
For Real! XCS with Continuous-Valued Inputs

Christopher Stone christopher.stone@uwe.ac.uk
Faculty of Computing, Engineering and Mathematical Sciences
University of the West of England
Bristol, BS16 1QY, United Kingdom

Larry Bull larry.bull@uwe.ac.uk
Faculty of Computing, Engineering and Mathematical Sciences
University of the West of England
Bristol BS16 1QY, United Kingdom

Abstract
Many real-world problems are not conveniently expressed using the ternary represen-
tation typically used by Learning Classifier Systems and for such problems an interval-
based representation is preferable. We analyse two interval-based representations re-
cently proposed for XCS, together with their associated operators and find evidence
of considerable representational and operator bias. We propose a new interval-based
representation that is more straightforward than the previous ones and analyse its bias.
The representations presented and their analysis are also applicable to other Learning
Classifier System architectures.

We discuss limitations of the real multiplexer problem, a benchmark problem used for
Learning Classifier Systems that have a continuous-valued representation, and pro-
pose a new test problem, the checkerboard problem, that matches many classes of
real-world problem more closely than the real multiplexer.

Representations and operators are compared using both the real multiplexer and
checkerboard problems and we find that representational, operator and sampling bias
all affect the performance of XCS in continuous-valued environments.

Keywords
checkerboard problem, continuous-valued input, interval representation, learning
classifier system, real multiplexer problem, operator bias, real input, representational
bias, sampling bias, XCS

1 Introduction

XCS is a Learning Classifier System (Holland, 1986) introduced by Wilson (1995) in
which a classifier’s fitness for the Genetic Algorithm (GA) (Holland, 1975) is based on
the accuracy of its predictions rather than its ability to receive reward. The XCS al-
gorithm is described in detail in (Butz & Wilson, 2001). Like most Learning Classifier
Systems, a ternary representation is usually used with XCS. However, many real-world
problems are not conveniently expressed in terms of a ternary representation and sev-
eral alternate representations have been suggested to allow Learning Classifier Systems
to handle these problems more readily (Ahluwalia & Bull, 1999; Lanzi, 1999; Bonarini,
2000; Bull & O’Hara, 2002).

We concentrate here on the representation for continuous-valued inputs intro-
duced by Wilson (2000); however, we also consider Wilson’s (2001a) representation for
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integer data, which has also been used for function approximation with XCS (Wilson,
2001b). Both of these representations replace the standard ternary representation. The
only other changes made to XCS to accommodate the new representations are in the
cover, mutation and GA subsumption operators. Two-point crossover is retained.

Although the arguments presented here specifically relate to XCS with a one of m
binary encoding for real numbers, many of the issues are also relevant to other Learn-
ing Classifier System architectures that may use these representations and to a floating
point encoding of real numbers.

The remainder of this paper is organized as follows. Section 2 introduces interval
predicates, terminology and the real multiplexer problem. Sections 3 and 4 study the
two representations for continuous-valued data introduced by Wilson, Centre-Spread
Representation (CSR) and Ordered Bound Representation (OBR), by examining their
properties and operators. In Section 5 we introduce a new representation, Unordered
Bound Representation (UBR) and analyse it in the same way. Section 6 looks at the
real multiplexer problem in more detail and Section 7 extends this discussion to hyper-
rectangles, the decision surfaces constructed by interval predicates. In Section 8, we
introduce a new test problem, the checkerboard problem and use both this and the real
multiplexer problem in Section 9 to compare representations and operators. Section 10
provides conclusions to the work.

2 Interval Predicates

2.1 Motivation

XCS has been shown to generate complete and maximally general maps (Kovacs, 1996)
for ternary representations. There is evidence (Wilson, 2000; Wilson 2001a) to suggest
that XCS is able to do this for continuous and integer-valued domains.

Thus, XCS approximates the function mappingX×A⇒ P whereX represents the
environment, A is the set of possible actions and P is the payoff received for executing
a particular action in an environmental state. In this paper, we consider continuous-
valued environments, X ∈ <n and Boolean actions, A ∈ {0, 1}.

Learning Classifier Systems in general and XCS in particular, typically use a
ternary representation to encode the environmental condition that a classifier matches.
Bits in the condition string of a classifier are allocated to represent the state of a sin-
gle environmental variable, xi. Exact matching in this way is generally not suitable
for a continuous-valued environment, where real-valued data over a range must be
represented. One possibility for continuous-valued environments is to encode the en-
vironment in the form of inequalities, xi < θi. The decision surface represented by a
classifier is then a hyperplane in the n-dimensional solution space.

The representations considered here replace the {0, 1,#} classifier predicate with
one representing a half-open interval [pi, qi). This interval matches the environment if
pi ≤ xi < qi. The classifier condition is a vector of length n, each element of which
encodes such an interval. A classifier with such a representation describes a hyper-
rectangle in solution space.

2.2 Terminology

To avoid confusion and aid precision, we adopt the following notation throughout this
paper.

1. Intervals in phenotype space are tagged with the subscript p, e.g., [0, 1)p

2. Intervals in genotype space are tagged with the subscript g, e.g., [0, n]g
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3. Tuples are distinguished from intervals by the absence of a subscript.

The solution space is [pmin, qmax)np , where pmin and qmax are the minimum and
supremum of the interval. For clarity of presentation and without loss of generality, we
assume that pmin and qmax are the same for all dimensions i of the solution space.

2.3 The Real Multiplexer

The Boolean multiplexer is a standard benchmark problem for Learning Classifier Sys-
tem evaluation. Wilson (2000) introduced the real multiplexer as a test problem for
Learning Classifier Systems with continuous-valued inputs. Each ‘bit’ of the Boolean
multiplexer is presented as a value xi in the [0, 1)p interval, with xi < θi meaning bi-
nary 0 and xi ≥ θi meaning binary 1. The value θi is a control parameter that may be
varied to provide problems of varying difficulty. By default θi = 0.5 ∀ i ≤ n and this is
the threshold used in this paper.

Experiments on XCS were performed using the 6-bit real multiplexer. XCS was
presented with randomly generated (6 element) vectors of real numbers in the interval
[0, 1). For each of these random vectors, XCS suggested a binary action representing
the output value of the multiplexer. For this, it was rewarded with a payoff of 1000 for
the correct action and 0 otherwise.

XCS settings used for all real multiplexer experiments in this paper were N = 800,
β = 0.2, α = 0.1, ε0 = 10, ν = 5, θGA = 12, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1,
θsub = 20, pI = 10, εI = 0, fI = 0.01, θmna = 2, m = 0.1, s0 = 1.0. These match the
settings published in (Wilson, 2000). GA subsumption, but no action set subsumption,
was used. All experimental results presented are the average of 10 runs using alternate
explore and exploit trials. A 16-bit binary encoding was used for real numbers.

Wilson showed that XCS was able to solve the 6-bit real multiplexer using Centre-
Spread Representation. A duplicate of these results is shown in Figure 1. This shows
the system performance, the fraction of correct actions averaged over the previous 50
exploit trials, the system error, the absolute difference of the payoff and the predicted
payoff averaged over the previous 50 exploit trials and the macroclassifier fraction, the
fraction of the population that are macroclassifiers. Figure 1 also shows other informa-
tion that will be referred to later in the paper.

More recently, Bull, Wyatt and Parmee (2002) have shown that XCS can solve the
11-bit real multiplexer.

3 Centre-Spread Representation

3.1 Background

To extend XCS into continuous-valued environments, Wilson (2000) introduced the
Centre-Spread Representation. Centre-Spread Representation provides a form of re-
ceptive field for Learning Classifier Systems. An interval predicate, [pi, qi)p, is repre-
sented as a tuple (ci, si) where ci, si ∈ <. ci encodes the centre of the interval and si
encodes the spread (or width) of the interval. The interval is decoded as follows:

pi = min(pmin, ci − si)
qi = max(qmax, ci + si)

Use of Centre-Spread Representation thus involves a genotype (ci, si) to pheno-
type [pi, qi)p mapping, or gene expression.

Wilson does not provide details of the encoding used for real numbers in the
Centre-Spread Representation. However, given that the solution space is bounded,
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Figure 1: 6-bit real multiplexer with Centre-Spread Representation, standard cover
with s0 = 1, 2-point crossover and standard mutation

we assume a one of m binary encoding where the real values for both the centre and
spread are encoded into binary integers of length k using the equation

⌊
(2k − 1)(pi − pmin)

qmax − pmin

⌋

With this scheme, the real values for centres and spreads are discretized into one of
m possible values upon encoding. There are 22k possible centre-spread combinations
and each possible centre-spread is represented exactly once. Because of the discretiza-
tion of the phenotype, the half-open solution space [pmin, qmax)p in phenotype space
may be regarded as the closed solution space [0, 2k − 1]g in genotype space.

The ternary representation used in most Learning Classifier Systems has an ex-
plicit ‘don’t care’ value in the form of the ‘#’ allele. Centre-Spread Representation
does not have any explicit ‘don’t care’ scheme. Instead, the maximally general inter-
val [pmin, qmax)p provides an implicit ‘don’t care’ mechanism by matching all possible
environmental inputs. An implication of this is that the proportion of maximally gen-
eral intervals introduced into the population is not directly controllable by a system
parameter, as is normally the case with a ternary representation.

