Protein Structure Prediction with Co-evolving Memetic Algorithms

J. E. Smith
Faculty of Computing, Engineering and Mathematical Sciences
University of the West of England
Bristol, U.K.
james.smith@uwe.ac.uk

Abstract- This paper presents a co-evolutionary
learning-optimisation approach to Protein Structure
Prediction which uses a Memetic Algorithm as its
underlying search method. Instance-specific knowledge
can be learned, stored and applied by the system in the
form of a population of rules. These rules determine the
neighbourhoods used by the local search process, which
is applied to each member of the co-evolving population
of candidate solutions.

A generic co-evolutionary framework is proposed for
this approach, and then the implementation of a simple
Self-Adaptive instantiation is described. A rule defin-
ing the local search’s move operator is encoded as a
{condition : action} pair and added to the genotype of
each individual. It is demonstrated that the action of
mutation and crossover on the patterns encoded in these
rules, coupled with the action of selection on the resul-
tant phenotypes is sufficient to permit the discovery and
propagation of knowledge about the instance being op-
timised.

The algorithm is benchmarked against a simple Ge-
netic Algorithm, a Memetic Algorithm using a fixed
neighbourhood function, and a similar Memetic Algo-
rithm which uses random (rather than evolved) rules
and shows significant improvements in terms of the abil-
ity to locate optimum configurations using Dill’s HP
model. It is shown that this “meta-learning” of problem
features provides a means of creating highly scaleable
algorithms.

1 Introduction

This paper presents a co-evolutionary learning-optimisation
approach to Protein Structure Prediction which uses a
Memetic Algorithm as its underlying search method.
Within this Coevolutionary Memetic Algorithm (COMA)
system, instance-specific knowledge can be learned, stored
and applied in the form of a population of rules. These rules
determine the neighbourhoods used by the local search pro-
cess, which is applied to each member of the co-evolving
population of candidate solutions. The rest of this paper
proceeds as follows:

e In Section 2 describes the particular application,
namely Protein Structure Prediction using Dill’s HP
model [1].

e Section 3 provides a brief introduction to Memetic

Algorithms to set a context for the algorithmic devel-
opments in this paper.

e Section 4 describes the proposed approach to adap-
tive Memetic Algorithms, and the simplified model

implemented here. It also summarise the results of
initial investigations published elsewhere.

e In Section 5 are presented the results and analysis of a
set of preliminary experiments designed to investigate
whether the use of adaptive rules is able to benefit the
optimisation process.

e In Section 6 the implications of these results are dis-
cussed, before conclusions are drawn and future work
suggested.

2 Dill’'sHP model of Protein Structure Predic-
tion

The problem of Protein Structure Prediction (PSP), i.e.
the prediction of the "native” three-dimensional form of a
protein from knowledge of the sequence of its constituent
amino-acid residues is one of the foremost challenges fac-
ing computational biology. Current approaches to PSP can
be divided into three classes; comparative modelling, fold
recognition, and ab initio methods. The first two explic-
itly search the ever-growing databases of known structures
for similar sequences (homologues) and sub-sequences. In
contrast, the third approach represents the ”last chance” sce-
nario of trying to predict the tertiary structure by minimis-
ing a free energy model of the structure. Approaches that
make use of existing knowledge currently represent the state
of the art (and are likely to remain so), however ab initio
approaches are important for two main reasons. The first
of these relates to the situation where a sequence does not
correspond to any known fold. The second, and more fun-
damental reason is that the development of true ab initio
methods can give greater insight into the relationship be-
tween different fold families, and to the dynamical process
of folding.

Current approaches to ab initio PSP can be divided ac-
cording to two criteria, namely the nature of the choice
of energy function, and the number of degrees of freedom
in the conformation, as exemplified by the granularity (all
atom models vs. virtual atom) and locational constraints
(e.g. lattice based models vs. off-lattice models). Although
most lattice based models are physically unrealistic, they
have proved a useful tool for exploring issues within the
field. Some of the more complex models, e.g. SICHO [2]
have been shown to be capable of accurate predictions of
the conformations of simple proteins, especially when used
in conjunction with techniques for subsequent refinement to
an all-atom model [3].

