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� Topology morphing of sinusoidal
lattice structures using self-contacts
is presented.

� Critical geometries which govern
topology change are identified and
explored.

� Step-change in compressive and
shear stiffness is realized upon
topology change.

� 3D-printed lattices demonstrated the
behaviour observed in finite element
analysis.

� Analytical predictions of lattice
stiffness corroborate with numerical
results.

� Identified geometrical parameters
allow tailoring of stiffness properties.
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Structures with adaptive stiffness characteristics present an opportunity to meet competing design
requirements, thus achieving greater efficiency by the reconfiguration of their topology. Here, the poten-
tial of using changes in the topology of planar lattice structures is explored to achieve this desired adap-
tivity and observe that lattice structures with rectangle-like unit-cells may undergo elastic buckling or
bending of cell walls when subject to longitudinal compression. Under sufficient load intensity, cell walls
can deform and contact neighbouring cells. This self-contact is harnessed to change the topology of the
structure to that of a kagome-like lattice, thereby establishing new load paths, thus enabling enhance-
ment, in a tailored manner, of the effective compressive and shear stiffness of the lattice. Whilst this phe-
nomenon is independent of characteristic length scale, we focus on macroscopic behaviour (lattices of
scale � 200 mm). Experimentally observed responses of 3D-printed lattices correlate excellently with
finite element analysis and analytical stiffness predictions for pre- and post-contact topologies. The role
of key geometric and stiffness parameters in critical regions of the design space is explored through a
parametric study. The non-linear responses demonstrated by this topology morphing lattice structure
may offer designers a new route to tailor elastic characteristics.
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1. Introduction

Traditionally, structures are designed with rigid components
whose deformations are engineered to remain small, i.e. to remain
in the geometrically linear regime. Recently, however, the use of
non-linear, large-deformation components has gained acceptance
as a robust route to increase performance. Examples can be found
across various length scales, such as helical lattices [1–4], compli-
ant mechanisms [5,6], and architected materials [7–9].

The benefits of geometric non-linearity can be exploited further
by allowing the structural connectivity to reconfigure adapting to
operational needs [10–12]. In doing so, alternative load-paths are
established within the structural system leading to fundamentally
different response modes, e.g. converting from high-compliance to
high-stiffness behaviour. The formation of new connections estab-
lishes a new structural topology—a phenomenon distinct from the
more conventional approach to adaptive design of changing the
geometric shape alone. In architected materials, such contact
between unit-cells is often associated with failure [13,14]. How-
ever, some recent studies on metamaterials have endeavoured to
effect topological transformation by using external actuators and
materials to program the structure into a different topology,
thereby increasing system complexity [10,15,16]. In contrast, we
seek to achieve a passive topology change in a metastructure
through the formation of contact connections created by increasing
applied load. In this way, a new route to design simple topology
morphing structures is shown which are suitable for energy
absorption and load carrying applications. The structure is
designed to remain elastic with repeatable and predictable non-
linear responses.

Herein, focus is placed on the elastic planar response of cellular
lattices with a nominally rectangular structure, see Fig. 1a. When
subjected to axial compression the elements of the lattice may
bend or buckle. If the loading is sufficient, contact between adja-
cent elements occurs leading to a step-change in the effective stiff-
ness characteristics of the structure [17–19], resulting from the
development of a kagome-like lattice structure as shown in
Fig. 1b. For an intermediate density range, kagome-like lattice
structures exhibit increased shear modulus compared with
triangular-like (stretching-dominated) and hexagonal-like
(bending-dominated) lattice structures. In addition, kagome-like
lattices also possess desirable transport and heat-dissipation char-
acteristics, improved mechanical strength, and ease of fabrication
Fig. 1. Schematic showing the transformation of (a) a
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[20]. As is discussed in Section 2, such a topology transformation
is facilitated by replacing the straight columns and beams of the
lattice by curved elements. A parametric exploration of the design
space is presented, identifying the critical geometric and stiffness
parameters which govern the response of the cellular lattice and
compare these predictions with experimental observations
obtained using 3D-printed polylactic acid (PLA) proof-of-concept
demonstrators.

This paper proceeds as follows: Section 2 discusses the lattice
and its deformation modes; Section 3, the ability of the lattice to
topology-morph, as evidenced by step changes in compressive
and shear stiffness; Section 4, the bounding of characteristic
parameters which dictate topology morphing capability; Section 5,
the opportunities for stiffness tailoring in the proposed lattice and
Section 6 summarises the current findings in the context of possi-
ble applications.
2. Lattice design

2.1. A rectangular lattice

Consider a lattice comprising rectangular unit-cells, Figs. 2a and
2b. The vertical and horizontal members are rigidly connected to
each other. The unit-cell aspect ratio, R ¼ W=L, where W and L
are the cell’s width and height.

Finite element (FE) analysis in Abaqus/Standard 2020 [21] is
used to determine the linear buckling response of the lattice. We
consider a lattice with 4 rows and 7 columns of unit-cells with L
= 48 mm, R ¼ 0:5 and depth into the plane is 20 mm with a
1 mm wall thickness. The geometry considered is representative
of the general system, and is sufficient to allow interpretation of
the underlying physics of a rectangular lattice. Isotropic, homoge-
neous material with Young’s modulus E = 3.31GPa which is repre-
sentative of 3D-printed PLA [22] is considered. Two-noded linear
beam elements (B21) [21] were used to model the lattice and an
element length of 1 mm ensured a converged mesh.

To replicate the physical compression of the lattice in the test
setting, i.e. loading between a pair of compression plates, a pair
of analytical rigid surfaces are used to control inputs. The reference
point of the bottom analytical rigid surface is fully constrained and
a unit vertical load is applied at the reference point of the top ana-
lytical rigid surface, Fig. 2b. A no slip condition between the analyt-
rectangular lattice into (b) a kagome-like lattice.



Fig. 2. (a) A rectangular unit-cell; L is the height of the vertical member and W is the length of the horizontal member (b) A rectangular lattice (comprising 4 rows and 7
columns of rectangular unit-cells) with loading and boundary conditions. The loading and boundary conditions were applied at the reference points at the top and bottom
analytical rigid surfaces represented by dashed lines. All degrees of freedom are constrained at the bottom reference point while all but vertical displacement degree of
freedom are constrained at the top reference point. A unit vertical load (compression) is also applied at the top reference point (c) First buckling mode (global) shape of the
rectangular lattice.