3.2 Properties

As the solution space is half-open, the centre-spread genotype must be limited upon
expression in order to restrict the range of the phenotype to the interval [pmin, qmax)p.
We refer to this process as truncation. Truncation means that the genotype to phenotype
(g → p) mapping is non-linear and many to one. In short, it is possible for a phenotype
to be represented by more than one genotype. As an example, consider the solution
space interval [0, 1)p. The phenotype [0.5, 1)p may be represented as centre-spread tu-
ples (0.75, 0.25), (0.8, 0.3), (0.9, 0.4), (1, 0.5) or any number of other tuples.
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Table 1: Phenotype frequency matrix for Centre-Spread Representation with k = 3

qi
0 1 2 3 4 5 6 7

0 1 1 2 2 3 3 4 20
1 1 0 1 0 1 0 4
2 1 0 1 0 1 3

pi 3 1 0 1 0 3
4 1 0 1 2
5 1 0 2
6 1 1
7 1

In practice, the number of possible centre-spread tuples representing an interval is
finite, due to the discretization necessary when representing real numbers. The number
of possible genotypes for a particular phenotype is therefore determined by both the
phenotype itself and the details of the encoding of real numbers employed.

If there were no truncation on g → p mapping (and thus a one to one g → p
mapping), there would be 22k possible phenotypes. However, given the need for trun-
cation, certain phenotypes are expressed from multiple genotypes. There are therefore
less than 22k unique phenotypes with the Centre-Spread Representation. Certain phe-
notypes are ‘missing’ and we refer here to these missing phenotype to genotype (p→ g)
mappings as holes.

The above two properties mean that using Centre-Spread Representation:

1. Expression of random genotypes results in increased frequency of expression of
certain phenotypes over other possible phenotypes.

2. The phenotype space contains holes where certain phenotypes are missing, as they
are not expressible.

To examine these phenomena in more detail we enumerated the g → p mapping
for one ofm binary encodings of length 2 ≤ k ≤ 12. Without loss of generality, pmin = 0
and qmax = 2k − 1.

As a readily understandable example of one of these enumerations, Table 1 shows
the frequency of each possible phenotype for k = 3, a 3-bit one of m binary encoding of
real values1.

The phenotypic frequency in Table 1 shows several interesting properties:

1. The frequency of all possible phenotype intervals is not uniform (as already dis-
cussed).

2. Certain phenotype intervals have zero frequency (as already discussed).

3. The frequency of an exact number [pi, pi]p is always 1.

4. The frequency of intervals of the form [pmin, qi)p increases as qi increases and the
frequency of intervals of the form [pi, qmax)p increases as pi decreases.

1That is, 3 bits each for centre and spread.

Evolutionary Computation Volume 11, Number 3 303



C. Stone and L. Bull

Figure 2: Phenotype frequency landscape for Centre-Spread Representation with k = 5

5. The frequency of the [pmin, qmax)p interval is much greater than any other.

All encodings 2 ≤ k ≤ 12 show the same patterns and properties. Only the specific
frequencies vary. Space does not permit the publication of the details of each of these,
but as a further example and aid to visualization, Figure 2 shows the frequency matrix
for k = 5 plotted as a surface that may be viewed as the landscape of the g → pmapping
for that particular encoding.

From these results, we can state certain properties of the Centre-Spread Represen-
tation.

Property 1: Many to one genotype to phenotype mapping. This property is the key
property from which all others derive and has already been discussed in detail.

Property 2: Incomplete phenotype to genotype mapping. A corollary of the discretiza-
tion of the centre and spread and the many to one g → p mapping (Property 1) is
that the p→ g mapping is undefined for certain phenotypes.

Holes arise because of the discretization of the encoding:

1. The centre must be located at a point that can be represented using the discrete
encoding (i.e., it must be integer-valued).

2. The spread must be able to be represented using the discrete encoding (it must
also be integer-valued).

For example, consider interval [1, 2]p in Table 1. This interval cannot be represented
using Centre-Spread Representation and an encoding of length k = 3. Neither of
the two requirements can be met for the interval above. The centre would need to
be located at point 1.5 with a spread of 0.5.
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In general, any interval where qi − pi is odd is unable to be represented using
Centre-Spread Representation. Because of this, where holes exist in the g → p
mapping, they are uniformly distributed around the solution space, such that they
are neighbours with a g → pmapping that has non-zero frequency (i.e., is a one-to-
one or many-to-one mapping). No two holes are ever situated next to each other.
The presence of holes is undesirable in the g → p mapping, since it means that
certain phenotypes cannot be expressed. This, in turn, means that the accuracy
of an expressed phenotype is lower than it would otherwise be since the effective
discretization of the phenotype is coarser than desired. However, the fact that
holes are always located next to a phenotype that can be expressed places a lower
limit on the effective discretization of the Centre-Spread Representation.
Holes are an artefact from using one of m binary encoding. With a floating point
encoding, the holes would be small enough to cause no practical problems.

Property 3: The genotype to phenotype mapping of exact numbers is one to one. In-
tervals of the form [pi, pi]p are the leading diagonal of the frequency matrix and
represent exact numbers or points in the solution space. These may be necessary
to represent a solution in a particular problem and always have frequency one (i.e.,
a one-to-one g → p mapping). A corollary of this is that all possible exact numbers
can be represented using Centre-Spread Representation.

Property 4: The frequency of intervals of the form [pmin, qi)p and [pi, qmax)p increases
as pi decreases or qi increases. Property 1 states that certain phenotypes can be
expressed from multiple genotypes. Property 4 provides more detail on the nature
of this many to one mapping.
As seen in Figure 2, the g → p landscape is characterized by a flat plateau contain-
ing the majority of g → p mappings. These exist with a frequency of either 0 or 1
(i.e., not expressible, or one-to-one mapping). All of the one-to-many g → p map-
pings occur in phenotypes of the form [pmin, qi)p or [pi, qmax)p. The special case of
the [pmin, qmax)p phenotype is discussed in Property 5.

Moreover, the frequency of mappings increases as either pi decreases or qi in-
creases. Thus, wide (general) intervals ‘anchored’ at pmin or qmax have a greater
frequency of expression than narrow (specific) intervals or those not anchored at
pmin or qmax.

Property 5: The frequency of the [pmin, qmax)p interval is much greater than that of any
other interval. Property 4 states that the expression frequency of intervals of the
form [pmin, qi)p and [pi, qmax)p increases as pi decreases or qi increases. A special
case of this is the interval [pmin, qmax)p. The expression frequency of this interval is
much larger than any other and it completely dominates the g → p landscape, as
shown in Figure 2.
The [pmin, qmax)p interval has special significance for interval-based representa-
tions, as it describes the maximally general interval predicate. A consequence of
Property 5 is that randomly generated genotypes will be expressed as the maxi-
mally general interval predicate with a far higher frequency that would otherwise
be expected.

To shed more light on these five properties, it is desirable to pursue a quantitative
approach. In particular, we wish to understand the nature of the increased expression
frequency of [pmin, qi)p, [pi, qmax)p and [pmin, qmax)p intervals.
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From examination of the results of enumerating the expression frequencies for real
encodings of length 2 ≤ k ≤ 12, we can derive equations for the total frequency of
expression of all possible intervals of the form [pmin, qi)p and [pi, qmax)p:

fpmin,qi = 22(k−1) ∀ pmin ≤ qi < qmax

fpi,qmax = 22(k−1) ∀ pmin < pi ≤ qmax

and frequency of expression of the [pmin, qmax)p interval:

fpmin,qmax = 22(k−1) + 2k−1

The number of possible g → p mappings is 22k, so the probabilities Ppmin,qi and
Ppi,qmax of expression of intervals of the form [pmin, qi)p and [pi, qmax)p respectively, is
given by

Ppmin,qi =
22(k−1)

22k

=
2k−1

2k+1

= 0.25

and similarly, Ppi,qmax = 0.25

The probability Ppmin,qmax of expression of the maximally general interval
[pmin, qmax)p is given by

Ppmin,qmax =
22(k−1) + 2k−1

22k

=
2k−1 + 1

2k+1

lim
k→∞

=
2k−1

2k+1
(1)

= 0.25

Although Equation 1 describes limiting behaviour for infinite length encoding of
real numbers, actual values of Ppmin,qmax are close to 0.25 for values of k likely to be
used in practice (8, 16 or 32 bit encodings). For example, for k = 8, Ppmin,qmax = 0.25195
and for k = 16, Ppmin,qmax = 0.25001.

Ppmin,qmax is the probability of the interval [pmin, qmax)p being expressed on g → p
mapping of a random genotype. Centre-Spread Representation thus includes a form
of implicit ‘don’t care’ mechanism, similar to that of the ‘#’ allele in ternary representa-
tions. However, unlike ternary representations this P# value is fixed at 0.25 and so is
not adjustable to suit different problems.

