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Abstract- This paper presents and examines the be-
haviour of a system whereby the rules governing lo-
cal search within a Memetic Algorithm are co-evolved
alongside the problem representation. We describe the
rationale for such a system, and then describe the imple-
mentation of a simple version in which the evolving rules
are encoded as (condition:action) patterns applied to the
problem representation. We investigate the behaviour
of the algorithm on a suite of test problems, and show
considerable performance improvements over a simple
Genetic Algorithm, a Memetic Algorithm using a fixed
neighbourhood function, and a similar Memetic Algo-
rithm which uses random rules, i.e. with the learning
mechanism disabled. Analysis of these results enables
us to draw some conclusions about the way that even the
simplified system is able to discover and exploit certain
forms of structure and regularities if these exist within
the problem space. We show that this “meta-learning”
of problem features provides a means of creating highly
scalable algorithms for some types of problems. We fur-
ther demonstrate that in the absence of this kind of ex-
ploitable patterns, the use of continually evolving neigh-
bourhood functions for the local search operators adds
robustness to the Memetic Algorithm in a manner simi-
lar to Variable Neighbourhood Search. Finally we draw
some initial conclusions about the way in which this
meta-learning takes place, via examination of the use of
different pivot rules and pairing strategies between the
population of solution and the population of rules.

1 Introduction

The performance benefits which can be achieved by hybri-
dising Evolutionary Algorithms (EAs) with Local Search
operators (LSOs), so-called Memetic Algorithms (MAs),
have now been well documented across a wide range of
problem domains (see [1] for a comprehensive bibliogra-
phy). Commonly in these algorithms, a Local Search im-
provement step is performed on each of the products of the
generating (recombination and mutation) operators, prior to
selection for the next population. There are of course many
variants on this theme, for example one or more of the gen-
erating operators may be absent,or the order in which the
operators are applied may vary.

There are three principal components which affect the
workings of a Local Search. The first is the choice of pivot
rule, which can be Steepest Ascent or Greedy Ascent. In
the former the entire neighbourhood n(i) of the current so-
lution i is searched and the best neighbour used, whereas

the latter stops exploring the neighbourhood as soon as an
improvement is found. The second component is the depth
of the local search. This can vary from a minimum of only
one improving step being applied, through a fixed number
of iterations, to the extremum where the local search is iter-
atively applied until a local optimum is reached. Consider-
able attention has been paid to studying the effect of chang-
ing this parameter within MAs e.g. [2], and along with the
choice of pivot rule it can be shown to have an effect on the
performance of the Local Search algorithm, both in terms
of time taken, and in the quality of solution found.

The third, and primary factor that affects the behaviour
of the LS is the choice of neighbourhood generating func-
tion. This can be thought of as defining a set of points n(i)
that can be reached by the application of some move oper-
ator to the point i. The provision of a scalar fitness value,
f , defined over the search space means that we can consider
the graphs defined by different move operators as “fitness
landscapes” [3]. A number of statistical measures can used
to characterise fitness landscapes, and have been proposed
as potential measures of problem difficulty by various au-
thors. Merz and Freisleben [4] discuss a number of these in
the particular context of MAs, and show that the choice of
move operator can have a dramatic effect on the efficiency
and effectiveness of the Local Search, and hence of the re-
sultant MA.

In some cases, domain specific information may be used
to guide the choice of neighbourhood structure within the
Local Search algorithms. However, it has recently been
shown that the optimal choice of operators can be not only
instance specific within a class of problems [4, pp254–
258], but also dependent on the state of the evolutionary
search [5]. This result is not surprising when we consider
that points which are locally optimal with respect to one
neighbourhood structure may not be with respect to another
(unless of course they are globally optimal). Thus if a set
of points has converged to the state where all are locally
optimal with respect to the current neighbourhood opera-
tor, then changing the neighbourhood operator may provide
a means of progression, in addition to recombination and
mutation. This observation forms the heart of the Variable
Neighbourhood Search algorithm [6].