V. Sundararaman, M.P. O’Donnell, I.V. Chenchiah et al. Materials & Design 226 (2023) 111649
ical rigid surfaces and the lattice is enforced with cohesive contact
[21].
2.2. Buckling modes of the rectangular lattice

A linear buckling analysis of the rectangular lattice shows that
the desired kagome-like buckling response is not usually associ-
ated with the first (critical) buckling load. Instead, the first buck-
ling mode is typically a global one in which the desired cell-to-
cell contact does not occur, see Fig. 2c. The fourth mode shape,
occurring at a load approximately three times that of the first,
could lead to the desired response. This desired mode is the same
as the first buckling mode of the lattice with lateral constraints, see
Fig. 3. These additional constraints could be used to eliminate
lower buckling modes, however this comes with a significant
increase in mass and mechanical complexity. Thus, in current
work, we pursue an alternate strategy to favour deformation pat-
terns that favour cell-to-cell contact.
Fig. 3. A rectangular lattice (a) with additional lateral constraints (circled with
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2.3. A sinusoidal lattice

The straight cell walls may be replaced with sinusoidal curved
beams, see Fig. 4. The vertical sinusoidal beams have an amplitude,
A0 and half wavelength L, and the horizontal sinusoidal beams have
an amplitude, RA0, and half wavelength W. This choice of ampli-
tudes ensures that the ‘amplitude ratio’-A0=L, i.e. the ratio of the
amplitude to half-wavelength, is the same for both vertical and
horizontal beams. In addition, a unit-cell requires, one pair of
opposite sides to be convex and the remaining pair be concave.
Consequently, because the amplitude ratio is the same for all
beams, the corners of the unit-cells remain at right angles. The
resulting checkerboard pattern of a sinusoidal lattice is illustrated
in Fig. 4c. This arrangement ensures that cell-to-cell contact occurs
only in unit-cells with convex vertical beams. Therefore, new con-
tact connections are expected to be formed in alternate unit-cells
in both vertical and horizontal directions as shown in Fig. 5b.
dashed lines) and (b) deformed shape of the desired (first) buckling mode.



Fig. 4. (a) A sinusoidal unit-cell with a pair of convex sides (vertical) and a pair of concave sides (horizontal). (b) A sinusoidal unit-cell with a pair of concave sides (vertical)
and a pair of convex sides (horizontal). A0 is the amplitude of the vertical sinusoidal beam and L its half-wavelength; RA0 is the amplitude of the horizontal sinusoidal beam
andW is its half-wavelength. (c) A sinusoidal lattice consisting of seven unit-cells in x-direction (horizontal) i.e., Nx ¼ 7 and four unit-cells in y-direction (vertical) i.e., Ny ¼ 4.
Note that the two unit-cells form a checkerboard pattern.

Fig. 5. Sinusoidal lattice (a) global buckling mode and (b) contact initiation under compression obtained from nonlinear static analysis (Black dots indicate the first points of
contact initiation at which compression level ‘contact load’ is estimated).
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2.4. Deformation modes of the sinusoidal lattice

Even in a sinusoidal lattice, the load corresponding to the unde-
sirable global buckling mode (Fig. 5a) could be lower than the load
at which cell-to-cell contact occurs (Fig. 5b). Thus, the lattice
parameters should be chosen to favour cell-to-cell contact. Since
cell-to-cell contact occurs due to bending deformation of the verti-
cal beams, increasing the amplitude ratio will encourage this beha-
viour, therefore, focus is given to the amplitude ratio as a critical
parameter that determines which of these deformation modes,
i.e. global bucking and cell-to-cell contact through bending occurs.

The compression load required to initiate cell-to-cell contact
(i.e. ‘‘contact load”) is evaluated using geometrically non-linear
FE analysis by inducing the desired deformation mode shown in
Fig. 3b. The geometric and material properties used are the same
4

as those used for the rectangular lattice. A controlled displacement
(compression) using an analytical rigid surface is applied from the
top of the lattice until the first cell-to-cell contact occurred.

Fig. 6 shows the global buckling load and contact load for a
range of amplitude ratios. It is noticed that both the global buck-
ling load and the contact load decrease with increasing amplitude
ratios due to the decrease in axial and bending stiffness of sinu-
soidal beams with increasing amplitude ratios. (Further explana-
tion for this decrease is provided in A.1 and A.2, respectively.)
For small amplitude ratios, the contact load is greater than the glo-
bal buckling load leading to undesirable behaviour. However,
when a critical amplitude ratio, ðA0=LÞcrit, is exceeded, the contact
load is less than the global buckling load. Such amplitude ratios
are referred as super-critical amplitude ratios.



Fig. 6. Plot of global buckling load and contact load versus amplitude ratio (A0=L) for lattice with R = 0.5.
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2.5. Post-contact FE analysis

To capture the post-contact behaviour, surface-surface contact
interaction was defined for pairs of sinusoidal beams by using
the penalty method [21] which is based on Coulomb’s friction
law. However, the value of the friction coefficient (l) does not
affect the post-contact response of the lattice (until subsequent
global buckling) since there is no sliding motion between the sinu-
soidal beams. On the other hand, post-contact global buckling
could be accompanied by sliding motion between the sinusoidal
beams. A friction co-efficient of l ¼ 0:2 matched the experiments
closely, thus this value was used in the FE analysis. Contact control
with a stabilization co-efficient of 0.005 was introduced to over-
come the convergence issues due to contacts. However, the energy
dissipation due to stabilization is relatively small being approxi-
mately only 5% of the elastic strain energy of the model.
Fig. 7. Plot of force vs displacement for lattice with A0=L = 0.16 and R = 0.5.
2.6. Experimental observation of critical amplitude ratio

In order to validate the results obtained from FE analysis, four
prototype lattices with amplitude ratios 0.16, 0.18, 0.20 and 0.22
were 3D-printed with PLA material using Original Prusa I3 MK3S
+ [23]. The critical amplitude ratio for these four lattices, as deter-
mined by FE analysis, is 0.161. Only one specimen was tested for
each amplitude ratio to provide experimental validation and to
demonstrate the proof-of-concept presented in the study. Investi-
gation of cyclical loading and sensitivity to manufacturing param-
eters does not fall under current scope of work but would be
interesting to consider in the future.