The HP model for PSP [1] provides an estimate of the
free energy of a fold of a given instance, based on the sum-
mation of pair-wise interactions between the amino acid

residues. It is a "virtual residue” model, that is to say
that each amino acid residue is modelled by a single atom,
whose properties are reduced to a quality of being hy-
drophobic or hydrophilic, thus simplifying the energy cal-
culations still further. Hydrophobic residues avoid inter-
acting with the water molecules of the solvent, whereas
hydrophilic (or polar) residues are able to form hydrogen
bonds with the water molecules. Thus, polar residues are
often found at the surface of the protein and hydrophaobic
residues are normally found buried in the inner part, or core,
of the protein. The HP model captures this behaviour, de-
spite its extreme simplicity. In the model, a sequence of /
amino acid residues is represented by s € {H, P}', where H
represents a hydrophobic amino acid and P represents a hy-
drophilic one. The space of valid conformations is restricted
to self-avoiding paths on a selected lattice, with each amino
acid located on a vertex. The torsion angles of the peptide
bonds between residues are thus restricted by a finite set de-
termined by the shape of the lattice. The first amino acid of
the sequence is located on a randomly selected vertex, and
an orientation is assumed for it. From there, according to
the orientation, the chain grows, placing every subsequent
amino acid either ahead of the previous one, at 90 degrees to
the left or at 90 degrees to the right (assuming a square lat-
tice). Hydrophobic units that are adjacent in the lattice but
non-adjacent in the sequence add a constant negative fac-
tor to the energy level. All other interactions are ignored.
In some cases, to make feasible conformations more attrac-
tive, the infeasible folds suffer penalisation in the form of
adding a substantial positive factor to their energy levels.
In this way, the model reflects the tendency of hydrophobic
amino acids to form a hydrophobic core. Despite the appar-
ent simplicity of this model, the search for the global energy
minimum in the space of possible conformations of a given
sequence has been shown to be NP complete on various lat-
tices [4].

Evolutionary algorithms (in particular Genetic Algo-
rithms) have been applied, with some success, to the PSP
using the HP and all-atom off-lattice models, by a number
of authors since [5]. In [6] the effect of different encoding
schemes and constraint management techniques were exam-
ined, and a modified fitness function was developed which
extends the basic HP model to permit the allocation of re-
ward for non-adjacent pairs of Hydrophilic residues. More
recent work has demonstrated the use of self-adaptation
within a memetic algorithm to permit the selection from
amongst a fixed set of predetermined local search strategies,
using different move operators such as local “stretches”, re-
flections etc [7,8]. The work described here extends this
by not relying on a fixed set of move operators encod-
ing domain-specific knoweldge, but rather evolving a set of
move operators, thus learning that domain-specific knowl-
edge.

3 Memetic Algorithms

The performance benefits which can be achieved by
hybridising Evolutionary Algorithms (EAs) with Lo-
cal Search(LS) operators, so-called Memetic Algorithms

(MAs), have now been well documented across a wide
range of problem domains (see [9] for a comprehensive bib-
liography). Commonly in these algorithms, a Local Search
improvement step is performed on each of the products
of the generating (recombination and mutation) operators,
prior to selection for the next population. There are of
course many variants on this theme: for example, one or
more of the generating operators may not be used, or the
order in which the operators are applied may vary.

There are three principal components which affect the
workings of a Local Search. The first is the choice of pivot
rule, which can be Steepest Ascent or Greedy Ascent. In the
former the entire neighbourhood n () of the current solution
1 is searched and the best neighbour used, whereas the latter
stops exploring the neighbourhood as soon as an improve-
ment is found. The second component is the depth of the
local search. This can vary from a minimum of only one im-
proving step being applied, through a fixed number of iter-
ations, to the extremum where the local search is iteratively
applied until a local optimum is reached. Considerable at-
tention has been paid to studying the effect of changing this
parameter within MAs e.g. [10]. Equally the choice of pivot
rules can be shown to have an effect on the performance of
the Local Search algorithm, both in terms of time taken, and
in the quality of solution found.

The third, and primary factor that affects the behaviour
of the LS is the choice of neighbourhood generating func-
tion. This can be thought of as defining a set of points (i)
that can be reached by the application of some move oper-
ator to the point ¢. The provision of a scalar fitness value,
f, defined over the search space means that we can consider
the graphs defined by different move operators as “fitness
landscapes” [11]. A number of statistical measures can used
to characterise fitness landscapes, and have been proposed
as potential measures of problem difficulty by various au-
thors. Merz and Freisleben [12] discuss a number of these
in the particular context of MAs, and show that the choice of
move operator can have a dramatic effect on the efficiency
and effectiveness of the Local Search, and hence of the re-
sultant MA.