The probability of expression of an interval of the form

[pi, qi)p ∀ pi = pmin ∨ qi = qmax

is
Ppmin,qi + Ppi,qmax + Ppmin,qmax = 0.75
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Table 2: Phenotype regions and their structural forms

qi
pi Region 2 [pmin, qi)p Region 4 [pmin, qmax)p

Region 1 [pi, qi)p Region 3 [pi, qmax)p

This value is essentially independent of encoding length.

So these ‘special’ phenotypes constitute 75% of all g → p mappings, yet only com-
prise 2k+1−1 of the 22k possible g → pmappings. Their frequency therefore far exceeds
what might be reasonably expected for a g → p mapping. In contrast, all remaining
g → p mappings of the form [pi, qi)p ∀ pi > pmin ∧ qi < qmax (the plateau in the g → p
landscape) constitute only the remaining 25% of all mappings.

We can partition the phenotype space into four regions corresponding to the four
different structural forms of interval predicate resulting from the properties of the en-
coding. Table 2 shows the four structural forms of interval predicate, together with
the region number we shall, for convenience, assign to them. This diagram mimics the
shape of the phenotype frequency matrix and shows the allocation of g → p mappings
by region. In the diagram and the rest of this paper, unless otherwise noted,

pmin < pi ≤ qmax ∧ pmin ≤ qi < qmax

3.3 Operators

Since the real multiplexer is essentially a binary problem in disguise, solutions to the
real multiplexer are expressed by an alphabet of three possible interval predicates di-
rectly corresponding to the Boolean multiplexer’s {0,1,#} alphabet. For the real multi-
plexer, the solution interval predicates are {[0, θi)p, [θi, 1)p, [0, 1)p}. However, these are
exactly the forms of interval predicate found in regions 2, 3 and 4 of Table 2 that exhibit
many to one g → p mappings and account for 75% of all g → p mappings! We may
therefore expect that the choice of Centre-Spread Representation has a bearing on XCS’
ability to solve the real multiplexer problem.

There are four places where the influence of the representation is felt in a Learning
Classifier System: initialization, covering, crossover and mutation. We note that, for
continuous-valued representations, GA subsumption is performed at the level of the
phenotype and is independent of the representation in use.

3.3.1 Initialization
Where a population is generated at random by genotype, a non-uniform g → p map-
ping will affect the proportion of phenotypes expressed by the population. For Centre-
Spread Representation, generation of random genotypes at initialization time will pro-
vide a population containing on average a proportion of

1− 1

4n
(2)

of classifiers with one or more intervals of the correct structural form to solve the prob-
lem, i.e., those in regions 2,3 and 4. These can then be recombined by the GA to pro-
vide complete solutions. For the 6-bit real multiplexer considered here, this equates to
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0.9998. In contrast, a one to one g → p mapping would provide a proportion of

(n− 2)2 + 1

n2

For n = 6 this is 0.472. We note here that Figure 1 shows results obtained without
an initial population.

3.3.2 Covering
In XCS’ cover operator, the centre of the interval is fixed by the environmental state.
For the real multiplexer problem, the environmental state is externally generated from
the uniform probability distribution U [0, 1). The cover operator for Centre-Spread Rep-
resentation generates the spread from the uniform probability distribution U [0, s0). In
Wilson’s experiments s0 = 1, so any spread 0 ≤ si < 1 is equally possible. There-
fore, both centre and spread are drawn from U [0, 1), so all possible centre-spreads are
equally probable and the probabilities Ppmin,qi , Ppi,qmax and Ppmin,qmax also apply during
covering. The cover operator, like initialization, thus generates classifiers with a 0.75
probability of being in region 2, 3 or 4 and that have a probability given by Equation 2
of one or more intervals of the correct structural form to solve the problem.

3.3.3 Crossover
We have determined the probability distribution for new classifiers generated by the
initialization and cover operators. As it is applied with high probability, crossover has
the opportunity to affect this distribution by its production of offspring. We examine
the impact of crossover on a single interval predicate, represented as a centre-spread
tuple. We are only interested in the action of crossover when it occurs for a specific
interval predicate. For crossover to alter that interval, a crossover point must occur
within the interval. All the crossover operators considered in this paper that allow
a crossover point within an interval restrict the crossover point to occur between the
two alleles representing the interval. If the crossover point happens to occur between
intervals, the interval itself survives unscathed (although it is likely to be paired with
other intervals).

As mathematical analysis of crossover is difficult, we enumerate centre-spread
combinations for two parents. We enumerate only those parental intervals that have
at least one point in common with each other, since XCS uses a niche GA. A factor in
the enumeration is the length of the real encoding used. For consistency with the re-
sults presented for mutation, we used an encoding of length k = 8 and crossed over
a single centre and spread with a fixed crossover point between the alleles. For each
combination, we noted the region(s) that the parents occupied and the region(s) occu-
pied by their children. Enumeration of all possible centre-spread combinations implies
an equal probability of parental intervals across the four regions. As already discussed,
this is the case for intervals generated by initialization and covering. From this we may
readily calculate the expected proportions of offspring across regions. This is shown in
Table 3.

Niche crossover with Centre-Spread Representation tends to preserve the distri-
bution of intervals across regions, with a small bias from region 1 to region 4. Note
that this effect only occurs for an interval that has a crossover point within the interval
predicate. For crossover points between interval predicates the interval is unchanged,
and so the distribution of intervals, and hence regions, cannot alter. The probability of
an interval being disrupted in this way depends on n, the number of interval predicates
in the classifier’s condition and the type of crossover operator used.
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Table 3: Phenotype proportions for Centre-Spread Representation with k = 8 and
crossover within an interval

Region Form Parent population Offspring population
1 [pi, qi)p 0.25 0.225
2 [pmin, qi)p 0.25 0.25
3 [pi, qmax)p 0.25 0.25
4 [pmin, qmax)p 0.25 0.275

3.3.4 Mutation
The mutation operator for XCS with Centre-Spread Representation mutates a classifier
by adding or subtracting with equal probability an amount mi drawn from U [0,m). A
setting of m = 0.1 was used for Wilson’s real multiplexer experiments.

We examine the behaviour of mutation over the four regions by studying the prob-
ability of an offspring occupying a region, given each possible parental region. To do
this, we enumerate all possible mutations for an interval using a setting of m = 0.1 for
every centre-spread combination over a range of possible values of k, the real encoding
length. In the actual Learning Classifier System, the alleles corresponding to the inter-
val’s centre and spread are independently mutated with probability µ, so we examine
these separately. Mutation of the centre allele shifts the centre by the amount of the
mutation, viz:

pi = ci − si +mi

qi = ci + si +mi

Mutation of the spread allele alters the width of the interval:

pi = ci − si −mi

qi = ci + si +mi

For brevity, and since both centre or spread alleles have equal probability of mu-
tation, we average the individual results from these enumerations to provide a picture
of the effect of a single mutation on the interval predicate2. Mutations for values of
4 ≤ k ≤ 8 were examined, and a common pattern was seen across all enumerations. As
an illustration of the results found, Figure 3 shows the transition diagram of a single
mutation of the interval predicate for k = 8. In the diagram, the states are the four
possible regions that the parent could occupy and the numbers next to the arrows in-
dicate the probability of a transition to a particular region for the offspring. As these
probabilities are rounded to two decimal places, we do not distinguish here between
very low probabilities (<0.01) and zero probability.

We can see from the diagram that the vast majority of all possible mutations do
not produce any migration of region between the parent and offspring (where a re-
gion maps to itself). A parent tends to generate offspring that occupy the same region
as itself, so parents with the correct structural form of the real multiplexer solution,
[pmin, qi)p, [pi, qmax)p and [pmin, qmax)p, will overwhelmingly produce offspring with
these characteristics. This mutation operator therefore has the effect of refining the de-
tails of an interval, but is unlikely to cause a change of region from parent to offspring.

2In fact, results for the centre and spread alleles differed only slightly and the combined results shown
here are also indicative of the individual results.
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Figure 3: Region transition diagram for Centre-Spread Representation with k = 8 and
standard mutation. Regions are represented by states and transition probabilities by
arrows

It is possible for mutation to produce offspring that occupy a different region to that of
the parent, but this occurs with a low probability. Migration between regions is pos-
sible via the two pathways 1 ↔ 2 ↔ 4 and 1 ↔ 3 ↔ 4 through which offspring are
likely to progress through multiple mutation steps. These represent a partial ordering
of regions. It is possible to travel in both directions along these pathways with roughly
equal probability, showing that this mutation operator is broadly neutral with respect
to transitions across regions.

4 Ordered Bound Representation

4.1 Background

Wilson (2001a) introduces a representation that describes an interval predicate by its
lower and upper endpoints. This is used for problems requiring integer variables.
However, when using a one of m binary encoding for real variables, the encoding for
real numbers differs from that of integers only in the size of the alphabet used and the
consequent size of the genotypic search space. There is no reason why the Ordered
Bound Representation cannot also be used for continuous-valued problems and, in-
deed, the same representation is also used for real-valued function approximation in
(Wilson, 2001b).

Ordered Bound Representation stores an interval predicate [pi, qi)p as a tuple
(li, ui) where for real-valued problems li, ui ∈ <. li is the lower bound of the inter-
val and ui is the upper bound. We again assume that the alleles are encoded using a
one of m binary encoding of length k.

