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Abstract

Although the use of Self-Adaptation to control Mutation Rates within Genetic
Algorithms is now well documented and accepted, there remains a variety of
opinions as to what exactly “Self-Adaption” entails. While most authors agree
on the encoding of strategy parameters within the genotype of the individual,
and the use of selection at the phenotype level to implicitly control the relative
frequency of different strategies, there is less agreement as to how these strategies
should be perturbed. Given recent empirical and theoretical results concerning
premature convergence with Self-Adaptive mutation, the issue of how best to
generate variation within the space of strategy parameters clearly warrants
further investigation.

In this paper we consider models of a generational mutation-selection genetic
algorithm, with self -adaptation of the mutation rates using two different strat-
egy perturbation mechanisms. Considering the Eigenvectors of these models, we
derive predictions of the converged behaviour, and of the time taken to find
the global optimum for two classes of problem, which differ in the nature of
the barriers between regions of search space corresponding to different fitness
classes. These predictions are compared to experimental results, and used to ex-
plain some anomalous observations. On the basis of these results we draw some
conclusions about the behaviour of these two different types of algorithm on the
two classes of problem.



Introduction

Although the notion of using Self-Adaptation to control Mutation Rates within Genetic
Algorithms (GAs) is now well documented and accepted, there remain a variety of opinions
as to what exactly “Self-Adaption” entails. While most authors agree on the encoding of
strategy parameters within the genotype of the individual, and the use of selection at the
phenotype level to implicitly control the relative frequency of different strategies, there is
less agreement as to how these strategies should be perturbed, i.e. as to what variation
operators should be used on the strategy encoding.

In this paper we consider this issue of perturbation, or equivalently, of the choice of
variation operators within the search space of strategy parameters. We examine the
behaviour of two different paradigms. In the first, perturbation is controlled by an
exogenously provided parameter, which is equivalent to the use of a fixed mutation rate
within strategy space. In the second, perturbation is endogenously controlled, i.e. the
bitwise probability with which a strategy parameter’s encoding is varied is given by the
value of that parameter. The approach taken is to examine the algorithms’ behaviour
on two types of problem, differentiated by whether the regions of progressively higher
fitness are separated from those below by an entropic barrier (typified by the Royal Road
functions) or a fitness barrier (typified by a deceptive function).

We do this by first deriving infinite population “dynamical systems” models of the systems,
which we use to predict the steady state distributions and the attractors of the system.
We then derive approximations for the “Hitting Times” i.e. the number of evaluations
required to locate the global optimum with finite populations. These are compared for the
two paradigms and for fixed mutation rates, and verified experimentally.

The rest of this paper proceeds as follows:

e In Section 1 we provide more background on the issues at stake and the different
perturbation methods in use.

e In Section 2, we briefly discuss some of the approaches that have been taken to
modelling the behaviour of adaptive GAs, and introduce the dynamical systems
models that we will use. We then develop models for the two algorithms and the
two different types of evaluation function. We present predictions of behaviour and
compare these with empirical results.

e In Section 4 we describe the derivation of approximations for the hitting times and
calculate these for the Royal Road problems. We compare these with experimental
observations, use the models to explain some of the observed behaviour and comment
on some factors which affect the quality of the approximations.

e In Section 5 we contrast the behaviour of the two different perturbation mechanisms
and draw some conclusions.

1 Strategy Perturbation Mechanisms

Any consideration of Self-Adaptive mutation probabilities naturally takes its cue from
Evolution Stategies (ES) and Evolutionary Programming, where such methods have been



successfully applied for over two decades [11, 3]. For these algorithms, where a real-
valued strategy parameter encodes the mutation step-size, it is typically perturbed by
multiplication. This is either with a fixed amount (as in for example the “1:5 Success
Rule” [8]), or with a random value from a distribution governed by a fixed global rate.
Rudolph [10] has shown that unsuitable meta-learning rates can lead to premature strategy
convergence and the loss of ability to escape from local optima. Glickman and Sycara [5]
have observed similar phenomenon in real-coded GAs, and posited a number of situations
under which this can occur.

The Self Adaptation of bit-wise mutation probabilities for a binary genotype was proposed
by Béck [1], who used a binary encoding for the mutation rate within a generational GA.
This rate is perturbed in a two stage process. First the strategy parameter is decoded to
give an initial rate, and then bit-wise mutation is applied to the strategy encoding at this
rate. The updated strategy parameter is then decoded to find the rate to be applied to the
problem encoding. This idea was expanded by Smith and Fogarty [13] who examined a
number of different encodings (binary, Gray, and an exponential scheme due to [6]) within
the context of a Steady State GA. They showed empirically that the choice of encoding,
and hence of perturbation operator, has a significant effect on optimisation performance.
These schemes have the property that ' changes are most likely to be to a similar rate,
and that the probability that a rate remains the same (or very nearly so) increases as the
encoded rate decreases. These properties are of course very similar to the schemes described
above for mutation step sizes. They differ in that they do not require an external learning
rate, but rather are endogenously controlled. Another significant difference is that the use
of a fixed length encoding restricts the mutation rate to take one of a fixed set of values.