In previous papers [7, 8] we reported initial results from
a COevolving Memetic Algorithm (COMA) system within
which the definitions of Local Search operators applied
within the MA may be changed during the course of opti-
misation. The systems described therein used a simple self-
adaptive mechanism to govern the evolution of rules, but
were still able to exhibit significant performance improve-



ments over a simple GA, a MA with a simple bit-flipping
hill-climber, and a version of the system which used random
rules i.e. with the learning turned off in the rule population.
Building on those initial results we now turn our attention
to examining two distinctly different co-evolutionary pro-
cesses which lead to either faster or more reliable optimisa-
tion. We also consider the effects of varying two of the ma-
jor factors affecting behaviour, namely the choice of pivot
rules, and the nature of the co-evolutionary coupling.

The rest of this paper proceeds as follows: In Section 2
we discuss some previous work in this area, describe our
proposed approach, and the simplified model that we will
use. In Section 3 we draw some parallels between this work
and related work in different fields, in order to place this
work within the context of more general studies into adap-
tation, development and learning. In Section 4 we present
the results and analysis of a set of experiments designed to
investigate whether, and if so how, the use of adaptive rules
is able to benefit the optimisation process, in the presence
of regularities within the problem space which can be ex-
ploited by a meta-learning process, paying particular atten-
tion to the issue of scalability. Following this, in Section 5
we present results and analysis from a set of test problems
that are deliberately chosen not to have regularities that can
be exploited by our simplified rule definition. In Section 6
we discuss the implications of these results, before drawing
conclusions and suggesting future work in Section 7.

2 A Rule-Based Model for the Adaptation of
Move Operators

The aim of this work is to provide a means whereby the
definition of the local search operator (LSO) used within a
MA can be varied over time, and then to examine whether
evolutionary processes can be used to control that variation,
so that a beneficial adaptation takes place. In order to ac-
complish this aim, we require the provision of five major
components, namely:

• A means of representing a LSO in a form that can be
processed by an evolutionary algorithm

• A set of initialisation and variation operators, so as
recombination and mutation that can be applied to the
LSO representation.

• A means of assigning fitness to the LSO population
members

• A choice of population structures and sizes, along
with selection and replacement methods for manag-
ing the LSO population

• A set of experiments, problems and measurements
designed to permit evaluation and analysis of the be-
haviour of the system.

The representation chosen for the LSO is a tuple
<Pivot rule, Depth, Pairing, Move, Fitness>. The first two
elements in the tuple have been described above, and can be
easily mapped onto an integer or cardinal representation as
desired, and manipulated by standard genetic operators.

The element Pairing efectively co-ordinates the evolu-
tion of the two populations. When an candidate solution is
to be evaluated, a member of the LSO population is chosen
to operate on it, hopefully yielding improvements. The fit-
ness of the candidate solution is thus affected by the choice
of LSO to operate on it, and the fitness assigned to the LSO
is in turn afected by the candidate solution to which it is
applied.

Values for Pairing are taken from the set {linked, fit-
ness based, random}. Although the long-term goal is to
examine a “mixed-economy” of paring strategies, for the
purposes of this paper we restrict ourselves to the situation
where the whole population uses the same value. The dif-
ferent values have the following effects:

• For a linked pairing strategy, the LSOs can be con-
sidered to be extra genetic material which is inher-
ited and varied along with the problem representation.
Thus if the kth candidate solution is created from par-
ents i and j, then a LSO is created by the actions of
recombination and mutation on members i and j of
the current LSO population. This new LSO is used to
evaluate the new candidate solution and becomes the
kth member of the next LSO population. Note that
this assumes the two population are the same size.
The fitness is assigned to the new LSO is immaterial
since selection to act as parents happens via associa-
tion with good members of the solution population.

• For a fitness-based pairing strategy, when a candidate
solution requires evaluation, a LSO is created and put
into the next LSO population as above. However the
two LSOs which acts as parents for recombination
are now chosen using a standard selection mechanism
acting on the current LSO population. A number of
methods can be used to define the fitness of an LSO.

• For a random pairing strategy, the same process oc-
curs, except that all LSOs are given the same fitness.

The representation chosen for the move operators was as
condition:action pairs, which specify a pattern to be looked
for in the problem representation, and a different pattern it
should be changed to. Although this representation at first
appears very simple, it has the potential to represent highly
complex moves via the use of symbols to denote not only
single/multiple wildcard characters (in a manner similar to
that used for regular expressions in Unix) but also the spec-
ifications of repetitions and iterations. Further, permitting
the use of different length patterns in the condition and ac-
tion parts of the rule gives scope for cut and splice operators
working on variable length solutions.