In some cases, domain specific information may be used
to guide the choice of neighbourhood structure within the
Local Search algorithms. However, it has recently been
shown that the optimal choice of operators can be not only
instance specific within a class of problems [12, pp254—
258], but also dependent on the state of the evolutionary
search [13]. This result is not surprising when it is consid-
ered that points which are locally optimal with respect to
one neighbourhood structure may not be with respect to an-
other (unless of course they are globally optimal). Thus if a
set of points has converged to the state where all are locally
optimal with respect to the current neighbourhood operator,
then changing the neighbourhood operator may provide a
means of progression, in addition to recombination and mu-
tation.

Krasnogor and Smith described a “MultiMemetic Algo-
rithm” , in which a gene was added to the end of each chro-
mosome indicating which of a fixed set of static LS opera-

tors (“memes”) should be applied to the individual solution
[13]. Variation was provided during the mutation process,
by randomly resetting this value with a low probability. The
results demonstrated that this system was able to adapt to
use the best meme available for different instances of TSP.
Krasnogor and Gustafson have extended this and proposed
a grammar for “Self-Generating MAs” which specifies, for
instance, where in the evolutionary cycle local search takes
place [14]. Noting that each meme potentially defines a dif-
ferent neighbourhood function for the local search part of
the MA, we can also see an obvious analogy to the Vari-
able Neighbourhood Search algorithm [15], where a heuris-
tic is used to control the order of application of a set of local
searchers(using different, fixed, neighbourhood structures)
to a single improving solution. The difference here lies
in the population based nature of COMA, so that not only
do we have multiple candidate solutions, but also multiple
adaptive neighbourhood functions in the memes.

4 COMA: A Rule-Based Mode for the Adap-
tation of Move Operators

4.1 The Model

The aim of this work is to provide a means whereby the def-
inition of the local search operator used within a MA can be
varied over time, and then to examine whether evolution-
ary processes can be used to control that variation, so that
a beneficial adaptation takes place. The approach taken is
to use a coevolutionary system with two populations, one
of candidate solutions, and one of Local Search Operators
(LSOs) which act on the members of the first population.

The representation chosen for the LSOs is a tuple
<Pivot_Rule, Depth, Pairing, Move, Fitness>.

The element Pairing efectively co-ordinates the evolu-
tion of the two populations. When a candidate solution is to
be evaluated, a member of the LSO population is chosen to
operate on it, hopefully yielding improvements. The fitness
of the candidate solution is thus affected by the choice of
LSO to operate on it, and the fitness assigned to the LSO
is in turn affected by the candidate solution to which it is
applied. Values for Pairing are taken from the set {linked,
fitness_based, random}.

For the linked pairing strategy, the LSOs can be consid-
ered to be extra genetic material which is inherited and var-
ied along with the problem representation. Thus if the k%"
candidate solution is created from parents ¢ and j, then a
LSO is created by the actions of recombination and muta-
tion on members ¢ and j of the current LSO population. This
new LSO is used to evaluate the new candidate solution and
becomes the k** member of the next LSO population. Note
that this assumes the two populations are the same size. The
fitness is assigned to the new LSO is immaterial, since se-
lection to act as parents happens via association with good
members of the solution population. An examination of the
issues surrounding fitness-based pairing can be seen in an
accompanying paper in these proceedings [16].

The first two elements in the tuple have been described
above, and like the pairing can be easily mapped onto an in-

teger or cardinal representation as desired, and manipulated
by standard genetic operators. The representation chosen
for the move operators was as condition:action pairs, which
specify a pattern to be looked for in the problem repre-
sentation, and a different pattern it should be changed to.
Although this representation at first appears very simple,
it has the potential to represent highly complex moves via
the use of symbols to denote not only single/multiple wild-
card characters (in a manner similar to that used for regular
expressions in Unix) but also the specifications of repeti-
tions and iterations. Further, permitting the use of different
length patterns in the condition and action parts of the rule
gives scope for cut and splice operators working on variable
length solutions.