Stephens et al. [14] showed theoretically why the optimal choice of strategies is not only
problem dependent, but also population dependent. Observing that the addition of strat-
egy parameter genes created a non-injective mapping from genotype to phenotype, and
considering endogenously controlled variation, they showed that adaptation of mutation
rates can arise from a breaking of the symmetry in the genotype to phenotype redundancy.
They use the term “effective fitness” to denote the fact that in general genotypes encoding
for good solutions with low mutation rates are more likely to have similar (and hence fit)
offspring than genotypes with the same problem encoding but high mutation rates.

In contrast to these approaches, Smith [12] examined a system which also used a fixed
set of permissible values for the mutation rate, but which had an external parameter z
controlling the probability of perturbation of the encoded strategy. On perturbation a new
value was selected from a uniform random distribution rather than from a distribution
which favoured similar values. In [7] the results are given of experiments which demonstrate
that the mechanism described here is sufficient to permit adaptation of the mutation
rates to optimal values on a range on NK landscapes. Subsequent work [15] confirmed
that, even with z = 1, the algorithm found the global optimum more reliably on a range
of binary coded test functions than an otherwise identical algorithm with ES-style log-
normal perturbation of continuously varying strategy parameters.

The nature of search on a binary problem encoding, means that the effects of mutation
(in terms of the distance moved in space) are effectively “binned” compared to variations
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in continuous space, which coupled with the greatly reduced strategy space may account
for the improved performance seen with a fixed set of values. By using the same set of
permissible mutation rates in the two cases, we can use this model to examine the question
of whether the perturbation should be endogenously or exogenously controlled.

2 A Model of Self-Adaptation

2.1 Pertubation Probabilities

In this model a generational model is used similar to that of [1, 14, 12]: an individual
is deemed to have a single mutation rate (m) attached to it which takes one of a fixed
number (q) of values. Mutation is a two phase process, where first the value of m is varied
to yield a new value m’, then the problem representation is mutated with this new bit-wise
mutation probability.

The two strategy perturbation paradigms are thus defined by the perturbation probability
distribution P,(m,m’) governing the transition m — m/'.

For endogenously controlled variation, this distribution is a function of the length of the
strategy encoding l,,, the Hamming distance d,, ,,,» between the two rates, and the initial
rate m:

Py(m,m') = m®mm (1 —m)tm = mm! (1

By contrast, for the simpler exogenously controlled scheme a new value m’ is chosen at
random with probability z, and the value is left unchanged with probability (1 — z), i.e:

no_ Z/q m';ém
Pp(m,m>—{ Gy T &)

We will refer to z as the Perturbation Rate. Note that by setting ¢ = 1, we can use either
model for fixed mutation rates as well.

2.2 Problem Classes

As mentioned above, in this paper we will consider problems of unitation, i.e. where the
fitness of an individual solution i depends solely on u;, the number of 1’s in its binary
representation. For such a problem with a representation of length L there are L +1
equivalence classes of solutions with different representations but equal fitnesses. Although
this at first may seem like a restriction to a small set of classes, we can in fact provide
very different barriers to incremental increases in fitness by varying the way in which the
fitness is given as a function of unitation. Firstly of course, we can provide no barriers, i.e
the One Max fitness function: f(i) = u;.

This can be seen as the simplest example (K = 1) of a type R1 Royal Road fitness function
[4] where the fitness is given by the number of blocks “aligned” to the target string in a
problem with L blocks, each of length K. Assuming (without loss of generality) that the
target string is all 1s for each block:

fri(i) = ZIL=1 I coiock; 5 (3)



A well known property of these functions is that for K > 1 they possess “plateaus” of
equal fitness, and as discussed in [18] these represent entropic barriers to evolutionary
search. As has been extensively documented, search on these problems typically proceeds
via a series of “epochs”, and during transitions the entropy of the population is reduced
as the correct alignment is found for the next block, and fixated through the population.