In themselves, the degrees of freedom afforded by the
five components listed above provide basis for a major body
of research. While the framework that we have described
above is intended to permit a full exploration of these is-
sues, we shall initially restrict ourselves to considering a
simple system, and examining its behaviour on a well un-
derstood set of test problems. For these initial investiga-
tions we therefore restrict ourselves to considering only a



single application of rules (i.e. depth = 1) where the con-
dition and action patterns are of equal length. The rules
are composed of values taken from the set of permissible
allele values of the problem representation, augmented by a
“don’t care” symbol # which is allowed to appear in the con-
dition (but not the action, although this could be interpreted
as “leave alone”) part of the rule. The neighbourhood of a
point i then consists of all those points where the substring
denoted by condition appears in the representation of i and
is replaced by the action. Note that the neighbourhood of i
therefore potentially includes i itself, for example by means
of as rule with identical condition and action parts.

To give an example, if we have a solution represented by
the binary string 1100111000 and a rule 1#0:111, then this
matches the first, second, sixth and seventh positions, and
the neighbourhood is the set {1110111000, 11111111000,
1100111100,1100111110}. Note that in this work we do
not considered the string as toroidal (although this will be
considered in later work), and that a random permutation is
used to specify the order in which the neighbours are eval-
uated, so as not to introduce positional bias into the local
search when greedy ascent is used.

In practice, each rule was implemented as two 16 bit
strings (the restriction to 16 bits here is purely for ease of
visualisation). This representation for the rules means that
“standard” genetic operators (uniform/1 point crossover,
point mutation) can be used to vary this part of the LSO
chromosome. It is augmented by a value rule length which
detailed the number of positions in the pattern string to
consider. In [7] we examined the effects of different fixed
rule sizes, and a version which had the ability to adapt via
the action of mutation operators on this value. The results
obtained demonstrated that the version with adaptive rule
lenths was able to quickly adapt to using the appropriate
optimal size rule for the different problems.

3 Related Work

The COMA system can be related to a number of different
branches of research, all of which offer different perspec-
tives and means of analysing its behaviour. These range
from Multimemetic Algorithms and the Self-Adaptation of
search strategies, through co-evolutionary, learning and de-
velopmental systems, to the evolutionary search for gener-
alised rules as per Learning Classifier Systems. Space pre-
cludes a full discussion of each of these, so we will briefly
outline some of these perspectives.

Krasnogor and Smith [5] describe what they call a “Mul-
tiMemetic Algorithm”, in which a gene is added to the end
of each chromosome indicating which of a fixed set of static
LSOs (“memes”) should be applied to the individual solu-
tion. Variation is provided during the mutation process, by
randomly resetting this value with a low probability. They
report that their systems are able to adapt to use the best
meme available for different instances of TSP. Krasnogor
and Gustafson have extended this and proposed a grammar
for “Self-Generating MAs” which specifies, for instance,
where in the evolutionary cycle local search takes place [9].
Noting that each meme potentially defines a different neigh-

bourhood function for the local search part of the MA, we
can also see an obvious analogy to the Variable Neighbour-
hood Search algorithm [6], where a heuristic is used to con-
trol the order of application of a set of local searchers (using
different, fixed, neighbourhood structures) to a single im-
proving solution. The difference here lies in the population
based nature of COMA, so that not only do we have mul-
tiple candidate solutions, but also multiple adaptive neigh-
bourhood functions in the memes.

If the populations are of the same size, and are con-
sidered to be linked, then this instantiation of the COMA
framework can be considered as a type of Self Adaptation.
The use of the intrinsic evolutionary processes to adapt step
sizes governing the mutation of real-valued variables has
long been used in Evolution Strategies [10], and Evolution-
ary Programming [11]. Similar approaches have been used
to self-adapt mutation probabilities [12,13] and recombina-
tion operators [14] in genetic algorithms as well as complex
generating operators which combined both mutation and re-
combination [15]. This body of work contains many use-
ful results concerning the conditions necessary for strategy
adaptation, which could be used to guide implementations
of COMA.