One issue with Ordered Bound Representation is the ordering imposed on the
alleles representing an interval predicate by the restriction that li ≤ ui. Wilson does not
describe how this restriction is addressed, but essentially, any operator that could cause
a situation where li > ui must check each interval predicate in a classifier’s condition

310 Evolutionary Computation Volume 11, Number 3



For Real! XCS with Continuous-Valued Inputs

and swap the lower and upper alleles if the ordering li ≤ ui is violated as a result of
the operation.

Apart from discretization in the real encoding, there is a direct mapping between
the elements of the genotype and phenotype, so that li ≡ pi and ui ≡ qi. As a result,
no explicit gene expression is necessary and, at the level of the representation, a one
to one mapping exists for all possible phenotypes and their corresponding genotypes.
No truncation occurs upon the expression since it is not possible to represent values
outside the endpoints of the phenotype interval [pmin, qmax)p. The issues arising from
the many to one g → p mapping with Centre-Spread Representation cannot arise with
Ordered Bound Representation.

4.2 Properties

In Section 3.2 we stated certain properties that exist due to the many to one g → p
mapping of Centre-Spread Representation. For reference, the equivalent properties of
Ordered Bound Representation are:

Property 1: One to one genotype to phenotype mapping.

Property 2: Complete phenotype to genotype mapping.

Property 3: The genotype to phenotype mapping of exact numbers is one to one.

Property 4: The frequency of intervals of the form [pmin, qi)p and [pi, qmax)p is constant
for all pi and qi.

Property 5: The frequency of the [pmin, qmax)p interval is the same as that of any other
interval.

These are all due to the one to one g → p mapping that exists for Ordered Bound
Representation. The representation stores all possible interval predicates with equal
frequency and shows no bias towards certain types of interval predicate. This sug-
gests that Ordered Bound Representation may be more suited for continuous-valued
domains where the structure of the problem is a priori unknown.

The maximally general interval [pmin, qmax)p is represented by a single tuple in
Ordered Bound Representation, so given a random genotype, an interval predicate will
be maximally general with probability

1

22k

As the size k of the real number encoding increases and thus its granularity be-
comes finer, the chances of a maximally general interval appearing in the initial pop-
ulation becomes exponentially lower. This is in contrast to the Centre-Spread Repre-
sentation, which results in the maximally general interval being represented with an
essentially fixed probability of 0.25. For this reason, Ordered Bound Representation
effectively provides no implicit ‘don’t care’ mechanism analogous to the ‘#’ allele in a
ternary representation.

4.3 Operators

We examined the effects of the interaction between Centre-Spread Representation and
its operators in Section 3.3. Here we investigate Ordered Bound Representation and its
associated operators.
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4.3.1 Initialization
Where a population is generated at random by genotype, a uniform g → p mapping
across intervals means that all possible phenotypes will exist in the population with
identical probability. The frequency of expression of intervals of the form [pmin, qi)p,
[pi, qmax)p and [pmin, qmax)p (regions 2, 3, and 4) can be calculated as

fpmin,qi = 2k − 1 ∀ pmin ≤ qi < qmax

fpi,qmax = 2k − 1 ∀ pmin < pi ≤ qmax

fpmin,qmax = 1

The number of possible g → p mappings where li ≤ ui is 2k−1(2k + 1), so the
frequency of intervals of the form [pi, qi)p ∀ pi > pmin ∧ qi < qmax (region 1) is given by

fpi,qi = 2k−1(2k + 1)− 2(2k − 1)− 1

= (2k − 1)(2k−1 − 1)

The probability of expression of an interval of this form is

Ppi,qi =
(2k − 1)(2k−1 − 1)

2k−1(2k + 1)

=
22k−1 − 3(2k−1) + 1

22k−1 + 2k−1

lim
k→∞

= 1

Initialization therefore generates classifiers essentially exclusively in region 1. No
classifiers are to be expected in a small, finite, population with the correct structural
form of the solution as occurs in Centre-Spread Representation.

4.3.2 Covering
The cover operator generates a classifier containing intervals with the (li, ui) tuples
given by

li = xi − U [0, s0)

ui = xi + U [0, s0)

To match the experiments performed with Centre-Spread Representation 3 s0 = 1.
Note that, unlike the case with Centre-Spread Representation, the resulting interval is
not generally centred on the environmental variable, xi. This is the method adopted
by Wilson, which we also use here. However, it would be trivial to alter the algorithm
to emulate Centre-Spread Representation strategy by using the same random spread
for both endpoints and this is examined in Section 9.2. In either case, truncation is
necessary when mapping from the generated interval to the genotype. This truncation
causes similar effects to those seen for Centre-Spread Representation. For example,
Table 4 shows the frequency matrix for all possible intervals generated by the cover
operator using a real encoding of length of k = 3.

This shows increased frequency of regions 2, 3 and 4 similar to that of Centre-
Spread Representation. Furthermore, region 1 also shows increased mapping fre-
quency as the interval width qi − pi increases. Studies of such matrices for encoding

3(Wilson, 2001a) refers to the cover spread as r0. For consistency we use s0 for all representations.
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Table 4: Phenotype frequency matrix for Ordered Bound Representation with k = 3
and standard cover with s0 = 1

qi
0 1 2 3 4 5 6 7

0 8 15 21 26 30 33 35 120
1 1 2 3 4 5 6 35
2 1 2 3 4 5 33

pi 3 1 2 3 4 30
4 1 2 3 26
5 1 2 21
6 1 15
7 8

lengths of 2 ≤ k ≤ 8 all showed the same effects. From these we can derive the fre-
quencies of expression of the region 2, 3 and 4 intervals:

fpmin,qi =
23k − 2k

3

fpi,qmax =
23k − 2k

3

fpmin,qmax =
(2k + 1)3 − 2k − 1

6

and the probabilities Ppmin,qi , Ppi,qmax and Ppmin,qmax for the cover operator with Or-
dered Bound Representation:

Ppmin,qi =
23k − 2k

3(23k)

=
1

3
− 1

3(22k)

lim
n→∞

=
1

3

and similarly, Ppi,qmax = 1
3

Ppmin,qmax =
(2k + 1)3 − 2k − 1

6(23k)

lim
n→∞

=
1

6

thus Ppi,qi = 1
6

So, even though Ordered Bound Representation has no intrinsic bias, the trunca-
tion necessary when using the cover operator introduces bias. This is shown in Figure 4
for k = 5.

Note that the amount of bias is determined by the setting of the s0 parameter,
as instances of covering where truncation is not necessary cannot introduce bias. The
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Figure 4: Phenotype frequency landscape for Ordered Bound Representation with
k = 5 and standard cover with s0 = 1

Table 5: Phenotype proportions for Ordered Bound Representation with k = 8 and
crossover within an interval

Region Form Parent population Offspring population
1 [pi, qi)p 0.25 0.984
2 [pmin, qi)p 0.25 0.008
3 [pi, qmax)p 0.25 0.008
4 [pmin, qmax)p 0.25 < 0.001

setting of s0 = 1 provides a good bias for the real multiplexer problem since it generates
classifiers with one or more intervals of the correct structural form (i.e., those in regions
2, 3 and 4) with a probability of

1− 1

6n

For the 6-bit real multiplexer, this probability is 0.99998.

4.3.3 Crossover
Analysis of crossover with Ordered Bound Representation for an encoding of length
k = 8 as described in Section 3.3.3 yields the results shown in Table 5.

Crossover under Ordered Bound Representation tends to produce offspring in re-
gion 1 at the expense of those in regions 2, 3 and 4. This affects the probability distribu-
tion of the population across regions and tends to remove offspring in regions 2, 3 and
especially 4 (the maximally general interval) from the population. As such, crossover
appears to provide the same bias as that of initialization for Ordered Bound Repre-
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Figure 5: Region transition diagram for Ordered Bound Representation with k = 8 and
standard mutation. Regions are represented by states and transition probabilities by
arrows

sentation (Section 4.3.1). For simplicity, the analysis assumes a parent population with
a uniform distribution across regions, which is not generally the case. But, although
exact details will vary, the general trends seen here should still apply.

4.3.4 Mutation
Mutation for Ordered Bound Representation was studied in the same way as for
Centre-Spread Representation (Section 3.3.4). The transition diagram for k = 8 is
shown in Figure 5.

This displays similar characteristics to those of Centre-Spread Representation.
Most mutations cause no change of region from parent to offspring, but simply refine
the details of the interval within the region. When a transition does occur, the transi-
tion probabilities for Ordered Bound Representation essentially only allow transitions
away from anchored (region 2, 3 and 4) intervals.