A displacement-controlled compression is applied to the lattice
with an amplitude ratio of 0.16, which is just below the computed
critical amplitude ratio of 0.161. The resulting load–displacement
curve is shown in Fig. 7, which also shows the FE analysis results.
It is observed that the lattice buckles globally, as indicated by the
decrease in load after a peak. This global buckling is observed to
occur immediately after contact initiation. This behaviour shows
that the critical amplitude ratio is slightly less than 0.16, but close
to the computed value of 0.161.

Lattices with super-critical amplitude ratios 0.18, 0.20 and 0.22
do not buckle globally immediately after contact initiation. These
5

experimental results confirm the existence of the critical ampli-
tude ratio discussed in Section 2.4.

3. Topology-morphing of sinusoidal lattice

In this section, the step-change in compressive and shear stiff-
ness associated with topology morphing of lattices (when sub-
jected to compression) with super-critical amplitude ratios is
explored. The initial topology, which is that of a rectangular lattice,
changes into the topology of a kagome lattice. It is shown that large
increases in compressive stiffness (Section 3.1) and shear stiffness
(Section 3.2) are signatures of this topology change.

3.1. Increase in compressive stiffness

For lattices with super-critical amplitude ratios 0.18, 0.20 and
0.22, a significant increase in their compressive stiffness is
observed after contact initiation, Fig. 8. (Snapshots of the deformed
state of a 3D-printed lattice are shown in Fig. 9). The experimental
and simulation results closely match each other. The response is



Fig. 8. Compression load versus displacement for lattices with super-critical amplitude ratios 0.18, 0.20 and 0.22. The corresponding post-contact regimes begin at
displacements of 13.45 mm, 9.382 mm and 4.724 mm, respectively. The deformed states at (a), (b) and (c) are shown in Fig. 9. The dashed-dot line indicates the global
buckling load for an equivalent rectangular lattice obtained f.rom FE analysis.

Fig. 9. Three deformed states of a 3D printed lattice with a super-critical amplitude ratio 0.18. (a) Initial topology, (b) topology change under compression (contacts are
circled with red-dashed lines), and (c) post-contact global buckling.
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approximately bi-linear: a linear regime prior to contact of sinu-
soidal beams and another stiffer linear regime after contact. Pre-
contact load is transferred through bending of sinusoidal beams,
resulting in low stiffness levels. The extent of this bending-
dominated regime is influenced by the amplitude ratio and unit-
cell aspect ratio of the lattice, i.e. by how much deformation must
occur before contact. After contact initiation, the stiffness of the
system increases due to the formation of a kagome-like topology
and an increase in contact area between the lattice elements under
compression, thus resulting in stretching-dominated behaviour.
The effective stiffness in the post-contact regime is 4.95, 4.53
and 3.84 times higher than that of pre-contact for amplitude ratios
of 0.18, 0.20 and 0.22 respectively. This increase in stiffness is
clearly linked with the topology change of the structure.

In the pre-contact regime, compressive stiffness decreases with
increasing amplitude ratio, which is due to the fact that the
increase in amplitude ratios decreases the bending stiffness of
sinusoidal beams. However, in the post-contact regime, no signifi-
cant difference can be observed between the compressive stiffness,
except for the start and end points of that regime. At the end of the
6

post-contact regime, the compression load drops suddenly due to
the onset of global buckling. FE analyses showed that the maxi-
mum strain in the lattice throughout the deformation (i.e., up to
post-contact buckling) is less than the yield strain of the material.
A linear response was observed both in FE analysis and experi-
ments while unloading the lattice after post-contact global
buckling.

The post-contact global buckling loads are 307.76N, 314.90N
and 284.90N for amplitude ratios 0.18, 0.20 and 0.22, respectively.
These loads are 2.66, 2.75 and 2.56 times that of the buckling loads
predicted from the linear buckling analysis assuming the lattices
buckle globally with their initial topologies (i.e. prior to contact).
Moreover, these global buckling loads are approximately twice
the load at which an equivalent rectangular lattice would have
buckled, see Fig. 8.

It is also observed that contacts in all unit-cells do not occur
simultaneously due to edge effects. First contacts are formed in
unit-cells which are far from a boundary as shown in Fig. 10. Con-
tacts in unit-cells at the top and bottom boundaries are formed
after contact has occurred in other cells due to their relatively



Fig. 10. Compression load versus displacement for lattices with A0=L = 0.20 obtained from FE analysis. First contact is initiated at a displacement of 6.533 mm. All contacts
except in unit-cells at boundaries are formed at a displacement of 7.032 mm. All contacts those including in unit-cells at boundaries are formed at a displacement of
9.382 mm.
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higher stiffness (provided by the constraints) compared with the
unit-cells at traction-free lateral boundaries. Increase in stiffness
(post-contact) occurs only after all the contacts are formed i.e.
including contacts in unit-cells at boundaries. The increase in com-
pressive stiffness and global buckling loads (summarised in
Table 1) due to the topology change shows the benefit of sinusoidal
lattices with super-critical amplitude ratios. The pre- and post-
contact compressive stiffness of the lattice can be also obtained
using an analytical approach, see C.

It is observed that the Poisson’s ratio of the lattices typically
varies between 0.004 and 0.42. For the initial topology, as the lon-
gitudinal strain (compression) increases from 0.0001 to 0.027, the
Poisson’s ratio decreases from 0.05 to 0.004, thus reaching its min-
imum value at the first point of contact. For the transformed topol-
ogy, as the longitudinal strain (compression) increases from 0.027
to 0.054, the Poisson’s ratio increases from 0.004 to 0.42, thus
reaching its maximum value at the point of post-contact global
buckling.

In this paper, the compressive stiffness of the lattice only in the
axial direction is investigated. The stiffness in the lateral direction
could be significantly different from the stiffness in the axial direc-
tion, except when the lattice is based on a square grid. However,
the proposed method of topology morphing cannot be achieved
for square grids. This is because, in a unit-cell, the lateral displace-
ments of the vertical sinusoidal beams under bending are not suf-
ficient enough to come into contact with each other during
compression.
Table 1
Increase in compressive stiffness and global buckling load of topology-morphed
lattices for super-critical amplitude ratios 0.18, 0.20 and 0.22.

Amplitude ratio, A0=L Factor of increase (topology-morphed)

Compressive stiffness Global buckling load

0.18 4.95 2.60
0.20 4.53 2.74
0.22 3.84 2.55
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3.2. Increase in shear stiffness

FE studies also show that the topology-morphed lattice devel-
ops an increased shear stiffness whose value depends on the
amount of compression applied. This response occurs because,
after the topology change, the lattice possesses additional connec-
tions through diagonal contacts between vertical sinusoidal beams.