In order to construct a mapping from the R1 class of problems onto functions of unitation,
we simply replace the unitation of a string by the number of aligned blocks it contains,
and define the probability of mutating the number of aligned blocks as a function of the
parameter K. In other words, we can treat them as OneMax functions where rather than
P(0 — 1) = P(1 — 0) = m, we use the notation that a block is aligned with probability
A;, and unaligned with probability D;, for a member of class i. Under the Maximum
Entropy assumption the block alignment and destroying probabilities for a class with
mutation probability m are [17]:

1—(1-m)¥

Ai=

Di=1—(1-m)* (4)

An alternative class of problems which present a fitness barrier, rather than an entropic
one to evolutionary progress to the global optimum is characterised by so-called “Trap”
or deceptive functions. We will consider functions with a single deceptive partition whose
fitness varies as a function of the unitation u; (i.e. K =1 in the notation above) as given

by Deb [2]:
7(0) = { A )

= (ui —c) otherwise

Figure 1 illustrates this function, using the parameters from section 3.2 with length 16.
Note that by considering a single partition with varying size, we can look at different
orders of deception, without the need to take into account the position of different bits in
the fitness calculation.
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Figure 1 Deceptive function with parameters {a,b,[, c} = {80, 100, 16,12}

2.3 The Dynamical Systems Model

The advantage of functions of unitation is that the fitness equivalence classes provide a
“natural” coarse-graining for modelling. Whilst such coarse-grained approaches are not



without their restrictions, they do enable the construction of predictive models which are
more tractable than exact models which consider all the different possible strings. In order
to deal with the different mutation rates we will extend this model so that each of the
fitness equivalence classes is subdivided into ¢ further classes according to the mutation
rate attached to the individual solutions, giving a total of N = ¢ * (L + 1) states. For
an individual state i the fitness is f'(i) = f(i/q) and the mutation rate is indexed by
m = i%q, where the % symbol has its usual modulus meaning, and the division i/q is
taken to be rounded down to an integer value.

We can therefore define a population vector p = (p1,...,pn~) such that the components p;
represent the proportions of the population in class ¢, subject to the restriction ¥;p; = 1.

Following Vose’s model [19], we can model the effect of the GA on this population vector
as:

P =Gp=MFp (6)

where the functions M and F represent the mixing (mutation and crossover) and selection
operators respectively. The outcome (p’) represents the probability distribution from which
the next population will be sampled, which is equivalent to the next generation in the

Infinite Population Model (the reader is referred to [19] for a more detailed discussion).

In order to concentrate on the effects of different perturbation operators, we restrict
ourselves to the case where there is no crossover, and note that the i** component of
the probability distribution vector for the next generation, is simply the sum over all
classes j, of the probability of selecting a member of class j, multiplied by the probability
of mutating that individual from class j to class i, i.e.

Gpi = _Z P (if) = Ps(j) (7

where P (i) = Sp; denotes the probability of selecting an individual of class 4, and P, (ij)
denotes the probability of creating a member of class ¢ by mutation from one of class j.

For fitness proportional selection, the selection operator F' can be modelled by using a
diagonal matrix S with elements

R FCEY
&—{0 i ®)

and the operation of the selection operator is given by

where  (£)(®) =" £ () ©)

We can simplify the specification of the mutation operator by noting that there is a two-
phase process : first the correct mutation rate must be obtained, and then after that the
number of aligned blocks must correctly changed. If a of the j/q aligned blocks become



unaligned and b of the L — j/q unaligned blocks get aligned, the mutation from class j to
class ¢ happens with probability :

Jj/a L—j/q
PT{TL(/L]) = Z Z 5j/q—a+b,i/q*P;D(mam,) (10)
a=0 b=0
( L—bj/q ) ( ila ) AP(1 — A;)Pilabpe(1 — p,yila=e
a

where §,,, is the Kronecker delta function, and the appropriate choice of perturbation
probabilities are used.

Nimwegen et al. have shown that for fitness proportionate selection with mutation, the
combined operator G = M F' can be turned into a linear form, and derived equations for
the calculation of the mean fitness as a function of time without the need for iterated
matrix multiplication [17]. Smith [12] showed that this could be extended to cover his
discrete exogenous model.

Given a linear form for M and F we can revisit (6) and consider the case for fixed points
(if they exist) of the algorithm. If v is a fixed point of the system (i.e. GV = v) then we
have M Sv = (f)(v)v, i.e. v is an eigenvector of MS with eigenvalue equal to its average
fitness. For non-zero fitness and mutation G is positive, so the Perron-Frobenius theory
tells us that there will only be one eigenvector of the exogenous system corresponding to
a “real population” (i.e. which lies within the simplex), and that this corresponds to the
population whose mean fitness is equal to the biggest eigenvalue. The predictive value of
this analysis for finite population GAs has been illustrated in [17, 18, 9, 12]. For the case
of the endogenous strategy, if the set of permissable mutation rates includes the value
zero, then the L + 1 vertices of the simplex corresponding to the equivalence classes with
zero mutation will also be fixed points of the system.