In themselves, the degrees of freedom afforded by the
components listed above provide basis for a major body of
research, which is well beyond the scope of this paper. For
these initial investigations the LSOs were restricted to one
of greedy or steepest ascent, a single improvement step, and
linked pairing. These choices are coded into the LSO chro-
mosomes at initialisation, and variation operators are not
used on them. The system is also restricted to considering
only rules where the condition and action patterns are of
equal length and are composed of values taken from the set
of permissible allele values of the problem representation,
augmented by a “don’t care” symbol # which is allowed to
appear in the condition (but not the action) part of the rule.
The neighbourhood of a point i then consists of all those
points where the substring denoted by condition appears in
the representation of ¢ and is replaced by the action. The
neighbourhood of ¢ therefore potentially includes i itself,
for example, by means of a rule with identical condition
and action parts.

To give an example, given a solution represented by the
binary string 1100111000 and a rule 1#0:111, then this
matches the first, second, sixth and seventh positions, and
the neighbourhood is the set {1110111000, 11111111000,
1100111100,1100111110}. Note that in this work the string
is not considered to be toroidal (although this will be consid-
ered in later work), and that a random permutation is used
to specify the order in which the neighbours are evaluated,
S0 as not to introduce positional bias into the local search
when greedy ascent is used.

In practice, each rule was implemented as two 16 bit
strings, and was augmented by a value rule_length which
detailed the number of positions in the pattern string to con-
sider.This representation for the rules means that “standard”
genetic operators (uniform/1 point crossover, point muta-
tion) can be used to vary this part of the LS chromosome.

The inclusion of an adaptive rule_length permits the abil-
ity to adapt via the action of mutation operators on this
value. In [17] the effects of different fixed rule sizes were
examined, and a version which had the ability to adapt via
the action of mutation operators on this value. The results
obtained demonstrated that the version with adaptive rule
lenths was able to quickly adapt to using the appropriate
optimal size rule for the different problems.

4.2 Initial Results

The results of initial investigations using this system were
reported in [17]. The test suite was problems made out of a
number of subfunctions either interleaved or concatenated.
Two different classes of subfunction were used which posed
either entropic (Royal Road) or fitness (Deceptive) barri-
ers to the discovery of the global optimum. Greedy ver-
sions of the COMA (GComa) algorithm were tested against
the GA,MA, and GRand algorithms described below. It
was shown that a version of the system with adaptive rule
lengths was able to perform better than these three. It also
performed comparably with variants of GComa that had
the optimal fixed rule-lengths for the different problems.
Analysis showed that these GCOMA algorithms discovered
and used problem specific information (such as optimal pat-
terns for different sub-problems), and subsequent work has
shown them to be highly scalable with respect to problem
length. Further results and analysis can be seen elsewhere
in these proceedings [16].

5 Experimental Results

5.1 The Test Suite and Experimental set-up

In order to investigate the value of this approach, 20 in-
stances and parameter settings from [18], were used, which
use a two-dimensional triangular lattice. The generational
genetic algorithm used (500+500) selection and a relative
encoding. In this encoding the alleles come from the set
{leftback, leftforward, front, rightforward, rightback} and
represent the direction of the next move on the lattice from
the point of view of the head of the growing chain. This
is an alternative to the absolute encoding used by Unger
and Moult [5], where alleles specify directions to move rel-
ative to an external frame of reference. Results presented
in [6] have suggested that this relative encoding is prefer-
able, not least because the absence of a “back” move means
that all conformations that can be represented are one-step
self-avoiding.

One Point Crossover was applied with probability 0.8
and a Double Mutation was made with probability 0.3.
Viewed from an external frame of reference the mutation
operator has the effect of causing the mutation point to act
as a pivot, about which one half of the structure is rotated
through some multiple of 7r/6 (for a triangular lattice). Mu-
tation was applied to the rules with a probability of 0.0625
of selecting a new allele value in each locus (the inverse of
the maximum rule length).

For each combination of algorithm and instance, 25 runs
were made, each run continued until the global optimum
was reached, subject to a maximum of 1 million evalua-
tions. Note that since one iteration of a local search may
involve several evaluations, this allows more generations to
the GA, i.e. algorithms are compared strictly on the basis
of the number of calls to the evaluation function. The al-
gorithms used (and the abbreviations which will be used to
refer to them hereafter) are as follows:

e A GA i.e. with no use of Local Search (GA).

e A simple MA using a bit-flipping neighbourhood,
with one iteration of greedy ascent (SMA).

e \ersions of COMA using a randomly created rule in
each application, i.e. with the learning disabled. One
iteration of steepest (SRand) or greedy (GRand) as-
cent local search was applied.

o Adaptive versions of COMA with the two pivot rules
(SComa and GComa). In these the rule lengths are
randomly initialised in the range [1,16]. During mu-
tation, a value of +/ — 1 is randomly chosen and
added with probability 0.0625.