5 Unordered Bound Representation

5.1 Background

Ordered Bound Representation provides a one to one g → p mapping, but the li ≤ ui
ordering restriction is unnecessary. If this restriction is lifted, the phenotype can still be
directly encoded using the endpoints of the interval, but without an ordering require-
ment. Thus, an interval [pi, qi)p may be encoded as the tuples (pi, qi) or (qi, pi) ∀ pi 6= qi.
There are thus exactly two equivalent genotypes for each phenotype except where
pi = qi when there is exactly one genotype for each phenotype. In other words, the
g → p mapping is normally two to one, except for exact numbers, which have a one to
one mapping. We do not expect the resulting small bias in favour of intervals over exact
numbers to substantially affect the performance of a Learning Classifier System using
Unordered Bound Representation. Indeed, the desire for an interval-based phenotype
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Figure 6: 6-bit real multiplexer with Unordered Bound Representation, standard cover
with s0 = 1, 2-point crossover and standard mutation

suggests that the solution to a problem using an interval-based representation is best
expressed in the form of a vector of intervals, rather than simple inequalities, so any
resulting slight performance differences compared to Ordered Bound Representation
should, if anything, be advantageous. In any event, the bias induced by the Unordered
Bound Representation’s g → p mapping is negligible compared to the major disparities
in phenotype expression frequency seen using Centre-Spread Representation.

The advantage of Unordered Bound Representation over Ordered Bound Repre-
sentation is that it avoids the additional operator complexity associated with swapping
the endpoints of an interval if the li ≤ ui ordering restriction is violated. Although this
may seem trivial, the presence of the ordering restriction constitutes a form of epista-
sis between the li and ui alleles, as their values are mutually dependent. A resulting
swap may generate great change in a particular locus when viewed before and after
the operation that caused the swap to occur. This cannot occur using Unordered Bound
Representation, since no ordering of endpoints exists for the interval predicate at the
level of the genotype.

Figure 6 shows the results of using Unordered Bound Representation on the 6-bit
real multiplexer problem.

5.2 Properties

Properties of Unordered Bound Representation are:

Property 1: Two to one genotype to phenotype mapping for intervals (but not exact
numbers)

Property 2: Complete phenotype to genotype mapping.

Property 3: The genotype to phenotype mapping of exact numbers is one to one.

316 Evolutionary Computation Volume 11, Number 3



For Real! XCS with Continuous-Valued Inputs

Property 4: The frequency of intervals of the form [pmin, qi)p and [pi, qmax)p is constant
for all pi and qi.

Property 5: The frequency of the [pmin, qmax)p interval is the same as that of any other
interval.

The maximally general interval [pmin, qmax)p may be represented by two possible tuples
in Unordered Bound Representation, so given a random genotype, an interval will be
maximally general with probability

1

22k−1

Thus, Unordered Bound Representation, like Ordered Bound Representation, pro-
vides no implicit ‘don’t care’ mechanism.

5.3 Operators

In this section we investigate Unordered Bound Representation and the operators
adapted for it.

5.3.1 Initialization
The frequency of expression of intervals of the form [pmin, qi)p, [pi, qmax)p and
[pmin, qmax)p (regions 2, 3, and 4) can be calculated as

fpmin,qi = 2k+1 − 3 ∀ pmin ≤ qi < qmax

fpi,qmax = 2k+1 − 3 ∀ pmin < pi ≤ qmax

fpmin,qmax = 2

The number of possible g → p mappings is 22k, so the frequency of intervals of the
form [pi, qi)p ∀ pi > pmin ∧ qi < qmax (region 1) is given by

fpi,qi = 22k − 2(2k+1 − 3)− 2

= (2k − 2)2

The probability of expression of an interval of this form is

Ppi,qi =
(2k − 2)2

22k

=
22k − 2(2k+1) + 4

22k

lim
n→∞

= 1

The implication of this is that, like Ordered Bound Representation, initialization
generates classifiers essentially exclusively in region 1.

5.3.2 Covering
The cover operator for Unordered Bound Representation is the same as that for Or-
dered Bound Representation, with the addition that, to avoid unnecessary bias, it en-
codes the endpoints of the generated interval in a random order. This does not affect its
operation, so the results presented for Ordered Bound Representation in Section 4.3.2
also apply here.
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Figure 7: Region transition diagram for Unordered Bound Representation with k = 8
and standard mutation. Regions are represented by states and transition probabilities
by arrows

5.3.3 Crossover
Analysis of crossover with Unordered Bound Representation for an encoding of length
k = 8 as described in Section 3.3.3 yields the same results as those shown in Table 5.
The comments made in Section 4.3.3 for crossover with Ordered Bound Representation
therefore also apply to Unordered Bound Representation.

5.3.4 Mutation
Mutation for Unordered Bound Representation was studied in the same way as for
Centre-Spread Representation (Section 3.3.4). The region transition diagram for k = 8
is shown in Figure 7.

This shows that the mutation operator for Unordered Bound Representation acts
to provide a strong pressure away from region 4. For region 4 intervals, there is only a
0.51 probability of staying in region 4 upon mutation, with a transition to regions 2 or
3 equally likely. Similarly for a region 2 or 3 interval, a transition to region 1 is possible
with a probability of 0.25.

6 The Real Multiplexer Revisited

6.1 Solving the Real Multiplexer

We have seen how Centre-Spread Representation with the operators and parameter
settings being used make it especially suited to solving the real multiplexer problem.
Wilson (2000) states, “notice how the system has ‘sculpted’ the predicates and is in
effect finding the thresholds. Most predicates either show ranges between 0.0 and 0.5,
0.5 and 1.0 or are ‘don’t cares’ ”. We suggest that it is the combination of Centre-Spread
Representation, the operators and their parameter settings that provides pressure for
these effects. Initialization and/or covering generate classifiers containing intervals
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of the correct structural form, [pmin, qi)p, [pi, qmax)p and [pmin, qmax)p(regions 2, 3, and
4). Crossover and mutation then refine these by discovering the correct thresholds, θi
to solve the problem. Having one of the endpoints of an interval correct upon initial
generation of a classifier allows a much simpler genetic search compared to having to
discover both ends of an interval concurrently. In this way, the representation and/or
operators relieve the other mechanisms of XCS from much of the burden of solving
the real multiplexer problem because the solution to the problem happens to match the
nature of the classifiers being generated. But, for an arbitrary problem, this may not be
the case.

6.2 Sampling Bias

This hypothesis suggests that the time taken to solve the real multiplexer problem
should be independent of the threshold, θi. We repeated the real multiplexer experi-
ment in (Wilson, 2000) where θi = 0.75 and, like Wilson, were unable to solve the prob-
lem in 20,000 exploit trials. However, we found that if XCS is allowed to run for 50,000
trials, it does solve the problem. In fact, XCS takes approximately 2.5 times longer to
solve the real multiplexer with θi = 0.75, than when θi = 0.5, even if θi = 0.75 does
not alternate across values of i. Further experimentation revealed that this is because
[0, 0.75]p intervals are sampled with three times the frequency than that of [0.75, 1)p
intervals. If both intervals are sampled with equal frequency, then XCS solves the
problem in the same number of trials as for when θi = 0.5 (not shown). This is the
explanation that Wilson suggests. Importantly, the difference in performance solely
arises due to sampling bias and not from any representation or operator bias present.

6.3 Relationship to Integer Results

Even with a neutral representation, such as Ordered Bound Representation or Un-
ordered Bound Representation, the present cover operator still generates classifiers
containing intervals with the correct structural form with an increased frequency. The
Random-Data2 and Random-Data9 test problems (Wilson, 2001a) exhibit the same
characteristics as described for the real multiplexer; that is, solutions to the problem
are of the form [pmin, qi)p, [pi, qmax)p and [pmin, qmax)p(regions 2, 3, and 4). It would
appear from Wisconsin Breast Cancer results4 that this problem also has these charac-
teristics. Wilson asks why XCS solves the Random-Data9 problem within a factor of
10 of the simpler Random-Data2 problem when the input space is exponentially larger
(109 versus 102). We hypothesize that the covering bias described plays a part in this
anomaly by generating classifiers containing intervals of the correct structural form. It
is not unreasonable then to assume that the additional effort for crossover and muta-
tion to refine these is better than exponential. Further work is necessary to validate this
hypothesis with the above test problems.

6.4 Interval Predicates and the Real Multiplexer

We suggest that the real multiplexer problem is a poor choice of test problem for Learn-
ing Classifier Systems operating with continuous-valued data and interval predicates,
since its solutions all have one endpoint in common with the maximally general inter-
val in the solution space. Because of this, it is not representative of the broader class of
problem where solutions are not, in general, closely aligned to the representation of the
‘don’t care’ state.

4Figure 5 in (Wilson, 2001a).
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Figure 8: Rectangle centred in a 2-dimensional solution space. The decision surface is
shaded

The benefits of interval predicates are that they are able to represent hyper-
rectangular decision surfaces in solution space. These benefits only accrue if (i) the
problem solution requires a hyper-rectangle, rather than a hyperplane decision surface
or (ii) the form of the problem solution is not known a priori. The real multiplexer prob-
lem can be solved using a hyperplane decision surface since all of the hyper-rectangles
needed for the solution are anchored at a boundary of the solution space. It does not
strictly require the presence of interval predicates to represent the solution and conse-
quently cannot adequately test the general operation and performance of representa-
tions that use interval predicates.

We argue that the real benefit of the use of interval predicates is their ability to
represent arbitrary intervals in solution space. This provides a richer expressive power
that cannot be achieved using hyperplane Decision Surfaces and potentially allows a
broader class of problem to be solved. In many real-world problems, the form of the
solution is unknown a priori and test problems for Learning Classifier Systems using
interval predicates must be flexible enough to explore all aspects of their operation and
performance. This is not the case with the real multiplexer problem.