If the two populations are not linked, then we have a co-
operative coevolutionary system, where the fitness of the
members of the LSO population is assigned as some func-
tion of the relative improvement they cause in the “solu-
tion” population. Paredis has examined the co-evolution
of solutions and their representations [16], and Potter and
DeJong have also used co-operative co-evolution of partial
solutions in situations where an obvious problem decom-
position was available [17], both with good reported re-
sults. Bull [18] conducted a series of more general stud-
ies on co-operative co-evolution using Kauffmann’s static
NKC model [19]. In [20] he examined the evolution of link-
age flags in co-evolving “symbiotic” systems and showed
that the strategies which emerge depend heavily on the ex-
tent to which the two populations affect each others fitness
landscape, with linkage preferred in highly interdependent
situations. He also examined the effect of different pairing
strategies, [21] with mixed results, although the NKC sys-
tems he investigated used fixed interaction patterns, whereas
in the systems used here are more dynamic in nature. There
has also been a large body of research into competitive-co-
evolution, (an overview can be seen in [22]) whereby the
fitnesses assigned to the two populations are directly related
to how well individuals perform “against” the other popula-
tion, what has been termed “predator-prey” interactions.

In both the co-operative and competitive co-evolutionary
models, the different populations only affect each other’s
perceived fitness, unlike the COMA framework where the
LSO population can directly affect the genotypes within the
solution population. A major source of debate and research
within the community has focused around the perception
that this phase of improvement by LSO can be viewed as a
kind of lifetime learning. This has lead naturally to spec-
ulation and research into whether the modified phenotype
which is the outcome of the improvement process should



be written back into the genotype (Lamarkian Learning)
or not (Baldwinian Learning). Note that although the de-
scription of local search, and the discussion above assumes
Lamarkian learning, this is not a prerequisite of the frame-
work. However, even if a Baldwinian approach was used,
the principal difference between the COMA approach and
the co-evolutionary systems above lies in the fact that there
is a selection phase within the LSO, that is to say that if all
of the neighbours of a point defined by the LSO rule are of
inferior fitness, then the point is retained unchanged within
the population.

If we were to discard this criterion and simply apply the
rule (possibly iteratively) we could view the system as a
type of “developmental learning” akin to the studies in Ge-
netic Code e.g. [23] and the “Developmental Genetic Pro-
gramming” of Keller and Banzhaf [24, 25]

Finally, and perhaps most importantly, we should con-
sider that if a rule has an improving effect on different parts
of a solution chromosome over as number of generations,
then the evolution of rules can be seen as learning gener-
alisations about patterns within the problem representation,
and hence the solution space. This point of view is akin to
that of Learning Classifier Systems. For the case of unlinked
fitness-based selection of LSOs, insight from this field can
be used to guide the credit assignment process.

4 Scalability via the exploitation of regularities
in the search space

4.1 Experimental set-up

In all of the following experiments we used a population
size of 500 for both solutions and rules. A generational
strategy was used with tournament selection into the mat-
ing pool of solutions. The mating pool of rules was selected
according to the pairing strategy. One point crossover was
applied to both mating pools with probability 0.7 and bit-
flipping mutation was applied to the resultant offspring with
probability 0.01 for the solutions and 0.0625 (the inverse of
the maximum rule length) to the rules. With probability
0.0625 a value of one was randomly added or subtracted to
the rule length, subject to staying within the range 1 to 16.
These GA parameters were taken as “standard” from the lit-
erature as we interested in creating robust problem solvers
rather than spending considerable time tuning our EA for
each problem instance.

For each problem instance 50 runs were made of each al-
gorithm, stopping when the global optimum was found, or
one million evaluations were made, whichever was sooner.
Note that this last criterion takes into account the search ef-
fort incurred in the local search process.

In addition to a GA, and a Simple Memetic Algorithm
(SMA) employing a bit-flipping hill-climber, we exam-
ined variants of COMA using all possible combinations of
greedy or steepest ascent with linked, random or fitness-
based pairing strategies. In the latter case rules were se-
lected to be used via binary tournaments, with the fitness of
each rule defined as the fitness improvement which it caused
in the candidate solution with which it was last evaluated.

The implications of this credit assignment strategy will be
discussed later.