These results can be analysed in number of ways, of
which we will focus on three: firstly in terms of reliability
(i.e. of the number of runs in which the global optimum was
found), secondly in terms of the average number of evalu-
ations taken to find the optimum in those successful runs,
and thirdly in terms of the mean performance (i.e. the best
value found in the maximum time alloted, averaged over 25
runs). Figure 1 summarises the results of these experiments
in terms of the first two criteria — reliability and speed. The
vertical bars show the mean time to the optimum, with error
bars at +/- one standard deviation from the top of the bar.
Where there is an annotation above the bar, this represents
the number of runs in which the global optimum was found
(out of 25). No annotation indicates that all 25 runs found
the optimum, and a missing column indicates that no runs
found the global optimum on that instance.

As can be seen, the SComa algorithm is notably more
successful than the other algorithms, and the successful runs
use comparable numbers of evaluations as those of the faster
of the other algorithms. For the instances 17-19, only the
SComa algorithm was able to find the global optimum, (do-
ing so 8,1 and 1 times respectively). No algorithm solved
instance 20 in the time allowed. The success rate is quite
high for the shorter instances, and this is reflected in similar
performance in terms of the metric of best value found. The
difference in mean best value becomes more marked for the
longer instances as is shown in Figure 2, where the superior
performance of the S-Coma algorithm is clear.

In order to investigate the statistical significance of these
results, a two-way ANOVA test was performed on the val-
ues for the best solution found in each run, with instance
number and algorithm as the factors. This confirmed the
significance of the algorithm in determining the perfor-
mance, and so two sets of post-hoc tests were performed to
analyse the differences between pairs of algorithms. These
were Least-Significant Difference, and Tamhanes T2 test
(the latter is more conservative as it does not make any as-
sumptions about the samples having equal variances). The
results of these tests are summarised in Table 1. An entry
r or R indicates that the algorithm indicated by the row in-
dex was significantly better than the one indicated by the
column index, with 95% confidence according to the LSD
or T2 test respectively. Similarly an entry of ¢ or C indi-
cates that the column algorithm is better than the row algo-
rithm with 95% confidence according to the LSD or T2 test
respectively. SComa is omitted as it is significantly better
than all others according to both tests.

QT[\ Vl
_u___________________ _l______________________ A BRI T A
7T€?§%§§?ﬁ%§-5 e L0 S ¢
O —rssrsrsrsses < T\\\\\\\\\\\\\\. = 1 w 0
[—— S — N —
O g =R RRARRRRRRARNY LB ARRRRRARRRRRRINN
- N — N j—
2_|_____________________ < _.______________________
N Txxxxxxxxxxxxxxxﬁ- < Lo Y
Nl—rrrrrresrsrres O |—srrrsrrrrrrrrss 7777777/
| —— N — O | ——
9 D RRARRRRY
ke
N | — N || m m
_l____________________ _l______________________ R R
1_I Lo o) | < G S
E O |—srrrrrrrsrrsrss — /
—— N | ——
= B CARARRRRRRNY) S SSRRRRSRRRR ““
) 7
D | — O | m— O — “
_|_________________ M._ _|____________________ N _.________________________
AN | L~ Y
N——rsrsrrss027] W0 |frrrrrss] O fsrrrrrres < T
[— S — S ——
Y g O oo AR RRRRR AR R AR m m
Q
O H— O |- < e (O @W
© _l________________ ml:___:_____:______:_ T______________________
AN i BN
m_[\\\\\\\\\\L - Tﬂ\\\\\\\\\\\\\; © ll\\\\\\\\\\\\\ — M
Wﬁllllll S —— N — \
o hwswaaaw mfl4//¢///¢//Attf 7+||f///¢//////4; W"
_ _ _ _ _ _ _ _ _
¢ % % % % % % 4 8 9 3 9
U 2 N 2 U 2
e & s e & g e s g

wnwndo orswi|

Figure 1: Times to reach optimum by algorithm, instances 1-5 (top), 6-10(middle), and 11-16 (bottom). Error bars represent

+/- 1 std. dev. from top of bar. Annotations represent number of runs where optimum found, if less than 25.