A customized test fixture shown in Fig. 11 was developed to val-
idate the shear results obtained from FE analysis. A low-friction sli-
der supports the fixture plate against horizontal compression of
the lattice and allows vertical shear displacement.

The topology of the lattice is morphed to form new contact con-
nections by applying a displacement-controlled compression. The
compressed lattice was subjected to shear displacement with the
help of a universal testing machine and the load–displacement
was measured. The load versus displacement under shear for vary-
ing compression levels of the lattice is shown in Figs. 12 and 13, for
amplitude ratios 0.2 and 0.22, respectively. The load–displacement
curves obtained from experiments start with an initial jump in
force (of about 1 N) which is due to the static friction associated
with the slider.

Before the topology change, i.e. before contact of sinusoidal
beams, the shear stiffness of the lattice decreases with increasing
compression. Because, as the compression increases, the sinusoidal
curvature of the beams increases which results in decreased axial
and shear stiffness. On the other hand, after topology change, the
shear stiffness increases with increasing compression.Because, as
compression increases so does the contact area between the sinu-
soidal beams, thus increasing the stiffness at the connections.

The load–displacement curves obtained from experiments clo-
sely match those obtained from FE analysis provided the friction
coefficient (between the vertical sinusoidal beams) is also
increased with increasing compression. The dependence of friction
coefficient of PLA with normal load has been documented in the lit-
erature [24], but here the coefficient increases with increasing
compression while in [24] it is reported to decrease.



Fig. 11. Test setup used to obtain load–displacement behaviour under shear load. The lattice is compressed horizontally and sheared vertically. The pair of dial gauges
measure the applied compressive displacement.

Fig. 12. Plot of shear load versus shear displacement for lattice with A0=L = 0.20 at various compression levels.
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4. Parameters affecting the critical amplitude ratio

So far, the critical amplitude ratio has been demonstrated to
determine whether a lattice can change its topology under com-
pression before global buckling. In this section,the geometry of
the lattice is studied to identify how it influences the critical ampli-
tude ratio.

The critical amplitude ratio depends on the global buckling load
and the contact load. FE analyses show that these loads are affected
by
8

(i) the slenderness of the vertical sinusoidal beams,
(ii) the unit-cell aspect ratio, and
(iii) the lattice aspect ratio.

Thus, these three parameters also affect the critical amplitude
ratio. They can be thought of as a hierarchical trio of slenderness
measures, at the level of individual vertical beams, unit-cells and
the whole lattice, respectively.

This discussion is in keeping with observations made by Bazant
et al. [25]. They observed that global buckling (‘long-wave exten-



Fig. 13. Plot of shear load versus shear displacement for lattice with A0=L = 0.22 at various compression levels.
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sional buckling’ in their terminology) in rectangular lattices
depends on (i) column slenderness, (ii) the ratio of column and
beam stiffness, and (iii) the ratio of lattice aspect-ratio and column
slenderness. These parameters together are equivalent to the three
slenderness measures identified in current work, provided that
both horizontal and vertical beams have identical bending
stiffness.

4.1. Effect of unit-cell aspect ratio (R)

From the principle of moment distribution for continuous
frames [26], it is known that the change in end moments of the
members at the joints of a frame is proportional to the stiffness
of the members. This stiffness is given by the ratio of the bending
stiffness (EI in the case of a straight beam) of the member and its
length. For a sinusoidal lattice, the stiffness ratio of vertical and
horizontal beams is given by
Fig. 14. Global buckling load and contact load versus amplitude ratio (A0=L) for various u
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ðEIÞy=L
ðEIÞx=W

ð1Þ

Here, ðEIÞy and ðEIÞx are the bending stiffness of vertical and hori-
zontal sinusoidal beams respectively. Since all sinusoidal beams
considered in this study are made of the same material and cross-
section (ðEIÞy ¼ ðEIÞx), this ratio is the same as the unit-cell aspect
ratio, R ¼ W=L.

To investigate the effect of unit-cell aspect ratio on the critical
amplitude ratio, the width of the unit-cell is varied for a constant
height of L = 48 mm, for lattices with Nx ¼ 7 and Ny ¼ 4. unit-cell
aspect ratios from R 2 ½0:3;0:7� are investigated in increments of
0:05. This rangewas chosen because, no significant bending of sinu-
soidal beams occurs for unit-cell aspect ratios less than 0.3 and no
cell-to-cell contact occurs for unit-cell aspect ratios greater than
0.7. The plot of global buckling load and contact load against ampli-
tude ratio for various unit-cell aspect ratios is shown in Fig. 14.
nit-cell aspect ratios (R). Number of unit-cells is kept constant at Nx = 7 and Ny = 4.
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As the unit-cell aspect ratio increases, the horizontal beam stiff-
ness reduces because of its extended length. In doing so, it reduces
the end moment carried by the horizontal sinusoidal beams, thus
allowing the vertical sinusoidal beams to rotate more freely at
the joint during compression. Thus, the global buckling load
decreases with increasing unit-cell aspect ratio. In fact, the global
buckling load is found to depend approximately linearly on unit-
cell aspect ratio, Fig. 15.

For super-critical amplitude ratios, the contact load too
decreases linearly with increasing unit-cell aspect ratios, Fig. 16.
The reason for these perhaps surprisingly simple phenomena are
discussed in A.2. Therefore, the critical amplitude ratio can be
expected to depend linearly on the unit-cell aspect ratio. Fig. 17
Fig. 15. Global buckling load versus unit-cell aspect ratio (R) for various amplitu

Fig. 16. Contact load versus unit-cell aspect ratio (R) for various amplitude r
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shows that this is indeed the case, except when the slenderness
of vertical sinusoidal beams is large—to be considered in Sec-
tion 4.3. In this study, slenderness (S) is defined as the ratio of

L=k. k is the least radius of gyration, defined by k2 ¼ I=A. A is the
area of the cross-section of the vertical sinusoidal beam and I is
the least second moment of area of the cross-section.

For a fixed number of unit-cells and constant unit-cell height,
increasing the unit-cell aspect ratio also increases the lattice aspect
ratio, thereby reducing its slenderness. Analogous to Euler column
buckling, the global buckling load and contact load of the lattice
would be expected to increase with lattice aspect ratio. However,
for a fixed number number of unit-cells and sinusoidal beam
height, the effect of change in lattice slenderness is relatively
de ratios (A0=L). Number of unit-cells is kept constant at Nx = 7 and Ny = 4.

atios (A0=L). Number of unit-cells is kept constant at Nx = 7 and Ny = 4.