7 Hyper-Rectangles

7.1 Full Environmental Map

XCS attempts to build a full environmental map of the problem in order to cover the
solution space with classifiers. The map takes the form of the population of classifiers,
with individual classifiers representing portions of the map.

Classifiers using an interval-based representation construct hyper-rectangular de-
cision surfaces in solution space. For all of the problems discussed in Section 6, the
decision surface can be represented by a hyperplane and so one of the faces of the
hyper-rectangle is always at the boundary of the solution space. This face simply serves
to specify the direction of the inequality otherwise represented by the hyperplane.

A hyper-rectangle can approximate more complex decision surfaces than a hyper-
plane. In this case the decision surface is closed and will have faces that are not at
solution space boundaries. This would seem to be a disadvantage for representation
and operator combinations that provide bias towards the solution space boundaries.
However, since XCS builds a complete map of the solution space, for each classifier
representing a closed decision surface, there are multiple classifiers representing the
solution space outside the closed decision surface. For example, consider a rectangle
centred in a 2-dimensional solution space (Figure 8).

There are at least four other rectangles outside this rectangle mapping the solu-
tion space. Each of these touches the bounds of the solution space and presumably
gains benefit from any bias of the representation and operators towards solution space
boundaries. In general, the balance of this benefit will depend on the shape of the
decision surface.
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Figure 9: The four types of decision surface representing the solution interval (shaded)
possible in a 1-dimensional solution space

7.2 1-Dimensional Solution Space

A single closed decision surface can be created in a 1-dimensional solution space by
dividing the solution space into non-overlapping hyper-rectangles in four ways (Fig-
ure 9).

In case 1 three hyper-rectangles (i.e., interval predicates) must be constructed to
cover the solution space. Two of these have their faces at the solution space boundary
(the unshaded rectangles in the diagram). This is the general problem θl ≤ xi < θu,
where θl and θu are the lower and upper bounds of the solution interval.

For cases 2 & 3 the solution space is covered by two hyper-rectangles, both of
which have one of their faces at the solution space boundary. These are the cases for
the real multiplexer and the other experiments discussed in Section 6.

Case 4 shows a hyper-rectangle covering all of one dimension of the solution space,
with both faces at the boundary of the solution space. This represents the maximally
general ‘don’t care’ interval.

Notice that the four cases shown correspond to the four structural forms (regions)
of interval predicate previously described.

Thus, for a single closed decision surface representing the solution interval, there
are always more hyper-rectangles requiring faces at the solution space boundary than
those that do not. This is because XCS ‘fills in’ the missing parts of the solution space
when building its complete environmental map. Strictly, this closed decision surface is
all that is required for a classifier in a traditional (non-accuracy based) classifier system.
However, XCS also generates the other hyper-rectangles to complete the map.

Even if a dimension of the solution space is divided into multiple Decision Sur-
faces representing the solution interval, then excluding the maximally general interval
(case 4 above), there will always be exactly two hyper-rectangles with faces at the solu-
tion space boundary. The number of hyper-rectangles without faces at solution space
boundaries exceeds those with faces at solution space boundaries only when a dimen-
sion of the solution space is divided into a total of five or more hyper-rectangles. Thus,
it would seem reasonable to assume that a bias towards hyper-rectangles with faces
at solution space boundaries is an advantage when a 1-dimensional solution space is
divided into less than five hyper-rectangles.

7.3 Multidimensional Solution Space

Of course, in a multidimensional solution space, the influence of the hyper-rectangle
complexity of all dimensions must be taken into account. Assuming that each dimen-
sion, n, of the solution space is divided into the same number of hypercubes, nd, the
proportion of hypercubes with one or more faces at the solution space boundary is
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Figure 10: Proportion of hypercubes with one or more faces at the solution space
boundary for problems of dimension n, with each dimension divided into nd hyper-
cubes

given by
nnd − (nd − 2)n

nnd
∀ nd ≥ 2

This is plotted in Figure 10, which shows that the proportion of hypercubes with
one or more faces at the solution space boundary depends primarily on the dimension-
ality of the problem and only secondarily on the number of hypercubes into which each
dimension is divided. For almost all problems, this proportion is greater than 0.5, while
for problems with several dimensions (i.e., most real-world problems) the number of
hypercubes with no face at the solution space boundary becomes insignificantly small.
As a result, these hypercubes are likely to have little influence on the performance of
XCS when constructing its environmental map. Therefore, even problems where the
solution is of the form [pi, qi)p ∀ pi > pmin∧qi < qmax (region 1) should benefit from the
representation and operator bias studied here, as the solution to the problem is domi-
nated by the search for intervals in regions 2, 3 and 4 – precisely those for which bias
exists.

8 The Checkerboard Problem

8.1 Description

To circumvent the limitations of the real multiplexer problem, we use a new abstract
single-step test problem, the checkerboard problem. This problem divides up the n-
dimensional solution space into equal sized hypercubes. Each hypercube is assigned a
‘colour’ black or white, with the colours alternating in all dimensions. For n = 2 the
solution space takes on the appearance of a chess or checkers board. The problem diffi-
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Figure 11: 2-dimensional checkerboard with nd = 5

culty is controlled by both the dimensionality of the solution space, n and the number
of divisions of each dimension of the solution space, nd. To allow the colours to alter-
nate in all dimensions, nd must be an odd number. Figure 11 shows a 2-dimensional
checkerboard with nd = 5.

On each trial, the Learning Classifier System is presented with a vector of n ran-
dom real numbers in the interval [0, 1)p, representing a point in the solution space.
The Learning Classifier System then attempts to assign an action, 0 or 1 depending on
whether the point is contained in a black (0) or white (1) hypercube. The classifiers
generated by the Learning Classifier System thus correspond directly to hypercubes in
the solution space.

The solution to the checkerboard problem, as presented, requires no maximally
general intervals due to the presence of alternating hypercubes. Although we do not
use it here, a controlled number of maximally general intervals may be added to the
checkerboard problem by making black entire hyper-rows and hyper-columns of the
checkerboard. The number of hyper-rows and hyper-columns generalized in this way
is controlled by a parameter, ng with the maximally general intervals being allocated
uniform randomly among dimensions and divisions of the problem.

The checkerboard problem is analogous to the test suite for ternary representations
detailed in (Kovacs & Kerber, 2001).

8.2 Checkerboard with Initial Population

Figure 12 and Figure 13 show the performance of Centre-Spread Representation and
Unordered Bound Representation on the checkerboard problem with n = 3 and nd = 3.
The solution to this problem consists of 27 hypercubes, so XCS needs 54 classifiers to
construct a full map. In these experiments, an initial population of 2000 classifiers
was used. Other settings are as for the real multiplexer experiments. We did not test
the performance of Ordered Bound Representation due to its similarity to Unordered
Bound Representation.

Here, the initial proportions of intervals in each region of the population match
well the theoretically predicted values for initialization. In these experiments, pro-
portions of intervals in each region are measured with reference to the macroclassifier
population.

By observing the proportions of intervals in the population occupying the four re-
gions, it is possible to gain some insight into the dynamics occurring as XCS solves
the problem. Notice in Figure 12 (Centre-Spread Representation) how the proportion
of each region diverges from the initial value of 0.25. Compare this to Figure 13 (Un-
ordered Bound Representation), where the proportions converge from values of 0 (re-
gions 2 and 3) and 1 (region 1).

The expected proportions of each region may be calculated for the checkerboard
problem with n = 3 and nd = 3 by counting the number of hypercubes at the cor-
ners, edges, faces and centre of the solution space. Each of these types of hypercube
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Figure 12: Checkerboard problem with Centre-Spread Representation, an initial popu-
lation, standard cover with s0 = 1, 2-point crossover ‘within’ and standard mutation

is represented by a specific combination of interval regions (for example, a hypercube
at a corner of the solution space is represented by three region 2 or 3 intervals, while
a hypercube at an edge is represented by two region 2 or 3 intervals and one region 1
interval). From this, we find that the expected proportion of each of region 1, 2 and 3
classifiers is 1

3 . It is clear from Figure 13 that although a solution to the problem ap-
pears to have been found, the proportion of region 1 classifiers is too high, whereas the
proportion of region 2 and 3 classifiers is too low. This is because, apart from a low
probability of mutation, the only pressure towards generalization is that provided by
the environment via cover spread. With an environment that presents uniform random
values, as classifiers become more general (i.e., have wider intervals), the probability
of encountering an environmental input that is outside of an existing interval’s range
becomes lower and asymptotically approaches zero. Generalization pressure is thus
variable and diminishes as XCS gets closer to solving the problem.

Although the dynamics of execution may differ, there is no great difference in Sys-
tem Performance and System Error between representations. We found that the pres-
ence of an initial population tended to mask the differences between representations.
For this reason, we now focus on comparing representations using experiments with-
out an initial population.

8.3 Checkerboard with no Initial Population

Figure 14 and Figure 15 show the same experiments with no initial population. Again,
these results show initial proportions of intervals in each region close to the predicted
values for the cover operator, given the small sample size due to the empty initial pop-
ulation.