30

(0]
15 —
10

puno4aneA 199 Jo Ues |\

15 16 17 18 19 20
I nstance

14

Figure 2: Mean and std deviation of best values found for instances 14-20, analysed by algorithm

GComa - R - - R
SRand c - C C C
GRand - r - - -
SMA r r r - R
GA c r c c -
Algorithm | GComa SRand GRand SMA GA

Table 1: Statistical significance of pairwise comparisons be-
tween algorithms on basis of best values found. SComa
omitted as it is significantly better than all others. — indi-
cates no significant difference. r[c] denotes algorithm indi-
cated by row[column] is better with 95% confidence. Lower
triangle (lower case) is for LSD test, upper quarter (upper
case) is for Tamhane’s T2 test.

5.2 Restricting the Search to Feasible Solutions

In [19] we have reported results from a detailed study of
the fitness landscape of HP model proteins which suggests
that the feasible regions of the search space are more highly
connected than has previously been thought, and that cor-
respondingly there may be performance advantages arising
from a restriction of the search process to only considering
feasible solutions.

In order to investigate this, the crossover and mutation
operators were modified so that they only produced feasible
offspring. This process is less lengthy than it would first ap-
pear since in practice infeasible offspring can almost always
be quickly identified during the path growth process and the
evaluation stopped.

The mutation operator still applied one double mutation
- a random permutation of the loci was generated, and for
each of these a random permutation of the possible changes
was created. Offspring were produced and tested in this or-
der until a feasible one was created. The crossover operator
was modified similarly: if the offspring produced using a
given crossover point was infeasible the operator next tested
all of the different possible orientation of the two substrings
by varying the allele value in the locus corresponding to that
crossover point, before moving on to trying the next.

No attempt was made to restrict the initial population to
feasible solutions, as the infeasible ones are quickly weeded
out by selection, and preliminary experimentation revealed
that creating a feasible initial population by random gener-
ation of values takes an extremely long time.

These results are shown in Figure 3 for the GA, SMA and
SComa. Tests were also made with variants of the memetic
algorithms in which the local search phase was continued
until a local optimum rather than just a single step (SMA*
and SComa*).

As can be seen from a comparison of Figures 1 and 3
these results demonstrate that improved reliability arisies
from restricting the variation operators to using feasible so-
lutions. These differences were found to be statistically sig-
nificant.

The effects of changing the depth of local search were
less conclusive. Considering only the SComa and SComa*
algorithms: a statistical analysis of the best individual found

in each run with the instance and depth (a binary choice be-
tween one step/to optimum) as the variables did not show
a significant difference, although the interaction term was
significant. From Figure 3 it can be seen that the number of
evaluations taken to find a solution is comparable for the
two approaches on each instance. Given that one might
expect an overhead in terms of the number of neighbours
tested in an iterative search, this is perhaps surprising.

Analysis of the form of the evolving rules showed that
there was a strong tendency towards rules of the form
— Ir or #4# — [L. Here | = leftback, r = right-
back, and L = leftforward relative to the previous direction
of growth. Both of these rules act to bring residues ¢ and
i + 2 into contact, via causing a torsion angle of II/6 at
residue ¢ + 1.

Given that we are working in a two-dimensional plane
these could possibly be thought of as the two-dimensional
equivalent of representing a single turn of an alpha he-
lix. Experimentation on a square two-dimensional lattice
showed that the rules which evolved on a number of in-
stances tended to have length three and be of the form
H### — Ul or #4#4# — rrr which is the shortest path
that can be made bringing two residues into contact.

We would like to highlight the use of the word “tended”
here: in most cases the rule-set continued to contain a
number of different rules of varying lengths. We have ar-
gued elsewhere [16] that in addition to the extra scalabil-
ity attained by identifying and re-applying regular struc-
tural motifs, the presence of a diverse, evolving rule-set
gives increased possibilities of escaping from local optima
to COMA, by continually testing new search landscapes.

6 Discussion and Conclusions

As can be seen from the results section above, the S-Coma
algorithm provides better performance according to both
metrics (reliability and mean best fitness) than the GA,
MA or a comparable system with the rule-learning turned
off (SRand, GRand). These results are especially notica-
ble for the longer instances where the COMA system is
able to learn and then exploit regularities within energeti-
cally favourable conformations, corresponding to secondary
structural motifs.