3 Behaviour of Mean Fitness

In order to examine the two different paradigms we implemented models for systems
with ¢ = 64, equivalent to a six bit strategy encoding. This was interpreted as a binary
coded integer ¢ and the mutation probability was scaled over the range [0.0,0.1] as
m = i/640. Having defined the genetic operator G we solved for the eigenvectors and
their corresponding eigenvalues in order to predict the fixed points of the systems.

Recalling that these are infinite population models, the predictive accuracy was verified
experimentally ,by recording the mean population fitness as a function of time for 500
generations of a GA with a popsize 1000, and calculating the mean and standard deviation
of these values over 50 runs.

3.1 Entropic Barriers: Royal Road functions

We considered first Royal Road problems of 32 bits with different K (i.e. the number of
blocks =32/K). The fitness of a solution with 7 aligned blocks was 1.0 + K (the constant
allows us to avoid problems with degenerate matrices). For each paradigm we calculated



Mutation Rate K1 K2 K4 K8
Static
0.0005 Predicted 32.484 32.478 32.476 32.476
Observed | 32.446 (0.075) | 31.257 (0.461) | 31.210 (2.083) | 23.319 (4.348)
0.001 Predicted 31.992 31.971 31.962 31.960
Observed | 31.968 (0.078) | 31.948 (0.070) | 31.942 (0.072) | 27.157 (4.363)
0.05 Predicted 20.214 15.027 10.554 7.960
Observed | 20.220 (0.120) | 15.331 (0.186) | 11.308 (0.318) | 8.588 (0.336)
0.1 Predicted 18.640 12.181 6.821 4.138
Observed | 18.630 (0.097) | 12.397 (0.140) | 7.328 (0.189) 4.378 (0.136)
Endogenous
Predicted 33.000 33.000 33.000 33.000
Observed 31.677 (1.505) | 32.000 (1.455) | 30.920 (3.223) | 24.200 (6.039)
Exogenous
Z 0.05 Predicted 31.377 31.377 31.377 31.377
Observed | 30.730 (0.772) | 30.870 (0.845) | 30.334 (1.993) | 26.827 (4.294)
Z0.1 Predicted 29.758 29.758 29.758 29.758
Observed | 28.813 (0.642) | 29.383 (0.837) | 29.117 (1.384) | 24.826 (3.667)

Table 1 Predicted and experimentally observed (with std. dev. for mean in braces)
steady-state fitness values for Royal Road functions with varying block sizes.

the steady state population mean fitness, and we also performed these calculations for
static mutation rates in the set {0.0005, 0.001, 0.05,0.1}.

Table 1 shows the predicted and observed steady state fitnesses for the different paradigms
and the static mutation rates. As can be seen there is close agreement between prediction
and observations, except for the case of K = 8, where the observations are still within
experimental error (2 standard deviations) of the predicted values, but have lower mean
values. Closer inspection reveals that this is because not all runs have converged onto the
same point in this case.

For the static mutation rate the mean performance tails off with increasing K and for
increasing mutation rates. The application of higher mutation rates causes a corresponding
increase in genotypic diversity (and hence entropy) and the preservation of fewer aligned
blocks, since these correspond to a decrease in genotypic entropy. The extent to which lower
fitness solutions are allowed to propagate depends of course on the selection pressure, which
is relatively low in this case compared to e.g. ES’s. However we note that the absolute and
relative decrease in fitness is greater for the high K cases, where the selective difference is
greater between fitness classes, pointing to the entropic effects as dominating.

Considering the Endogenous scheme, the predicted mean fitness lies on the global opti-
mum, i.e. the population is predicted to fully converge to the single genotype corresponding



to a zero-mutation population at that point?. In practice the mean fitness remains below
the predicted rate within our experimental timescale. For K < 8 this appears to result
from the fact that it takes a relatively long time for chance endogenous perturbations to
drive mutation out of the system, especially when those perturbations are only happening
with low probability. For K=8, some runs prematurely converged onto suboptimal solu-
tions. As noted above, in addition to the feasible solution at the global optimum, there
are attractors corresponding to lower “epochs”, i.e. lower numbers of aligned blocks. The
fact that some runs converged to these attractors explains the high standard deviations
observed.

Considering the exogenous scheme, we note that the use of a uniform random distribution
prevents convergence to zero mutation at the global optimum. However we also note the
observed results for this scheme with low z are similar to those for the endogenous scheme.
In Figure 2 we plot the predicted and observed values for different K values as a function
the perturbation rate z. These are in very close agreement. The principal feature to note is
that as the perturbation rate is increased so the mean fitness in the steady state decreases.
This can be explained by the observation that as the perturbation rate increases, so too
will the proportion of high mutation rates. Beyond a given value of Z (which increases
with K) the rate of decrease of mean fitness falls of rapidly (and indeed the mean fitness
is roughly constant for K € {1,2}) as the constructive and destructive effects of the high
mutation rates cancel each other out.