4.2 Test Suite

As noted above, previous results have suggested that the
COMA algorithm is able identify and utilise regularities in
the problem space, either in the form of “building blocks”
in classic GA test functions [7] or secondary structural mo-
tifs in proteins [8]. In order to investigate this phenomenon
further we constructed multiple length variants of two test
functions whose properties are well known.

The first of these, which we will refer to as “4Trap”,
comprised multiple concatenated copies of Deb’s 4-bit fully
deceptive function given in [26]. The fitness of each sub-
problem i is given by its unitation u(i) (i.e. the number of
bits set to “one”):

f(i) =

{

0.6 − 0.2u(i) : u(i) < 4
1 : u(i) = 4

(1)

We examined functions with lengths in the range 40 to 200
increasing in steps of 20. As discussed in [7] the nature of
this function is such that the use of an inappropriate neigh-
bourhood function tends to lead to a local optimum: for
instance simple hill-climbers are notoriously poor at these
functions.

The second test function is Watson’s HIFF function,
which is a highly epistatic problem designed to examine
the virtues of recombination. At the bottom level, fitness
is awarded to matching pairs of adjacent bits in a solution s,
i.e.

f1s =

l/2−1
∑

i=0

1 − XOR(s2i, s2i+1) (2)

and this process is applied recursively, so that a problem
of size l = 2k has k levels. In each ascending level the
number of blocks is reduced by a factor of two, and the
fitness awarded for each matching pair is increased by a
constant factor, in our case 2. Thus for example the four-
bit sub-solution 1100 scores for two matching blocks at the
first level, but at the second level we have 10 so no credit is
earned and a null value is carried forward to the next level.
As can be seen there are a number of sub-optima, and two
global optima corresponding to the all-ones and all-zeroes
strings. We used problem sizes ranging from 8 to 512 bits,
corresponding to a range of 3 to 9 levels.

4.3 Results

Figure 1 shows the average number of evaluations to find the
global optimum for the different algorithms on the 4Trap
problem as a function of length. The annotations display
the number of successful runs where this is less than 50.
Note that the results for the SMA are not shown as these are
extremely poor. As can be seen in many cases the speed-up
is near-linear, although the rate of increase and the change
in success rate differs. We can distinguish the following
observations:
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Figure 1: Mean time to solution as a function of length for 4 Trap problem. Annotations display number of successful runs
where this is less than 50.

• In general the greedy version of the algorithm find the
optimum in less time that the steepest ascent versions.
This indicates that on average more than one element
in each neighbourhood is fitter than the starting posi-
tion.

• The versions of COMA with random pairing perform
worse than the GA.

• The two versions of COMA with linked rules (which
we will subsequently refer to as CLG and CLS), and
the combination of tournament pairing with steepest
ascent (CTS) all exhibit good scalable performance,
that of the CLG algorithm being particularly notice-
able.

• The fitness-based tournament pairing works well with
steepest ascent but much less so with greedy ascent.
Bearing in mind the first observation, this suggest that
the assignment of fitness to rules is extremely suscep-
tible to noise.

Figures 2 and 3 show the success rate and mean time
to solution respectively for the HIFF problem as a function
of length. We now see that all of the MAs show an im-
provement over the GA, and again the same three variants
of COMA show the best performance, with only the CLG
and CTS variants solving the 256 bit problem. Note that the
length of the blocks that must be identified and matched at
the highest levels far exceeds the maximum length of the
rules. In general the greedy ascent versions find the opti-
mum faster than the equivalent steepest ascent versions but
not as reliably. Given that the success rate of most of the
algorithms is less than 100% for lengths above 32, we per-
formed an analysis of variance (ANOVA) on the best fitness
at the end of each run, which confirmed that the perfor-
mance is statistically significantly different with 95% con-
fidence. Post-hoc analysis via the LSD measure confirms
that the CLG, CLS and CTS variants have a higher mean
best fitness than all other algorithms but do not significantly
differ .
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5 Escaping local optima by changing neigh-
bourhood definitions

The performance improvements exhibited above clearly
arise from a situation in which the adjacent epistatic interac-
tions within the problem give rise to patterns in the search
space which can be exploited by COMA. In order to ex-
amine the behaviour when this is not the case we used two
additional 64 bit variants of the 4Trap function.