It is immediately apparent that XCS with Centre-Spread Representation makes no
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Figure 13: Checkerboard problem with Unordered Bound Representation, an initial
population, standard cover with s0 = 1, 2-point crossover ‘within’ and standard muta-
tion

inroads towards solving the problem, whereas XCS with Unordered Bound Represen-
tation comes much closer. This is due to the abnormally high number of region 4 inter-
vals and low number of region 1 intervals in the population with Centre-Spread Repre-
sentation. For Centre-Spread Representation, covering is used only during the first 50
trials, during which time the number of region 4 (maximally general) intervals rises in
the population. For the remaining trials the region 4 intervals in the population cover
all environmental inputs and covering is unnecessary. These intervals take over the
population and stall the search. In contrast, the search using Unordered Bound Repre-
sentation makes progress from the start, correctly promoting region 1 intervals at the
expense of those in region 4. In addition, the proportion of region 2 and 3 intervals after
100,000 exploit trials (0.27) is similar to the expected proportion of 0.33, suggesting that
many of the cubes at the boundaries of the solution space have been identified. As sug-
gested in Section 7.3, it appears that the bias of the Unordered Bound Representation
operators and parameter settings better match the type of intervals needed to solve the
problem than those of Centre-Spread Representation. In fact, covering generates region
2 and 3 intervals with a probability of 1

3 , which is exactly the right proportion required
by the solution to the problem.

9 Comparing Representations and Operators

9.1 Background

We have seen that the choice of representation can make a large performance difference
even when using the same system parameters. This difference can only arise from the
action of the operators working on the representation. In order to isolate the reasons
for any performance differences, we must systematically constrain operators to behave
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Figure 14: Checkerboard problem with Centre-Spread Representation, standard cover
with s0 = 1, 2-point crossover ‘within’ and standard mutation

identically for both representations.
Without an initial population, the operators responsible for any performance dif-

ferences are covering, crossover and mutation. GA subsumption is performed at the
level of the phenotype, so no performance differences can arise from this operator.

For Unordered Bound Representation, truncation during covering and mutation
occurs on the alleles representing the lower and upper bound of the interval. This
means that an interval in Unordered Bound Representation is limited to [pmin, qmax)p.
When Centre-Spread Representation is used, it is the centre and spread alleles that are
truncated during covering and mutation. Therefore, for Centre-Spread Representation,
intervals in the underlying population are in the range [2pmin − qmax, 2qmax − pmin)p
and further truncation must be applied upon expression to limit these intervals to
[pmin, qmax)p. The cover, crossover and mutation operators all work at a genotypic level,
so in the case of Centre-Spread Representation, it is possible for intervals to be main-
tained in the population that are outside the range of the phenotype, but which are
available for crossover and mutation to manipulate, and from which ‘useful’ intervals
within range may subsequently emerge. This feature is not available with Unordered
Bound Representation, where all intervals in the population are restricted to the range
of the phenotype.

To design operators with identical characteristics for both representations, we need
to limit the range of intervals in the population to that of the solution space. We thus
refer to these as restricted operators. To test the restricted operators and verify that
XCS behaves identically when using them, we ran experiments using restricted cover,
no crossover and restricted mutation with both representations on the 6-bit real multi-
plexer and n = 3, nd = 3 checkerboard problem. These showed the same results and
population dynamics for both representations (not shown).
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Figure 15: Checkerboard problem with Unordered Bound Representation, standard
cover with s0 = 1, 2-point crossover ‘within’ and standard mutation

To compare the effects of different operator choices, we performed extensive ex-
perimentation using the Centre-Spread Representation and Unordered Bound Repre-
sentation operators and variants. These are listed in Table 6 and described in more
detail in the following sections. Space precludes detailed examination of every com-
bination of representation, operator and problem, so we focus instead only on general
trends and results of particular interest.

9.2 Cover

We compared three variants of cover operator. Standard cover is the cover operator
already described. This differs between Centre-Spread Representation and Unordered
Bound Representation in two ways:

1. The Centre-Spread Representation cover operator is symmetric, since by defini-
tion, the spread must be equal on both sides of the centre. The Unordered Bound
Representation cover operator, as presented, is asymmetric.

2. The Centre-Spread Representation cover operator generates intervals in the range
[2pmin − qmax, 2qmax − pmin)p while the Unordered Bound Representation cover
operator generates intervals in the range [pmin, qmax)p.

Restricted cover is symmetric and generates intervals in the range [pmin, qmax)p for
both representations. The properties of restricted cover are the same as those described
in Section 3.3.2. In the case of Unordered Bound Representation, the only change to
the covering algorithm is to apply the same random spread to both sides of the envi-
ronmental variable being covered. The algorithm for the Centre-Spread Representation
restricted cover operator is more complex:

si = U [0, s0)
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Table 6: Operators used during comparison of representations and operator variants

Operator Variant Characteristics

Cover
Standard Symmetric (CSR), Asymmetric (UBR)
Restricted Symmetric
Unbiased Symmetric

Crossover

Standard 1-point Between predicates
Standard 2-point Between predicates
Standard Uniform Between predicates
Restricted 1-point Within predicates
Restricted 2-point Within predicates
Restricted Uniform Within predicates

Mutation
Standard
Restricted

l = EncodeandTruncate(xi − si)
u = EncodeandTruncate(xi + si)

s =
(u− l)

2
+ (u− l) mod 2

c = l + s

The algorithm generates an interval as a lower and upper bound so that truncation
occurs as for Unordered Bound Representation. It then converts the encoded interval
back to an encoded centre and spread as needed for Centre-Spread Representation. The
spread is incremented by one if it is an odd number to ensure that region 4 intervals
are generated in the correct proportion. This is necessary because using a one of m
binary encoding, the range of the maximally general interval [pmin, qmax)p is always
odd. It cannot be represented in Centre-Spread Representation without truncation, as
only even ranges can be represented.

Unbiased cover is simply a variant of standard cover with a symmetric spread that
is limited to U [0,min(xi − pmin, qmax−xi))p. This avoids the need for truncation, as the
spread is limited to the bounds of the solution space.

We found performance differences between standard Unordered Bound Represen-
tation (asymmetric) cover and restricted (symmetric) cover with certain combinations
of problem, operators and parameter settings. It is possible that such variation in per-
formance arises simply because of the differing nature of the bias of the two types of
cover, as seen in Section 3.3.2, Section 5.3.2 and below. Alternatively, it could be related
to a bias caused by the fact that asymmetric cover chooses a different random spread
for each side of the environmental state, whereas symmetric cover produces an inter-
val that is (excepting truncation) centred on the environmental input. Further work is
necessary to understand these performance differences in more detail.

We also examined the effect of variations of the cover spread parameter, s0. We
used a value of s0 = 0.5 for these experiments. This value allows all possible inter-
vals to be generated with the exception of the maximally general interval, but results
in a minimal amount of truncation. Table 7 and Table 8 show the phenotype frequency
matrices for symmetric and asymmetric cover with s0 = 0.5. It can be seen that al-
though there are no region 4 intervals generated, for both operators there is still an
increased probability of region 2 and 3 intervals. Moreover, the most frequent many
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Table 7: Phenotype frequency matrix for symmetric cover (Centre-Spread Representa-
tion and Unordered Bound Representation) with k = 3 and s0 = 0.5

qi
0 1 2 3 4 5 6 7

0 1 1 2 2 2 1 1 0
1 1 0 1 0 1 0 1
2 1 0 1 0 1 1

pi 3 1 0 1 0 2
4 1 0 1 2
5 1 0 2
6 1 1
7 1

Table 8: Phenotype frequency matrix for asymmetric cover (Unordered Bound Repre-
sentation) with k = 3 and s0 = 0.5

qi
0 1 2 3 4 5 6 7

0 4 7 9 10 6 3 1 0
1 1 2 3 4 3 2 1
2 1 2 3 4 3 3

pi 3 1 2 3 4 6
4 1 2 3 10
5 1 2 9
6 1 7
7 4

to one g → p mappings in region 2 and 3 occur around the median values of pi and qi
with the frequencies ramping up to these values from the solution bounds. This means
that covering is more likely to generate region 2 and 3 intervals with ranges around the
median than those with very large or small ranges. In addition, the asymmetric cover
operator shows a similar effect for region 1 intervals, which does not occur with the
symmetric cover operator.

For both representations, the smaller cover spread was an advantage for the
checkerboard problem, but produced poorer performance on the real multiplexer prob-
lem. This difference arises because of the need for maximally general intervals in the
real multiplexer problem that is not present in the checkerboard problem. If the cover
operator is able to generate intervals in region 4, this aids XCS in solving the real mul-
tiplexer problem. In contrast it is a handicap for the checkerboard problem, where no
region 4 intervals are necessary to solve the problem.

The performance difference obtained by simply altering the cover spread parame-
ter can be quite spectacular. Figure 16 shows the performance of XCS on the checker-
board problem with Centre-Spread Representation and s0 = 0.5. A comparison of these
results with those of Figure 14 reveals a major difference in performance, yet the only
parameter change was to alter the cover spread from 1 to 0.5. The two sets of results
show very different dynamics with respect to the evolution of the proportions of inter-
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Figure 16: Checkerboard problem with Centre-Spread Representation, standard cover
with s0 = 0.5, 2-point crossover ‘within’ and standard mutation

vals of each region in the population. Although the performance differences between
different values of cover spread are not always so great, the value of the cover spread
does have a significant effect on system dynamics and, ultimately, on performance. For
reference and comparison with Figure 15, Figure 17 shows the results for Unordered
Bound Representation with s0 = 0.5.