Analysis of the eigensystems does not show the existence of low-fitness attractors that
was seen for the endogenous case, and this explains the closer fit between prediction and
observations as evidenced by Figure 2.

Overall for this class of problems the endogenous scheme appear to show behaviour which
would correspond to better on-line performance

3.2 Fitness Barriers : Deceptive Partitions

In order to investigate the effect of fitness (rather than entropic) barriers between most
regions of above-average fitness, and the global optimum, we consider a single function
of the form (5) with varying orders of deception. This was achieved by varying I with
¢ =0.75 %[ and fixing a = 100,b = 80, .

Table 2 shows the predicted and observed behaviours for the orders of deception in the
set | = {4,8,12,16,20}. From this we can make the following observations:

1. The model predicts (and this is verified experimentally) that above a certain static
mutation rate selection is unable to maintain the population on the peak correspond-
ing to the global optimum and there is a dramatic decrease in mean fitness. The
decrease in fitness is more marked for higher orders of deception.

2. By contrast, the model predicts that both of the Self-Adaptive algorithms should
be able to preserve a population of high mean fitness. This comes about as a result
of locating the optimum and then selection “weeding out” the high mutation rates
which cause more exploration and a loss of fitness.

2Note that unlike other fitness levels, the equivalence classes at the global optimum are only
represented by one genotype for these problems
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Figure 2 Mean Population Fitness at Steady-State for the Exogenous Scheme. Solid
lines are predictions. Dotted lines are mean (with error bars at 1 standard deviation) of
data from 50 runs with a GA of population size 1000 after 500 generations

3. The results for the exogenous scheme with increasing z clearly show how the
increasing z (and hence the probability of re-introducing the higher mutation rates)
leads to a corresponding decrease in mean fitness for the same order of deception.
Even if selection only propagates copies of the global optimum, perturbation to
higher mutation rates, with a correspondingly larger number of bits mutated, creates
individuals of low fitness in the next generation.

4. Even with these relatively large population sizes, the effects of stochastic fluctuations
on a finite population is sufficient to cause significant variation in performance for
the larger problem sizes (I = 16, 20), as indicated by the differences between observed
and predicted means, and the large standard deviations.

The predictive power of the modelling technique used comes into its own when trying to
explain these experimental results.

In the exogenous strategy case, we predict the steady-state mean fitness by solving for
the eigenvectors of the genetic operator G, and taking the eigenvalue corresponding to
the single non-negative eigenvector. However, we can also analyse the other (infeasible)
eigenvectors in order to see which of these lie close to the simplex and are likely to act
as attractors for the system. When we perform this analysis we see that the values given



in Table 2 do correspond to the eigenvalues of the feasible eigenvector, i.e. the predicted
mean fitness decreases with [ and z. Using z = 0.05 as an example, shows another factor,
for values of I > 8 an eigenvector with corresponding fitness 76.08 appears at distance of
7.83%1070 for I = 8 decreasing to 6.58 %107 for [ = 20. These have corresponding mean
mutation rates of &~ 0.015, in other words individuals with very low mutation probabilities
are predicted to dominate the populations. Similar low fitness attractors occur for other
values of z, and this explains the lower fitness observed empirically for the exogenous
scheme. Interestingly, analysis of the eigensystem for [ = {4,8} does not indicate the
presence of near-feasible attractors close to the deceptive optimum, and the empirical
results show a very low standard deviation, suggesting that all runs end up in the same
place.

By contrast, for the endogenous scheme we know that the equivalence classes correspond-
ing to a zero mutation rates are fixed points of the system, and that one of these exists for
every different fitness level. Muhlenbein and Mahnig have shown (theorem 2.3 of [?]) that
for m = 0, (with Gene Pool recombination which ensures linkage equilibrium) only those
vertices of the simplex where the corresponding binary string is fitter than it’s Hamming
neighbours are stable, i.e. those at the deceptive peak and the global optimum. For these
mutation only algorithms, the assumption of Maximum Entropy takes the place of Link-
age Equilbrium, and intuitively one can see that any displacement from the zero mutation
vertices will create a non-zero probability of creating a population member with a different
unitation. This suggests that all but the global optimum are unstable attractors, although
the probability of mutation from the deceptive to the global optimum is small, making
this much more stable than the L — 1 other vertices. Closer analysis confirms that the GA
runs do indeed converge to one of these two places.

