu, D. [2018] "Force transmissibility of floating raft systems with quasi-zero-
486	stiffness isolators," Journal of Vibration and Control 24(16), 3608-3616.
487	Liu, Y., Yang, J., Yi, X., Chronopoulos, D. [2022] "Enhanced suppression of low-
488	frequency vibration transmission in metamaterials with linear and nonlinear inerters,"
489	Journal of Applied Physics 131(10), 105103.
490	Lu, Z.Q., Brennan, M.J. and Chen, L.Q. [2016] "On the transmissibilities of nonlinear
491	vibration isolation system," Journal of Sound and Vibration 375, 28-37.
492	Matichard, F., Lantz, B., Mason, K., Mittleman, R., Abbott, B., Abbott, S., Allwine,
493	E.,Barnum, S., Birch, J.,Biscans, S., Clark, D.,Coyne, D., DeBra, D., DeRosa, R.,
494	Foley, S., Fritschel, P., Giaime, J. A., Gray, C., Grabeel, G., Hanson, J., Hillard, M.,
495	Kissel, J., Kucharczyk, C., Le Roux, A., Lhuillier, V., Macinnis, M., O'Reilly, B.,
496	Ottaway, D., Paris, H., Puma, M., Radkins, H., Ramet, C., Robinson, M., Ruet, L.,
497	Sareen, P., Shoemaker, D., Stein, A., Thomas, J., Vargas, M., Warner, J. [2015]
498	"Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform.
499	Part 1: Design and production overview," Precision Engineering 40, 273-286.
500	Morales, C. A. [2022] "Inerter-added transmissibility to control base displacement in
501	isolated structures," Engineering Structures 251, 113564.
502	Niu, M.Q. and Chen, L.Q. [2022] "Analysis of a bio-inspired vibration isolator with a
503	compliant limb-like structure," Mechanical Systems and Signal Processing 179,
504	109348.
505	Yan, B., Yu, N., Ma, H.Y. and Wu, C.Y. [2022] "A theory for bistable vibration isolators,"
506	
FOT	Mechanical Systems and Signal Processing 167, 108507.
507	Mechanical Systems and Signal Processing 167 , 108507. Qiu, Y., Xu, W., Bu, W. and Qin, W. [2022] "Raft attitude control and elastic deformation
507 508	 Mechanical Systems and Signal Processing 167, 108507. Qiu, Y., Xu, W., Bu, W. and Qin, W. [2022] "Raft attitude control and elastic deformation suppression technique for large-scale floating raft air spring mounting system,"

510	Renno, J., Sondergaard, N., Sassi, S. and Paurobally, M. R. [2019] "Wave scattering and
511	power flow in straight-helical-straight waveguide structure," International Journal of
512	<i>Applied Mechanics</i> 11 (8), 1950075.
513	Shi, B.Y., Dai, W., Yang, J. [2022] "Performance analysis of a nonlinear inerter-based
514	vibration isolator with inerter embedded in a linkage mechanism." Nonlinear
515	Dynamics 109(2), 419-442
516	Shi, B.Y., Yang, J. and Jiang, J.Z. [2022] "Tuning methods for tuned inerter dampers
517	coupled to nonlinear primary systems," Nonlinear Dynamics 107(2), 1663-1685.
518	Smith, M.C. [2002] Synthesis of mechanical networks: The inerter. IEEE Transactions on
519	Automatic Control 47(10), 1648–1662.
520	Wang, X., Zhou, J., Xu, D., Ouyang, H. and Duan, Y. [2017] "Force transmissibility of a
521	two-stage vibration isolation system with quasi-zero stiffness," Nonlinear Dynamics
522	87 (1), 633-646.
523	Wang, Y., Du, J. and Cheng, L. [2019] "Power flow and structural intensity analyses of
524	acoustic black hole beams," Mechanical Systems and Signal Processing 131, 538-
525	553.