Fig. 17. Critical amplitude ratio (ðA0=LÞcrit) versus unit-cell aspect ratio (R) for various sinusoidal beam heights (L), i.e. sinusoidal beam slenderness. The cross-sectional area
of sinusoidal beams for all heights are kept constant. Number of unit-cells is kept constant at Nx ¼ 7 and Ny ¼ 4.
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speaking much less significant than the ratio of stiffness between
vertical and horizontal beams. The effect of lattice aspect ratio
due to the varying number of unit-cells is discussed in the follow-
ing section.

4.2. Effect of lattice aspect ratio (Rg)

As the slenderness of a lattice affects its global bucking load, it
also affects the critical amplitude ratio. To study this, the lattice
aspect ratio is defined as,

Rg ¼ NxW
NyL

¼ Nx

Ny
R:

Since the effect of R has already been considered, attention now
focuses on Rd ¼ Nx=Ny, which, for convenience is defined as the dis-
crete lattice aspect ratio (Rd).
Fig. 18. Global buckling load and contact load against amplitude ratio for varying numb
number of unit-cells in x-direction are kept constant at R ¼ 0:5 and Nx ¼ 7, respectively

11
FE results for the global buckling load and contact load, for lat-
tices with fixed R ¼ 0:5 and Nx ¼ 7, for varying Ny are shown in
Fig. 18. For increasing Ny the global buckling load decreases, as
would be expected from Euler column buckling. In fact, the depen-
dence is found to be nominally linear for the range of Ny, consid-
ered as shown in Fig. 19. Interestingly, the contact load remains
roughly constant. This behaviour can be explained by considering
the following: setting aside edge effects, every horizontal layer of
the lattice experiences the same (vertical) compression load. Thus
the contact load can be expected to increase with increasing Nx but
remain independent of Ny.

However, for large Ny (in this case, for Ny=20), the contact load
is found to be higher which is because of the stiffening effect of
sinusoidal beams arising from geometric nonlinear effects with
increased lattice slenderness.
er of unit-cells in y-direction, Ny = 4, 8, 12, 16 and 20. The unit-cell aspect ratio and
.



Fig. 19. Global buckling load and contact load versus Ny for various amplitude ratios, A0=L = 0.16, 0.18 and 0.20. The unit-cell aspect ratio and number of unit-cells in x-
direction are kept constant at R ¼ 0:5 and Nx ¼ 7, respectively.

Fig. 20. Critical amplitude ratio (ðA0=LÞcrit) versus number of unit-cells in y-direction (Ny = 4, 8, 12, 16 and 20) for various unit-cell aspect ratios (R). Number of unit-cells in x-
direction is kept constant at Nx = 7.
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In conclusion, the critical amplitude ratio increases approxi-
mately linearly with increasing Ny, as confirmed by data shown
in Fig. 20.
4.3. Effect of vertical sinusoidal beam slenderness (S)

As Fig. 21 shows, the slenderness of the beams significantly
influences the critical amplitude ratio. Here, the vertical beam
slenderness was varied by changing the vertical-beam heights
while keeping the cross-sectional area constant. The number of
unit-cells is also kept constant at Nx ¼ 7 and Ny ¼ 4.
12
Fig. 17 shows that critical amplitude ratios do not exist for all
lattice parameters. For example, for a lattice with unit-cell aspect
ratio R = 0.3 and sinusoidal beam slenderness of S = 249.42, the
theoretical maximum amplitude ratio, ignoring the thickness of
the vertical beams, is 0.15. However, for all feasible values of the
amplitude ratio, the global buckling load of the lattice remains
greater than the contact load. Therefore, a lattice with S = 249.42
and R = 0.3 cannot topology morph. In general, the minimum
unit-cell aspect ratio needed for topology morphing increases with
the slenderness.

Fig. 22 shows, the global buckling load and contact load decrease
with increasingheight. Since theglobal buckling loaddecreaseswith



Fig. 21. Critical amplitude ratio (ðA0=LÞcrit) versus vertical sinusoidal beam slenderness (S) for various unit-cell aspect ratios(R). Number of unit-cells is kept constant at Nx ¼ 7
and Ny ¼ 4.

Fig. 22. Global buckling and contact load versus amplitude ratio (A0=L) for lattice with unit-cell aspect ratio, R = 0.5. Number of unit-cells is kept constant at Nx = 7 and Ny = 4.
Sinusoidal beam heights considered are: L = 24 mm, 36 mm, 48 mm, 60 mm and 72 mm.
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increasing height, this implies the critical amplitude ratio increases
with increase in height of the sinusoidal beams. This increase is lin-
ear for small valuesof slenderness (S=83.14, 124.71and166.28), see
Fig. 17. However as the slenderness increases further (S P207.85),
there are deviations from linearity for small unit-cell aspect ratios.
This is because, for small unit-cell aspect ratios, the slenderness of
the vertical beams affects global buckling load more than it affects
the contact load. This, in turn, is because the global buckling load
is influenced by both the slenderness of vertical sinusoidal beams
and the slenderness of the lattice (see Section 4.2 above) whereas
the contact load is affected only by the slenderness of the vertical
sinusoidal beams. The parameters that govern the viability of topol-
ogymorphing have been discussedwith reference to the underlying
13
physics. We now proceed to outline how this rich design space may
be exploited.

5. Opportunities for stiffness tailoring

Having previously identified, the geometric parameters that
influence the deformation properties of the lattice (Section 4), this
knowledge is now used to tailor lattice response.

5.1. Constant global geometry

Consider lattices where the mean horizontal dimension, the
mean vertical dimension and depth of the lattice—in other words,



Fig. 23. Load versus displacement for lattices with amplitude ratios 0.18, 0.20 and 0.22. The global dimensions are kept constant and R = 0.5, L = 48 mm. In FE analysis, the
thickness is slightly varied so that the mass of the lattice remains constant. For the constant mass (0.0634 kg) lattices the thickness are 1 mm, 0.985 mm and 0.969 mm
respectively; and for constant thickness (1 mm) the masses are 0.0634 kg, 0.0644 kg and 0.0654 kg respectively.
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the global geometric parameters—are all kept constant. ‘Mean
dimension’ refers to the dimension averaged over a wavelength
of the sinusoidal oscillation.