3.3 Summary of behavour of mean fitness

Overall, when we compare the results for the two types (entropic and fitness-based) of
barriers we see that they are broadly similar. Looking at the empirical results for the
higher orders or deception/block sizes, we see that the endogenous scheme performs better
than the exogenous on the deceptive functions , and worse on the Royal Road functions.

Analysis of the eigenvectors of the Genetic operator G in each case indicates the reason for
this behaviour. For the entropic barriers with K > 4 there are low-fitness attractors close
to the simplex for endogenous mutation and not for exogenous mutation. Empirically,
with endogenous mutation we observe that the population gets “trapped” at points on
sub-optimal fitness plateaus with zero mutation.

For the fitness barriers, the situation is reversed : there are fixed points on the simplex
centred on both peaks for the endogenous case, regardless of the order of deception. For
the exogenous case, as the order of deception increases so attractors appear close to the
simplex but at a lower fitness than even the deceptive peak. Empirically we observe that
the endogenous scheme tends to rapidly converge to one or other of the peaks, whereas the
exogenous scheme tends to converge to the population centred around the sub-optima.



Mutation 14 18 112 116 120
Static
0.0005 Pred. 99.80 99.60 99.40 99.20 99.07
Observed | 99.81 (0.13) 99.60 (0.12) | 96.21 (7.26) | 85.71 (9.25) | 83.17 (7.98)
0.001 Pred. 99.60 99.20 98.81 98.42 98.03
Observed | 99.60 (0.22) 99.24 (0.19) | 96.84 (5.90) | 86.98 (9.69) | 81.59 (7.14)
0.05 Pred. 81.45 67.78 57.50 49.80 47.14
Observed | 81.47 (1.17) 67.87 (1.18) | 56.69 (1.93) | 49.53 (0.51) | 47.10 (0.72)
0.1 Pred. 65.64 48.51 43.93 41.064 39.08
Observed | 65.66 (1.47) 48.53 (0.67) | 43.91 (0.57) | 41.12 (0.54) | 39.08 (0.51)
Endogenous
Predicted 100.00 100.00 100.00 100.000000 100.00
Observed | 100.00 (0.00) | 100.00 (0.00) | 97.60 (6.50) | 87.61 (9.70) | 83.50 (7.76)
Exogenous
Z 0.01 Pred. 99.02 99.02 99.02 99.02 99.02
Observed | 98.99 (0.33) 99.00 (0.22) | 95.51 (7.64) | 83.95 (8.47) | 80.69 (5.46)
Z 0.05 Pred. 95.12 95.11 95.10 95.10 95.10
Observed | 95.22 (0.73) 95.15 (0.47) | 92.03 (6.99) | 83.33 (9.29) | 77.64 (5.14)
Z 0.1 Pred. 91.07 90.35 90.25 90.22 90.20
Observed | 91.01 (0.87) 90.24 (0.80) | 87.46 (6.64) | 78.65 (8.80) | 74.44 (5.88)

Table 2 Predicted and experimentally observed (with std. dev. for mean in braces)
steady-state fitness values for deceptive partions of different orders.

4 Approximation of Hitting Times

In the previous section, analysis of the principal eigenvector of the linearised function G
was used to predict the convergence behaviour of GAs with finite populations. It was noted
that the endogenous strategy had a number of of feasible fixed points corresponding to
the vertices of the simplex with zero mutation for each fitness equivalence class. For the
positive matrices arising with the exogenous strategy only one eigenvector lay within the
simplex, and represented a “feasible” population, but that under certain circumstances
other eigenvectors could lie very close to the simplex and act as attractors for the system.
The empirical results showed that with finite populations it was possible for “real” GAs
to get “stuck” close to (or on) these attractors.

This effect has been noted by other authors [17, 9] using a single fixed mutation rate. In
particular Nimwegen [18] shows that with finite populations, in many cases an “epochal”
type of behaviour is observed, and that the mean fitness values of the population during
these epochs is closely related to the eigenvalues of the infeasible attractors. In [17] it is
shown that the population vectors during epoch ¢ (0 < i < N with epoch N containing
the highest fitness class) are centred around the principal eigenvector v* of the restricted
operator G°. In [16] a mutation and population size dependent prediction of times to



optimum is derived, based on the assumption that the population stabilizes on every
epoch of a “Royal Staircase” function. It was found that this correctly predicted the form
of the behaviour, although the precise values were consistently underestimated.

There are a variety of reasons the predictions derived in [16] are not transferrable to the
model of self-adaptation used here, arising from the fact that we have extended the number
of equivalence classes to include a g-fold degeneracy at each fitness level. Instead we will
derive initial estimates of the hitting time for the Royal Road function with K > 2 under
the following assumptions:

1. For small finite populations, search proceeds in an epochal fashion, such that the
time spent in each epoch searching the neutral basin for the portal to the next fitness
class occupied is far greater than that spent in transition between epochs.