In the first of these,(DistTrap) the subproblems were in-
terleaved i.e. sub-problem i was composed of the genes
i, i+16, i+32, i+48. This separation ensures that even the
longest rules allowed in these experiments would be unable
to alter more than one element in any of the sub-functions
in a single application. On this function the only algorithms
which ever located the global optimum were the CLG, CLS
and CST, all three of which always located the global opti-
mum. The mean times to solution were 90237, 206266 and
168898 evaluations respectively, and these differences are
significant with 99.9% confidence.

The poor results of the GA can be attributed to the fact
that the representation of the problem means that with prob-
ability 61/64 the crossover point will fall within a given
subproblem, disrupting transmission and mixing of any op-
timal sub-solutions found. Given that the deceptive prob-
lems are specifically designed to be mutation-difficult, this
also helps to explain the poor performance of the SMA.

A third variant of this problem (Shifted-Trap) was de-
signed to be more “difficult” than the first for the COMA
algorithm, by making patterns which were optimal in one
sub-problem, sub-optimal in all others. This was achieved
by noting that each sub-problem as defined above is a func-
tion of unitation, and therefore can be arbitrarily translated
by defining a 4-bit string and using the Hamming distance
from this string in place of the unitation. Since we have
16 sub-problems, we simply used the binary coding of the
sub-problem’s index as basis for its fitness calculation.

On this problem the SMA found the optimum 45 times
out of the 50 runs, and the random-pairing steepest ascent
version of COMA (CRS) 39 times. The GA and all other
variants of COMA always located the global optimum in
the time allowed. Note that the performance of the GA on
this problem is identical to that on a 64 bit version of 4Trap
as would be expected. Figure 4 shows the mean time to so-
lution for each algorithm. As can be seen, although it might
be expected that attempting to reuse a pattern on different
sub-problems would hinder the progress of the COMA al-
gorithms, in fact the mean solution time is not significantly
different to that of the GA for all but SMA and the CRS
variant, and there is a noticeable reduction in the variability
of time to solution.

6 Discussion and Analysis

6.1 Evolution of Rule-Base

In [7] we presented an analysis of the behaviour of the
evolving rule-sets on the three versions of the Trap func-
tion which showed that distinctly different behaviour could
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Figure 4: Mean number of evaluations to solution for
Shifted-Trap problem. Error bars show +/- 1 standard de-
viation

be observed according to whether the simple structure of the
rules used here was able to identify and represent the opti-
mal solution to a sub-problem. Lack of space precludes re-
producing those results in full, but we can summarise them
as follows.

For the 4Trap function, the system rapidly evolves
medium length (3 − 4), general (specificity < 50%) rules
whose action is to set all the bits to 1 (mean unitation ap-
proaches 100%). Note that in the absence of selective pres-
sure (i.e. the pivot rules meant that the solutions were left
unchanged), all three of these values would be expected to
remain at their initial values, so these changes result from
beneficial adaptation. Closer inspection of the evolving
rule-base confirms that the optimal subproblem string is be-
ing learned and applied.

For the Shifted-Trap function, where the optimal sub-
blocks are all different, the rule length decreases more
slowly from its initial mean value of 8. The specificity also
remains higher, and the unitation remains at 50%, indicat-
ing that different rules are being maintained. This is borne
out by closer examination of the rule sets.

The behaviour on Dist-Trap is similar to that on 4Trap,
albeit over a longer time-scale. Rather than learning spe-
cific rules about sub-problems, which cannot possibly be
happening (since no rule is able to affect more than one lo-
cus of any subproblem), the system is apparently learning
the general rule of setting all bits to 1. The rules are gener-
ally shorter than for 4Trap, which means that the number of
potential neighbours is higher for any given rule. Equally,
the use of wildcard characters, coupled with the fact that
there may be matches in the two parts of the rules, means
that length of the rules used defines a maximum radius in
Hamming space for the neighbourhood, rather than a fixed
distance from the original solution. Both of these observa-
tions, when taken in tandem with the longer times to solu-
tion, suggest that when the system is unable to find a single
rule that matches the problems’ structure, a more diverse
search using a more complex neighbourhood is used, which
slowly adapts itself to the state of the current population of
solutions.