5.1.1. Varying amplitude ratio
Stiffness variation due to change in amplitude ratio (with all

other geometric parameters fixed) was already discussed in Sec-
tion 3.1 and Fig. 8. However, there the mass of the lattice was
allowed to vary as the amplitude ratio changed. In order to keep
the mass constant, the thickness of sinusoidal beams can be varied
as the amplitude ratio changes. The corresponding load–displace-
ment curves obtained from FE analysis are plotted in Fig. 23. The
FE results are compared with experimental results for lattices with
constant thickness of 1 mm. As shown, the results closely match
each other, indicating that there is no significant change due to
variation of thickness of sinusoidal beams.

As observed from the figure, as the amplitude ratio changes,
both the pre- and post-contact stiffness remain approximately
constant but the load/displacement at which the topology morph-
ing occurs does change. Thus this design parameter can be tailored
without affecting either the global geometry or the mass (i.e. den-
sity) or the pre- and post-contact stiffness.

5.1.2. Varying unit-cell aspect ratio and amplitude ratio
Now the effect of varying the unit-cell aspect ratio with the

unit-cell height held fixed, is considered. In other words, the num-
ber of unit-cells in the vertical direction is fixed while allowing the
number of unit-cells in the horizontal direction to change. The
amplitude ratios are also changed so as to be super-critical. Two
cases are considered:

The thickness of the sinusoidal beams are changed to preserve the
mass The resulting load–displacement curves, obtained by FE anal-
ysis, are shown in Fig. 24. The stiffness of the lattices in both pre-
contact and post-contact regimes decrease as the unit-cell aspect
ratio increases. This is because increasing the spacing between
the vertical sinusoidal beams decreases the number of the unit-
cells in the horizontal direction which, in-turn, decreases the lat-
tice stiffness, both before and after contact. However, the compres-
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sion at which the post-contact regimes begin, increases with
increasing unit-cell aspect ratio. This effect happens because, as
the spacing between the sinusoidal vertical beams increases
greater compression is required to achieve the lateral deformation
to contact their neighbour.

However, the post-contact global buckling load only varies by
about 8%. Thus varying the unit-cell aspect ratio (and amplitude
ratio to preserve post-criticality) allows the post-contact global
buckling load to be tailored while preserving the global geometry
and mass.

The mass is changed to preserve the thickness of the sinusoidal
beams If, instead of varying the sinusoidal beam thickness (by
about 10%) to preserve mass, the beam thickness is fixed and the
mass is allowed to vary (again, by about 10%) then, Fig. 24 shows
that the pre- and post-contact stiffness are similar to the constant
mass case but the post-contact global buckling load changes signif-
icanlty (by about a factor of two). Thus even a little variation in
mass allows the post-contact global buckling load to be tailored
with only small changes in pre- and post-contact stiffness—while
preserving the global geometry.

5.1.3. Varying unit-cell height and amplitude ratio
The consequence of varying the unit-cell height while fixing

unit-cell aspect ratio may also be studied. This variation in height
implies a variation in the number of unit-cells in the horizontal and
vertical directions (so as to maintain the global dimensions). The
amplitude ratios are also changed so as to be super-critical. Again,
two cases are considered:

The thickness of sinusoidal beams are varied (significantly) to keep
the mass constant The corresponding load–displacement curves is
shown in Fig. 25. As can be observed from the plots, as the unit-
cell height decreases, the stiffness in the pre-contact and post-
contact regime increases.

As the unit-cell height varies, the thickness of the sinusoidal
beams need to be altered significantly to keep the total mass con-
stant. However, this variation in thickness leads to an almost con-
stant beam slenderness (a variation of less than 5%). Consequently,
the pre-contact stiffness too is almost the same for all three lattices



Fig. 24. Load versus displacement for lattices with varying unit-cell aspect ratios (R = 0.409, 0.500, 0.643) but constant global dimensions. For the constant mass (0.119 kg)
lattices the thickness are 0.91 mm, 1 mm and 1.11 mm respectively; and for constant thickness (1 mm) lattices the masses are 0.131 kg, 0.119 kg and 0.107 kg respectively.

Fig. 25. Load versus displacement for lattices with unit-cell heights, L = 24 mm, 36 mm and 48 mm. R = 0.5. The global dimensions and the mass of the lattice are kept
constant. For the constant mass (0.119 kg) lattices the thickness are 0.52 mm, 0.765 mm and 1 mm respectively.
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for small displacement, even though the number of unit-cells in
both horizontal and vertical directions is not constant. However,
as the displacement increases, the pre-contact stiffness increases
as the unit-cell height decreases, as expected, because the increas-
ing number of unit-cells in the vertical direction increases the geo-
metric non-linearity in the lattice by increasing the number of
wavelengths of sinusoidal oscillation in the vertical direction,
which in turn stiffens the lattice. Therefore, the average pre-
contact stiffness of lattices with L = 24 mm and 36 mm increases
by 100% and 35% respectively when compared to that of the lattice
with L = 48 mm. Similarly, the post-contact stiffness of lattices
with L = 24 mm and 36 mm increases by 66% and 22% respectively
when compared to that of the lattice with L = 48 mm.
15
The increase in pre-contact stiffness and therefore, the post-
contact stiffness can be explained notwithstanding the non-linear
stiffening phenomena. Despite the decrease of thickness of vertical
sinusoidal beams, the sum of all thickness of vertical beams for lat-
tices with L = 24 mm and 36 mm has increased by 4% and 2%
respectively when compared to that of the lattice with L =
24 mm. This increase in total thickness increases the compression
resistance of the lattice. However, the post-contact buckling load
between these lattices varies only by a maximum of 5% which is
due to the consistency of global geometric dimensions. Therefore,
the stiffness of lattice can be tailored by varying the unit-cell
height without affecting the global geometry, mass and post-
contact global buckling load of the lattice.
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The thickness of sinusoidal beams is kept constant If, on the other
hand, the beam thickness is kept constant while the slenderness is
decreased by decreasing the unit-cell heights, then the stiffness of
the lattice can increase. This response is illustrated in Fig. 26. The
ten-fold increase in pre- and post-contact stiffness for L = 24 mm
compared to L = 48 mm corresponds to only a twofold increase
in mass with the slenderness being reduced to half. The maximum
load (i.e., load at which global buckling occurs) increases sevenfold.