2. During each epoch i we can assume that the finite population at each generation is
drawn from a distribution given by the principal eigenvector of the corresponding
restricted Genetic Operator G*

3. The Maximum Entropy condition holds, that is to say that when we consider all of
the representatives of an equivalence class, for each of the unaligned blocks there is
a uniform distribution of all the possible genotypes corresponding to that class.

4. Transitions between epochs occur when the action of mutation on a member of the
currently fittest class ¢ changes one unaligned block into an aligned one.

Under these assumptions we can estimate the hitting time as the sum of the expected
times to locate the next fitness class for each epoch.

In the following we will use the notation eé— to denote the jth component of the principal
eigenvector in the it" epoch. The expected time to locate the next class is the inverse of
the probability P(: — i + 1) of achieving this, which under our assumptions is given by:

Plisi+tl)= Y e > My (11)

jle=i  k/q=i+1
where M is the mutation matrix defined in (10)

The assumptions used will have different effects on the quality of our estimates.

e The first assumption effectively assumes that as soon as a member of the next
fittest class is discovered, the whole population jumps to a state close to the next
attractor. This ignores both the time taken for the population to move to the next
epoch, and also the possibility that the new best individual will be lost by stochastic
selection errors before it has a chance to propagate. The net effect is to cause an
underestimation of the hitting time. In [16] it was found that with static mutation
rates, the estimates of solution time were consistently below the observations for
these reasons.

e The effect of assumption two is harder to quantify. We know that the populations
corresponding to the v’ will have high proportions of individuals with low mutation
rates attached. Thus one might expect that they will be ‘less explorative than a more
uniform distribution of mutation rates and take longer to discover the next fitness
class, leading to an overestimation of the hitting time.



e The principal effect of the third assumption (maximum entropy) is in the definition
of A;, where we effectively say that given we could be in any unaligned state and
so each mutation has equal probability of aligmning a block. Although there may be
particular GA run where all unaligned blocks only require a single mutation to align
them, this would get lost in the averaging process.

e The last of the assumptions above rules out the possibility that a member of class
i — 1 gets mutatated to class ¢+ 1 in epoch 4, which is possible since the steady-state
population in epoch ¢ may contains members of lower fitness class. We could allow
for this situation by changing the limits in the first summation of (11) from a strict
equality to j/q < i. However, we could pertmit a further relaxation by permitting
transitions from an epoch to any higher epoch.

In this case, we can derive estimates for the hitting time by considering the epochs
to be the states in a Markov chain in which the final epoch is an absorbing state and
all others are transient. We calculate the entries in the associated transition matrix
by changing the condition in the first summation as indicated above, and that in
the second summation to generalise over states j € {i + 1,7+ 2,...,l}. The entries
for the lower triangle are zero by assumption, and the leading diagonal entries are
calculated so that the matrix is stochastic, i.e. P;; = 1.0 — Zj>i P;;. Using standard
techniques, we can then obtain the mean absorbtion time from each of the transient
states. Finally we calculate the fitness probability distribution for a randomly created
individual and use this to weight the times to give a prediction of the mean hitting
time for a randomly created population .

We calculated estimated hitting times for the exogenous algorithm on a Royal Road
functions with K € {4, 8}, and compared these to empirical observations for the algorithms
and settings used above.

4.1 Exogenous behaviour

Figure 3 shows predicted hitting times according to both methods, and empirical results
for a population size of 1000, for the exogenous scheme for the two higher values of K.
Comparing the results from the two different sets of assumptions in Figure 3, we see
that in both cases the second method gives lower predicted times, but for K = 8 the
difference is less marked than for K = 4 , i.e. making allowances for the possibility of
“leapfrogging” over an epoch to the next but one, has less effect for high K. This arises
from the exponential factor K in the alignment probability (4).

Broadly speaking the predictions show that as the innovation rate is increases so the
time to solution decreases (up to a certain point). This prediction is borne out by the
experimental results, although with some differences.

We note that for z < 0.6 [K4] or 0.7 [K8] the models consistently underestimate the
hitting times suggestring that the errors introduced by assumption dominate.

For 0.4 < z < 0.8 the models are far more accurate, and correctly predict that for z > 0.52
the times for K 8 become less than those for K = 4. Given the errors in the predictions, this

3in practice the absorbtion times were observed to be similar from each state.



changeover point is predicted with surprising accuracy ( error < 0.01). We ran experiments
with a populations of 250 and noted the same effect.

For higher values of z we see that the model consistently overestimates the hitting time,
quite dramatically so for K = 4, less so for K = 8. The hitting times observed continue
to reduce with increasing z, whereas the models predict a sharp upturn for higher z,
especially with K = 4.