These results are improved still further by the restrict-
ing the variation operators to producing feasible solutions.
Changing the depth of the local search appeared to make
things slightly worse for the standard MA, and did not make
any statistically significant difference for COMA, suggest-
ing that the extra computational effort is not worthwhile in
this case.

The reliability results are also better, especially for the
longer instances than those reported elsewhere using a self-
adaptive multi-memetic algorithm, with the meme set espe-
cially designed after a comprehensive study of the literature
and extensive experimentation.

There is a clear place for the use of expert knowledge in
the design of search algorithms, and its encapsulation in the
form of carefully designed move operators. Nevertheless
we feel that the approach outlined in this paper represents

© o o o
N w AN ol
| | |

o
=
|

N
L\\O\‘—|

f’l’””’—'

m
-
I

=
\]

l..'\.'\.'\."—'

’——I

FEFFTFFFTFFFETFFFFFFry ——]

=

FIIIIIIIII—'

=

=
O O
N

w
ul

0.8

o
o)
I

(million evalautions)

n

o

N
|

O
N
I

=
\\@\‘\—' l\-b.)

FFEFFFETFFrrrrr.

=
5
=

N
=

—

FFTFTFTETTFTFTFTFTFTFTFTFTFFFr.

—
’——I

FFrFEFErrFrFrrrrrrr.

N

w
N
W

o
e

T TTTTTTTTFTTTT

|—

00
R R R R R
|—

¥ 00

TR SRR S RN

m_

©

00
© -
=
o

Timeto Solutio

=
o O

o
o
|

IIA—E'

o
o
I

llll;—H

0

o
N
|
N
)
FFEFFFTTFTFTFTFTFTFrFrrrr.

w

| TETTETTETTFTFFrr—

o
N
I

=
N
AL L LE LY

L\\\\\\\‘—E—I
FETFTFFTFTFFTFFF

—]
L\\\\\\B\\—E—'

o
N
i
N

o
o
ot

N

FFEIFFFTFTFFTFTFFTFFFTFFFry. |_\

_ﬁ—|

r e

\\\\\\\\\\\\\\\'—@—I

\\\\\\\\\\\\\\‘—6%
.\\\\\\\\\\\\\\‘—HJ

e

[
=
[
N

13

14

[
a1l
=
(o))

instance

Emm GA 7“2 SMA

SComa X SMA* mmm SCOMA*

Figure 3: Times to reach optimum by algorithm, instances 1-5 (top), 6-10(middle), and 11-16 (bottom). Error bars represent
+/- 1 std. dev. from top of bar. Annotations represent number of runs where optimum found, if less than 25.

a highly promising prospect given its ability to discover and
explicitly represent structural motifs. One obvious path for
future work would be to examine the effects of seeding the
rule population with expert-designed rules. Another, per-
haps more pressing path is to examine the behaviour on
more complex lattices and for different energy functions.
As indicated above, these results are only the beginning
of a processs of investigation, clearly more analysis of the
evolving rule-sets is needed, as well as a thorough investi-
gation of the other algorithmic possibilities. It seems likely
however that this represents a promising direction for the fu-

ture development of scalable optimisation techniques which
may yield new insights into the energy landscapes of the HP
and other lattice models of proteins.

7 Acknowledgements

The author would like to thank Natalio Krasnogor for many
fruitful discussions during the initial stages of this work,
and for introducing him to the Protein Structure Prediction
problem.

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

K. Dill, Biochemistry, vol. 24, p. 1501, 1985.

A. Kolinski and J. Skolnick, “Assembly of protein
structure from sparse experimental data: An efficient
monte-carlo method,” Proteins: Structure Function
and Genetics, vol. 32, pp. 475-494, 1998.

M. Feig, P. Rotkiewicz, A. Kolinski, J. Skolnick,
and C. Brooks, “Accurate reconstruction of all-atom
protein representations from side-chain-based low-
resolution models,” Proteins:Structure Fucntion and
Genetics, vol. 41, pp. 86-97, 2000.

B. Berger and T. Leight, “Protein folding in
the hydrophobic-hydrophilic (HP) model is NP-
complete,” in Proc. 2nd Annual Intnl. Conf. Compu-
tational Molecular Biology RECOMB98, 1998.