The geometric non-linear effects for constant mass lattices are
not discernible in Fig. 26 due to decreased membrane deformation
for low values of slenderness.
Fig. 26. Load versus displacement of lattices with unit-cell heights, L = 24 mm, 36 mm
dimension, mean vertical dimension, and depth) of the lattice and the beam thickness
0.155 kg and 0.119 kg respectively. The curve for L = 48 mm is identical to that in Fig. 2

Fig. 27. Load versus displacement for lattices with unit-cell aspect ratios, R = 0
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5.2. Varying global geometry

5.2.1. Varying unit-cell aspect ratio
Consider the effect of varying the unit-cell aspect ratio while

fixing the unit-cell height, amplitude ratio and number of unit-
cells. The resulting load–displacement curves, obtained by FE anal-
ysis, are shown in Fig. 27. As shown, the stiffness of the lattices in
both pre-contact and post-contact regimes (after all contacts are
initiated) do not significantly change. (Note that, for lattices with
unit-cell aspect ratios 0.65 and 0.70, there is no significant post-
contact regime as they buckle globally before all the contacts are
initiated.) This is because, the spacing between the sinusoidal ver-
and 48 mm. R = 0.5 and t = 1 mm. The global dimensions (i.e. mean horizontal
are kept constant. For constant thickness (1 mm) lattices the masses are 0.228 kg,
5.

.50, 0.55, 0.60, 0.65 and 0.70. L = 48 mm, A0=L = 0.20, Nx = 7 and Ny = 20.



Fig. 28. Load versus normalised displacement for lattices with Ny = 4, 8, 12, 16 and 20. L = 48 mm, A0=L = 0.20, R = 0.5 and Nx = 4.
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tical beams is the only dimension of the lattice that is being chan-
ged—and this does not significantly affect the lattice stiffness,
either before or after contact.

However, the onset of the post-contact regimes increases with
increasing unit-cell aspect ratio, which happens as a result of the
spacing between the sinusoidal vertical beams requiring greater
compression to achieve contact. In conclusion, varying the spacing
between the sinusoidal vertical beams, then the load/displacement
at which the lattice topology-morphs can be tailored without sig-
nificantly affecting the pre- and post-morphing stiffness. This
effect is similar to that described in Section 5.1.1 (see Fig. 23),
except that in this case the post-contact global bucking load does
vary significantly due to the change in global dimensions.

5.2.2. Varying the number of unit-cells in vertical direction
The pre- and post-contact stiffness, the load at which the topol-

ogy morphing occurs and post-contact global buckling load of the
lattices are only weakly dependent on the number of unit-cells in
the vertical direction, Ny, provided Ny is neither too small or too
large. This behaviour is shown in Fig. 28 which shows the load ver-
sus normalised displacement (i.e. displacement divided by Ny)
curves for lattices with varying number of unit-cells in the vertical
direction (Ny = 4, 8, 12, 16 and 20) but fixed number of unit-cells in
the horizontal direction (Nx = 4), unit-cell aspect ratio (R = 0.5),
amplitude ratio (A0=L = 0.20) and unit-cell height (L = 48 mm).

The Ny = 4 and Ny = 20 curves deviate from the others. When Ny

is small, edge effects become significant. On the other hand when
Ny is large, the number of wavelengths of sinusoidal oscillations in
the vertical direction increases which in turn stiffens the lattice, as
discussed in Section 5.1.3.

6. Conclusions

Topology morphing in sinusoidal lattice structures offers a new
design approach to obtain tailored elastic responses using the for-
mation of new connections due to self contact. The behaviour of a
sinusoidal lattice has been explored, whose critical geometric
parameter (critical amplitude ratio) can be tailored to achieve
desirable topology changes - changing from low-stiffness,
rectangle-like, to high-stiffness, kagome-like regimes. The identi-
fied critical geometries have demonstrated a passive topology
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change realising step-increases in compressive and shear stiffness.
Experimental results (3D printed PLA demonstrators) are in good
agreement with those obtained from FE analysis. Important sinu-
soidal lattice parameters, have also been identified which include
unit-cell aspect ratio, lattice aspect ratio and vertical sinusoidal
beam slenderness. These parameters were compared with similar
non-dimensional parameters reported in the literature on the
long-wave extensional buckling (global) of rectangular frames to
provide physical insight into the system response.

The stiffness tailoring capabilities of these sinusoidal lattice
structures has been demonstrated by varying geometric parame-
ters. For example, altering amplitude ratio showed that pre- and
post-contact stiffness can remain unchanged but the load and dis-
placement at which topology morphing occurs can change while
the global dimensions and mass of the lattice are preserved. Vary-
ing unit-cell aspect ratio for a given global dimensions and mass
showed that effective stiffness, the transition between bending
and stretch dominated response modes and post-contact global
buckling load can be altered. Increasing the number of unit-cells
by decreasing unit-cell height to 50% showed a 100% and a 66%
increase in pre- and post-contact stiffness for a constant global
dimensions and mass. However, of note is that, the post-contact
global buckling load differed only by 5%. However, for this case,
when the mass is allowed to change, the lattice showed a ten-
fold increase in pre- and post-contact stiffness for only a twofold
increase in mass. It also exhibited a sevenfold increase in post-
contact global buckling load. This tune-ability allows the load–dis-
placement behaviour of a lattice structure to be controlled by vary-
ing the stiffness and extension of bending-dominated and
stretching-dominated regimes and the post-contact global buck-
ling load within a given two dimensional space. Similarly, stiffness
tailoring capabilities facilitated by varying geometric parameters
without constraining the global dimensions and mass were also
demonstrated.

The ability to link the topology of a structure with its
deformation-state opens vast new design possibilities for struc-
tures with multiple performance requirements. Consider, for
example, a lattice which is compressed so that it is at the point
of transition between the two possible topologies. The initial topol-
ogy will be effective for energy absorption applications due to its
bending-dominated behaviour whereas the transformed topology
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will be effective in carrying further increases in applied loads due
to its stretching-dominated behaviour provided by the formation
of new contact connections. This topology transformation from
bending-dominated behaviour to stretching-dominated behaviour
would be useful in many applications where the structure is ini-
tially needed to absorb energy i.e., impact of an object and then
stiffen up to carry the static load i.e., weight of an object.

In summary, a mechanics-driven exploration on the topology
morphing behaviour of sinusoidal planar lattices has been under-
taken. Critical parameters have been identified, which control pas-
sive response and highlight the potential for elastic tailoring. This
concept presents a new way to approach re-configurable elastic
structures for non-linear design.
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Appendix A. Amplitude ratio versus global buckling load and
contact load

A.1. Decrease in global buckling load with increasing amplitude ratio.