These errors arise from either the whole model being invalid (which we can discount from
the accuracy of the earlier predictions), or one of the assumptions in our calculation of
the hitting times being invalidated. From the discussion above we turn to the second
assumption as the source of errors for the high z regime. This appears to draw into
question the epochal nature of search assumed for Self-Adaptive algorithms with extreme
perturbation probabilities, suggesting rather that the next fitness level is discovered
before the nonulation has convereed to the eigenvector vt. Clearlv further investieation is
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Figure 3 Mean time to solution as function of perturbation rate for Royal Road
functions with K = 4 and 8. Figures in braces show number of successful runs where
this is less than 50.



4.2 Endogenous behaviour

It was found empirically for K > 1 that the exogenous scheme found the global optimum
far more reliably than endogenous scheme, and that both systems were preferable to the
static versions. For K = 8 the endogenous scheme only found the optimum in 14 of the
50 runs, but when it did so, it took slightly less time that the exogenous scheme with the
“best” perturbation rate.

We cannot directly apply the analysis above to the endogenous strategy, since we know
that the fixed points of the system corresponding to fitness classes below the optimum
contain only individuals of the same fitness with zero probabilities of mutation and hence
of escape to a higher fitness class. Overall it is clear that the endogenous scheme will get
“trapped” in an epoch if random mutations do not discover a superior fitness class before
the population converges to the fixed point.

We proceed as follows: first we construct an estimate for the time taken between discovering
a new fitness class, and converging to the corresponding fixed point. Considering a
population of iso-fitness with transitions between mutation classes, we used a Markov
chain approach to derive estimates for the time to convergence onto the zero-mutation
class for a single individual. We constructed a transition matrix according to (1) and used
it to calculate the expected absorbtion time to zero mutation from each different mutation
state. These varied between 465.8 and 616.7 iterations.

Next we construct a lower bound for the time to find epoch ¢ + 1 from epoch i. The
first discovered member of fitness class ¢ can belong to any non-zero mutation class and
under the conditions here, will have a high selective advantage. Thus we consider that
the population has not converged to zero mutation, but rather that each mutation class is
equally represented. Examining the predicted numbers of generations between epochs for
the exogenous algorithm with equally represented mutation classes (z = 1), we see values
of {21, 51,152,579, 2992, 24141, 423033} for K = 4 and {696, 5410, 106985} for K = 8.

From this we can see that, even while a range of mutation rates are present, the expected
transition times to higher epochs are an order of magnitude longer than the expected
times for absorbtion to the zero mutation class. These observations help to explain why
the endogenous strategy is observed to prematurely converge onto sub-optimal solutions
with a loss of the ability to explore further. They also explain why the algorithm is fast
when it is successful, since escaping from the traps at each epoch requires that the discovery
of the next fitness level before the ability to mutate is lost.

5 Conclusions

We have identified two contrasting paradigms for the perturbation of mutation rates in
Genetic Algorithms with Self-Adaptive Mutation. We have derived dynamical systems
models of these paradigms and shown how these can be used to predict and explain the
behaviour of “real” GAs with finite populations on two different classes of functions.

Calculating the eigenvectors and associated eigenvalues of the models yields predictions
of the steady-state mean fitness of the algorithms. It also gives insight into where, and



why GAs with finite populations get “trapped” in sub-optimal solutions, a a result of the
presence of “attractors” of the system lying on or very close to the simplex.

We showed that for the endogenous strategy perturbation scheme, with entropic barriers
to the discovery of the global optimum, the presence of fixed points corresponding to
populations where every member has the same fitness and zero probability of mutation
led to the system frequently getting trapped as it lost the ability to explore the iso-fitness
plateau before it discovered higher fitness levels. Whilst the exogenous perturbation scheme
did not suffer from the effects of attractors on or near the simplex for entropic barriers, it
did on deceptive problems where there are fitness barriers to the discovery of the global
optimum.

For the exogenous scheme we have derived estimates for the time to solution, which show
that as the order of the problem increases, so higher perturbation rates reduce this time,
even though the mean fitness decreases. Experimental results confirmed some of these
findings, but lead us to question that search occurs in an epochal fashion for exogenous
strategies, and this clearly requires further investigations.

Although we have considered the two best known approaches, it would be interesting to
comparer variants, for example an endogenous scheme which used the encoded probability
to decide whether to choose a new value from a uniform distribution, or the use of a
Gaussian probabiity distribution with an exogenous scheme. This will be examined in
future work.

In conclusion, it would appear that (subject to the usual provisos about the choice
of performance metric) the exogenous scheme offers a more robust problem solving
mechanism that the endogenous scheme, despite the undoubted attractions of the latter’s
algorithmic elegance.
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