The same analysis was performed for the experiments



presented here, which showed that for the successful vari-
ants of COMA examined, the same behaviour was exhib-
ited. In the case of 4Trap this creates a highly scalable al-
gorithm by identifying the string corresponding to the op-
timal solution for each sub-problem, and then applying to
each sub-problem in the string in successive generations.
A linear regression showed that a straight line of the form
Mean Solution T ime = −11931+484.71·length forms
an extremely good fit to the observed results with a correla-
tion co-efficient of 0.97 for the CLG algorithm.

In contrast to this, analysis suggests that for the HIFF
problem the improved scalability arises from allowing the
system to make a decision between the “ones” blocks and
zeroes blocks and then apply these throughout the string.
The choice between 1s and 0s appeared to occur with equal
probability, that is to say that both peaks were identified in
the 50 runs.

6.2 Pairing and Pivot Strategies

The results presented above show that the choice of pivot
and pairing strategies is crucially important.

Unsurprisingly, the greedy variants almost always run
faster than the steepest ascent equivalents when they do
solve the problems. Noting that the random pairing strategy
does not perform especially well, and taking into account
the the poor results for the CTG strategy (especially com-
pared to the good ones for CTS), suggests an explanation in
terms of a need for accurate selection in the LSO popula-
tion.

In the linked variants, this selective pressure towards the
evolution of good rules is created implicitly via a continued
association with fit solutions. In the case of random pair-
ing, there is no selective pressure in the LS population, so
the rule base will remain diverse until genetic drift causes
an eventual convergence. For the Shifted-Trap function this
is not a problem, since it is desirable to maintain different
condition parts of the rules for different sub-problems, and
CRG shows good performance. However for the other prob-
lems it prevents identification and use of rules with high
unitation, and a corresponding decrease in performance is
observed.

It would appear that for the CTG algorithm the extra
noise introduced by using a greedy rather than a steepest
ascent is sufficient to “fool” the simple credit assignment
mechanism used in these experiments. Thus a good rule
might only get a low fitness if the first place in which it
matches only leads to a small improvement, whereas larger
improvement might be seen if it was applied elsewhere in
the solution. However a “good rule” such as #### →
1111 for 4Trap could get a low fitness under steepest as-
cent with the scheme used here, depending on what indi-
vidual it is paired with. It is possible that a more sophisti-
cated method such as Paredis Life Time Fitness Evaluation
(LTFE) (in which a running average of the last twenty pair-
ings is used) may well provide a more stable and robust
credit assignment mechanism whilst retaining the speed-
benefits of greedy ascent.

7 Conclusions

We have examined the behaviour of a simple implemen-
tation of the COMA framework on two different classes
of problem and observed that performance improvement
can arise from different mechanisms. When the represen-
tation of the rules is able to capture regular repeated fea-
tures within the problem space, we see highly scalable be-
haviour - for example the linear speed-up on the 4trap func-
tion. This arises from the rapid evolution of the system to
a rule-set which captures and represents knowledge about
how to solve the problem. We have observed that in or-
der for this to occur it is necessary to maintain sufficient
accurate selection pressure within the population of Local
Searchers.

In contrast to this, when there is not sufficient selective
pressure for evolution, for example when a “good” pattern
only applies to one position in the solution, or when the
rule representation cannot possibly capture the regularities
present in the space, a “fall-back” position is observed. In
this case we again see improved reliability, but at the ex-
pense of speed of solution. Essentially what happens is that
even if the solution population converges to a local opti-
mum for its crossover and mutation operators, the continued
generation of new rules, which define new neighbourhood
structures, means that eventually a landscape is discovered
in which the solutions are not locally optimal and improve-
ments can occur. This is akin to Variable Neighbourhood
Search, but with the advantage that it is not necessary to
specify, or be bound by, a fixed set of neighbourhood func-
tions.

Clearly there remains much work to be done analysing
the possibilities of this framework, and it would be fatu-
ous to claim that we have discovered a fabulous all-purpose
problem solver. However the two modes of operation noted
above, coupled with the promise of an algorithm which
is able to explicitly represent the information that it has
learned and is using to solve the problem at hand, would
seem to offer much potential.
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