R. Unger and J. Moult, “A genetic algorithm for 3D
protein folding simulations,” in Proceedings of the
5th International Conference on Genetic Algorithms,
S. Forrest, Ed. Morgan Kaufmann, San Francisco,
1993, pp. 581-588.

N. Krasnogor, W. Hart, J. Smith, and D. Pelta, “Protein
structure prediction with evolutionary algorithms,” in
Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-1999), W. Banzhaf,
J. Daida, A. Eiben, M. Garzon, V. Honavar, M. Jakiela,
and R. Smith, Eds. Morgan Kaufmann, 1999, pp.
1596-1601.

N. Krasnogor, “Studies in the theory and design space
of memetic algorithms,” Ph.D. dissertation, University
of the West of England, 2002.

N. Krasnogor, B.P. Blackburne, E.K. Burke and J. D.
Hirst, “Multimeme algorithms for protein structure
prediction,” in Proceedings of the 7th Conference
on Parallel Problem Solving from Nature, ser. Lec-
ture Notes in Computer Science, J. M. Guervos,
P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas,
and H.-P. Schwefel, Eds., no. 2439. Springer, Berlin,
2002, pp. 769 -778.

P. Moscato, “Memetic algorithms® home page,”
http://www.densis.fee.unicamp.br/
“moscato/memetic_home.html, 2002.

W. E. Hart, “Adaptive global optimization with local
search,” Ph.D. dissertation, University of California,
San Diego, 1994.

T. Jones, “Evolutionary algorithms, fitness landscapes
and search,” Ph.D. dissertation, The University of New
Mexico, Albuquerque, NM, 1995.

P. Merz and B. Freisleben, “Fitness landscapes and
memetic algorithm design,” in New Ideas in Optimiza-
tion, D. Corne, M. Dorigo, and F. Glover, Eds. Mc-
Graw Hill, 1999, pp. 245-260.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

N. Krasnogor and J. Smith, “Emergence of profitable
search strategies based on a simple inheritance mecha-
nism,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), L. Spec-
tor, E. Goodman, A. Wu, W. Langdon, H.-M. \oigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon,
and E. Burke, Eds. Morgan Kaufmann, 2001, pp.
432-439.

N. Krasnogor and S. Gustafson, “Toward truly
“memetic” memetic algorithms: discussion and proofs
of concept,” in Advances in Nature-Inspired Compu-
tation: The PPSN VII Workshops, D. Corne, G. Fogel,
W. Hart, J. Knowles, N. Krasnogor, R. Roy, J. Smith,
and A. Tiwari, Eds. Reading, UK: PEDAL (Parallel,
Emergent & Distributed Architectures Lab), Univer-
sity of Reading, 2002, pp. 9-10.

P. Hansen and N. Mladenovi¢, “An introduction to
variable neighborhood search,” in Meta-Heuristics:
Advances and trends in local search paradigms for
optimization. Proceedings of MIC 97 Conference,
S. Vo, S. Martello, 1. H. Osman, and C. Rou-
cairol, Eds. Dordrecht, The Netherlands: Kluwer
Academic Publishers, 1998. [Online]. Awvailable:
http://www.crt.umontreal.ca/ pierreh/pub-en.html or
http://www.wkap.nl/book.htm/0-7923-8369-9

J. Smith, “Co-evolving memetic algorithms: A learn-
ing approach to robust scalable optimisation,” Univer-
sity of the West of England, Tech. Rep., 2003, to ap-
pear in proceedings of IEEE CECO03.

——, “Co-evolution of memetic algorithms : Ini-
tial investigations,” in Proceedings of the 7th Confer-
ence on Parallel Problem Solving from Nature, ser.
Lecture Notes in Computer Science, J. M. Guervos,
P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas,
and H.-P. Schwefel, Eds., no. 2439. Springer, Berlin,
2002, pp. 537-548.

N. Krasnogor and J. Smith, “A memetic algorithm
with self-adaptive local search: TSP as a case study,”
in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2000), D. Whitley,
D. Goldberg, E. Cantu-Paz, L. Spector, |. Parmee, and
H.-G. Beyer, Eds. Morgan Kaufmann, 2000, pp. 987—
994.

S. Duarte-Flores and J. Smith, “Study of fitness land-
scapes for the HP model of protein structure predic-
tion,” University of the West of England, Tech. Rep.,
2003, to appear in CECO03 Special Session on Bio-
informatiocs.