526	Wang, Y., Li, H., Cheng, C., Ding, H., Chen, L. [2020] "Dynamic performance analysis of
527	a mixed-connected inerter-based quasi-zero stiffness vibration isolator," Structural
528	Control and Health Monitoring 27(10), e2604.
529	Wang, Y., Li S., Neild, S.A. and Jiang, J.Z. [2017] "Comparison of the dynamic
530	performance of nonlinear one and two degree-of-freedom vibration isolators with
531	quasi-zero stiffness," Nonlinear Dynamics 88(1), 635-654.
532	Wang, Y., Wang, R. C. and Meng, H. D. [2018] "Analysis and comparison of the dynamic
533	performance of one-stage inerter-based and linear vibration isolators," International
534	Journal of Applied Mechanics 10(1), 1850005.
535	Wang, Y., Wang, P., Meng, H., Chen L. [2022] "Nonlinear vibration and dynamic
536	performance analysis of the inerter-based multi-directional vibration isolator,"
537	Archive of Applied Mechanics 92 (12), 3597-3629.
538	Xie, X., Ren, M., Zheng, H. and Zhang, Z. [2019] "Investigation on a two-stage platform
539	of large stroke for broadband vertical vibration isolation," Journal of Vibration and
540	<i>Control</i> 25 (6), 1233-1245.
541	Yang, J., Jiang, J.Z. and Neild, S.A. [2019] "Dynamic analysis and performance evaluation
542	of nonlinear inerter-based vibration isolators," Nonlinear Dynamics 99(3), 1823-
543	1839.
544	Yang, J., Jiang J.Z., Zhu, X., Chen, H. [2017] "Performance of a dual-stage inerter-based
545	vibration isolator," Procedia engineering 199, 1822-1827.
546	Yang, T., Wu, L., Li, X., Zhu, M., Liu, Z. and Brennan, M.J. [2021] "Combining active
547	control and synchrophasing for vibration isolation of a floating raft system: An
548	experimental demonstration," Journal of Low Frequency Noise, Vibration and Active
549	<i>Control</i> 40 (2), 1105-1114.

550	Ye, K., and Ji, J. C. [2022] "An origami inspired quasi-zero stiffness vibration isolator
551	using a novel truss-spring based stack Miura-ori structure," Mechanical Systems and
552	Signal Processing 165, 108383.
553	Zhang, S.Y., Neild, S. and Jiang, J.Z. [2020] "Optimal design of a pair of vibration
554	suppression devices for a multi-storey building," Structural Control and Health
555	Monitoring 27(3), 2498.
556	Zhang, Y. W., Gao, C. Q., Zhang, Z. and Zang, J. [2021] "Dynamic analysis of vibration
557	reduction and energy harvesting using a composite cantilever beam with galfenol and
558	a nonlinear energy sink," International Journal of Applied Mechanics 13(8), 1950100.
559	Zhang, X., Yang, Y., Ma, H., Shi, M., and Wang, P. [2023] "A novel diagnosis indicator
560	for rub-impact of rotor system via energy method," Mechanical Systems and Signal
561	Processing 185, 109825.
562	Zhao, F., Ji, J.C., Ye, K. and Luo, Q. [2020] "Increase of quasi-zero stiffness region using
563	two pairs of lateral springs," Mechanical Systems and Signal Processing 144, 106975.
564	Zhao, X. Y., Zhang, Y. W., Ding, H. and Chen, L. Q. [2018] "Vibration suppression of a
565	nonlinear fluid-conveying pipe under harmonic foundation displacement excitation
566	via nonlinear energy sink," International Journal of Applied Mechanics, 10(9),
567	1850096.
568	Zhao, Z., Zhang, R., Wierschem, N.E., Jiang, Y. and Pan, C. [2021] "Displacement
569	mitigation-oriented design and mechanism for inerter-based isolation system,"
570	Journal of Vibration and Control 27(17-18), 1991-2003.
571	Zhu, C., Yang, J., Rudd, C. [2021] "Vibration transmission and power flow of laminated
572	composite plates with inerter-based suppression configurations" International
573	Journal of Mechanical Sciences 190, 106012.