Unbiased cover showed similar effects with both representations. Whilst its perfor-
mance on the checkerboard problem (Figure 18) was better than covering with s0 = 1,
it proved totally unsuitable for the real multiplexer problem (Figure 19). In Figure 18
it is possible to see how the proportion of region 1 intervals starts at 100% and then
decreases as region 2 and 3 intervals are discovered. This happens only very slowly for
the real multiplexer. Here, the proportion of region 2, 3 and 4 intervals needed to solve
the problem is very low, even after 20,000 runs, when the problem would have been
solved with a biased cover operator (Figure 1).

9.3 Crossover

As crossover is so tightly coupled with the representation, it is difficult to provide a
restricted crossover operator that behaves identically for both Centre-Spread Repre-
sentation and Unordered Bound Representation. However, if crossover operates only
between predicates, it manipulates entire intervals and the underlying representation
should be irrelevant. In this case, no performance difference is to be expected be-
tween representations. We refer to this as crossover between predicates. The standard
crossover operators for Centre-Spread Representation and Unordered Bound Repre-
sentation work within predicates, where the crossover point may be between any two
alleles. As well as minimizing any differences due to representation, crossover between
predicates allows us to see the benefits or otherwise compared to crossover within pred-
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Figure 17: Checkerboard problem with Unordered Bound Representation, standard
cover with s0 = 0.5, 2-point crossover ‘within’ and standard mutation

icates.
We experimented with 1-point, 2-point and uniform crossover operators, both

within and between predicates. These experiments were performed with restricted
cover and restricted mutation to minimize differences between representations due to
cover and mutation. Experiments were performed with both s0 = 1 and s0 = 0.5.

In general, we found little to choose between Centre-Spread Representation and
Unordered Bound Representation, except on the checkerboard problem with s0 = 1,
where Unordered Bound Representation crossover within predicates produced con-
sistently better results than Centre-Spread Representation crossover within predicates.
We attribute this to the nature of the intervals produced by covering and the bias of
crossover within intervals. With s0 = 1, a relatively high proportion of region 4 inter-
vals are introduced into the population. Crossover within predicates for Centre-Spread
Representation does not materially affect this proportion (Section 3.3.3) and the pro-
portion of region 4 intervals remains high. In contrast, the bias of crossover within
predicates for Unordered Bound Representation (Section 5.3.3) reduces the proportion
of region 4 intervals in the population to a small amount so that classifiers with max-
imally general intervals are unable to dominate action sets. Inspection of the results
shows that the proportion of region 4 intervals is higher for Centre-Spread Representa-
tion (Figure 20) than that of Unordered Bound Representation (Figure 21) and that this
is at the expense of the proportion of region 1, 2 and 3, which are needed to solve the
problem.

We found that crossover between predicates tended to produce better results than
crossover within predicates for the real multiplexer problem, but that the converse was
true for the checkerboard problem (not shown). These results occurred for both Centre-
Spread Representation and Unordered Bound Representation with settings of s0 = 0.5
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Figure 18: Checkerboard problem with Centre-Spread Representation, unbiased cover,
2-point crossover ‘within’ and standard mutation

and s0 = 1. In all cases examined, performance correlated with the ability of the op-
erators to generate or remove from the population region 1 and 4 intervals as needed
by the problem. Proportions of region 2 and 3 intervals appear to be less critical to
performance. It is possible that the recombination of centres and spreads is disruptive,
as centre and spread alleles are mutually dependent, and further work is necessary to
understand these results more fully.

9.4 Mutation

We used two types of mutation for the experiments. The first was the standard mu-
tation operator already described. Although this is essentially the same algorithm for
both representations, the alleles undergoing mutation differ for the two representations
and the details of truncation differ between representations:

1. Mutation for Centre-Spread Representation creates a shift of the centre or a change
in the size of the spread. Mutation for Unordered Bound Representation changes
the value of the lower or upper bound.

2. The Centre-Spread Representation mutation operator generates intervals in the
range [2pmin − qmax, 2qmax − pmin)p while the Unordered Bound Representation
mutation operator generates intervals in the range [pmin, qmax)p. This difference is
apparent when the neutrality of the Centre-Spread Representation mutation oper-
ator with respect to region (Figure 3) is compared with the bias of the Unordered
Bound Representation mutation operator (Figure 7).

To allow comparison between representations, we also implemented a restricted
mutation operator. This mutates the effective centre or spread as per Centre-Spread
Representation, but limits the resulting lower and upper bounds as per Unordered
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Figure 19: 6-bit real multiplexer with Centre-Spread Representation, unbiased cover,
2-point crossover ‘within’ and standard mutation

Bound Representation. For Unordered Bound Representation, this means that both
alleles in an interval predicate are altered upon each mutation. Restricted mutation was
used only to allow meaningful comparisons between variants of cover and crossover
and was not intended for comparison with the standard mutation operator.

We compared the standard mutation operators for Centre-Spread Representation
and Unordered Bound Representation. In these experiments, mutation operated in
conjunction with the restricted cover and restricted crossover operators. However, we
found no evidence suggesting that one mutation operator was superior to the other.

10 Conclusions

We showed that the Centre-Spread representation has a many to one g → p mapping
that affects the proportions of intervals in the population. As a result, operators typ-
ically used with this representation provide bias in the intervals they generate. This
bias is caused by the need to truncate both the interval itself (during gene expression)
and the alleles representing the interval (within operators) to allow only legal ranges to
be produced. If the solution space was unbounded, truncation would be unnecessary
and no such bias would exist. We have not yet experimented with unbounded solution
spaces.

Ordered Bound Representation has a one to one g → p mapping, but the need
for truncation in its operators still causes bias. The ordering requirement within tuples
with this representation motivated us to introduce a new representation, Unordered
Bound Representation, which obviates problems caused by the ordering requirement,
yet retains all the desirable features of Ordered Bound Representation.

We hypothesized that such representational and operator bias aids the solution
of the real multiplexer problem because the intervals favoured by the bias correspond

Evolutionary Computation Volume 11, Number 3 333



C. Stone and L. Bull

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20000  40000  60000  80000  100000
Exploit Trials

 
 
 
 
 
 
 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20000  40000  60000  80000  100000
Exploit Trials

System Performance
System Error

Macroclassifier Fraction
Region 1 Proportion
Region 2 Proportion
Region 3 Proportion
Region 4 Proportion

Figure 20: Checkerboard problem with Centre-Spread Representation, restricted cover
with s0 = 1, 2-point crossover ‘within’ and restricted mutation

closely to those needed for the solution to the real multiplexer problem. Consequently,
we introduced a new test problem for continuous-valued domains, the checkerboard
problem, which has a solution that is not closely correlated with the biased intervals
and which matches more closely that of real-world problems. The checkerboard prob-
lem typically showed performance differences between operators and representations
better than the real multiplexer. We will be experimenting with adding maximally gen-
eral intervals to the checkerboard problem in the near future.

Testing with two representations and different variants of the standard cover op-
erator showed that the type and amount of bias introduced by the representation and
operators used does affect the performance of XCS. In particular, the spread parameter
of the cover operator can make a huge difference in performance, because this param-
eter acts as a control over the distribution of intervals introduced into the population.
One idea that we have not yet tried is to augment the cover and mutation operators
with an explicit mechanism to introduce maximally general intervals into the popula-
tion in a probabilistic manner similar to that used by a ternary representation. This may
allow more control over this aspect of the distribution of intervals in the population.

In general, our experimental results support the hypothesis that representation
and operators aid the performance of XCS by generating intervals that are useful to
solve the problem. As a result, representation and operators must be matched to the
problem at hand in order to achieve the best results. If this does not occur, XCS may
not be able to solve the problem. These results have similarities with those reported in
(Butz et al, 2002) for XCS with a discrete representation with respect to the impact of
generalization upon system performance.

We also found that sampling bias affects system performance. It is possible to solve
the real multiplexer problem when θi = 0.75 in the same number of trials as for θi =
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Figure 21: Checkerboard problem with Unordered Bound Representation, restricted
cover with s0 = 1, 2-point crossover ‘within’ and restricted mutation

0.5 by sampling solution intervals with equal frequency. Bias caused by unbalanced
training examples is a well-known problem in machine learning (Breiman et al, 1984).

Although we specifically examined XCS in this paper, many of the results and
conclusions also apply to other Learning Classifier System architectures using the rep-
resentations studied. In particular, all of the analysis of representation and operator
bias is applicable to other architectures. However, the outcome of these biases with
architectures that do not build a complete environmental map may not correspond to
those seen here for XCS. This is because the arguments presented in Section 7 relating to
the proportion of hyper-rectangles at the solution boundary do not apply unless a com-
plete map is built. In architectures where this does not occur, the relative desirability of
intervals will differ from that seen for XCS and a complete map.
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