Fig. 3b shows that the global buckling load of the sinusoidal lat-
tice decreases with increasing amplitude ratio. This behaviour
occurs because the axial and bending stiffness of the sinusoidal
Fig. 29. Axial stiffness of a sinusoidal beam against amplitude ratio for clamped–clamped
normalized by the axial stiffness of a straight beam (EA=L).
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beams reduces with increasing amplitude ratio. To capture this
effect analytical expressions for the stiffness were derived, based
on curved beam theory (see B). The reduction in axial and bending
stiffness are illustrated in Figs. 29 and Fig. 30, respectively, for both
clamped–clamped (CCBC) and simply-supported (SSBC) boundary
conditions.

For comparison, the equivalent FE analysis results are included
which show excellent agreement with the analytical results. In
practice, the joints in the lattice are expected to be semi-rigid
i.e., between the two idealised extremes of CCBC and SSBC. There-
fore, the true axial and bending stiffness of the members in the lat-
tice are expected to lie between these curves. An estimation of the
moment-rotation relationship for the semi-rigid connection is
required to replicate the exact boundary conditions, and thus pro-
vide accurate axial and bending stiffness. However, this semi-
rigidity in connections would not alter the trend of variation of
stiffness against the amplitude ratio so bounding the response is
sufficient for our present analysis.

Fig. 6 shows that the decrease in global buckling load tends to
become linear for amplitude ratios greater than 0.1. As the sinu-
soidal beam becomes more curved, membrane behaviour (axial
compression) diminishes significantly reducing its impact on the
overall deformation. Simultaneously, the bending moment induced
about the point of bending (centre of the beam) increases linearly
with the amplitude ratio thus leading to the predominance of
bending behaviour. This transition to a fully bending-dominated
behaviour of sinusoidal beams for amplitude ratios of 0.1 or above
is notable from the axial and bending stiffness plots shown in
Fig. 29 and Fig. 30 respectively.

A.2. Decrease in contact load with increasing amplitude ratio

Fig. 6 illustrates that as the amplitude ratio increases the con-
tact load linearly decreases. As explained in A.1 the increase in
amplitude ratio increases the degree of bending in sinusoidal
beams.

Fig. 31 shows the force–displacement curves of a sinusoidal lat-
tice, until contact, for various amplitude ratios. For amplitude
ratios less than 0.16, the linear force–displacement regime appears
only after a certain vertical displacement (compression) of the lat-
tice i.e., when the bending deformation of beams dominates over
(CCBC) and simply-supported (SSBC) boundary conditions. The axial stiffness (Ky) is



Fig. 30. Effective bending stiffness of a sinusoidal beam against amplitude ratio for clamped–clamped (CCBC) and simply-supported (SSBC) boundary conditions. The
effective bending stiffness is obtained by normalizing the ratio of bending stiffness (jh) of a sinusoidal beam and the square of its effective height (L2e i.e., square of the height
of the deformed curve) with the ratio of bending stiffness (EI) of a straight beam and the square of its effective height (L2). The inclusion of square of effective length in
effective bending stiffness plot enhances the incorporation of the effect of boundary conditions. However, the plot of bending stiffness (jh) shows identical results irrespective
of boundary conditions, thus showing only the effect of amplitude ratio of sinusoidal beams.

Fig. 31. Force–displacement(compression) of a sinusoidal lattice with aspect ratio,
R ¼ 0:5 for various amplitude ratios (A0=L) plotted until points of contact initiation.
Black dots indicate the first point of contact initiation between any two sinusoidal
beams in the lattice. The corresponding load at first point of contact initiation is
called ‘contact load’.
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Fig. 32. Free body diagram of an undeformed sinusoidal beam with clamped–
clamped boundary conditions.
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the membrane deformation. The transition from a membrane-
dominated regime to a bending-dominated regime occurs due to
increasing curvature caused by the deformation: As the deformed
shape of the beams becomes more curved, the bending moment
induced about the point of bending (centre of the beam) further
increases the bending domination. However, as the amplitude
ratios increases above 0.16, the force–displacement response tends
to become linear from the beginning since the initial geometry is
sufficiently curved.Fig. 32.

We remark that, as Fig. 31 shows, the vertical displacement
required to make contact between sinusoidal beams decreases
with increase in amplitude ratio because the gap between the sinu-
19
soidal beams decreases with increase in amplitude ratio for a fixed
aspect ratio.

Appendix B. Amplitude ratio versus axial and bending stiffness

B.1. Sinusoidal beam-analytical formulation

To estimate the axial and bending stiffness of sinusoidal beams
for various amplitude ratios, analytical formulations were derived
using the method described by Liu et al. [27].

The sinusoidal beam is represented by
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x ¼ A0 sin
py
L

� �
; ð2Þ

where x and y are the horizontal and vertical coordinates at any
point s on the vertical sinusoidal beam. A0 is the initial amplitude
and L is the height of the sinusoidal beam. The differential arc
length is given by

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dx

dy

� �2
s

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2 cos2ðByÞ

q
dy; ð3Þ

where

B ¼ p
L
; C ¼ A0

L

� �
p:

By equilibrium, the moment My at any point y on the beam is given
by,

My ¼ M � Fx; ð4Þ
and the slope by,

hðyÞ ¼
Z

My

EI
dsþ K; ð5Þ

where K is an integration constant.
From ()()()()(2)–(5) can be written as

hðyÞ ¼ 1
EI

Z
ðM � D sinðByÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2 cos2ðByÞ

q
dyþ K ð6Þ

where,

D ¼ F
A0

L

� �
L:

Integrating (6) gives the slope hðyÞ,

hðyÞ ¼ M
EI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 33. Reaction moment as a function of amplitude ratio. The analytical solution is in go
than the higher order approximations.
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In this paper, ellK and ellE represents the incomplete elliptic inte-
grals of first and second kind respectively and ellF represents the
complete elliptic integral of second kind.

B.2. Clamped–clamped boundary conditions

The axial and bending stiffness of a sinusoidal beam with
clamped–clamped boundary conditions are now derived.

Since the beam is clamped at the ends, the boundary conditions
for slope to solve for unknowns M and K can be written as

hð0Þ ¼ 0; h
L
2

� �
¼ 0;

from which

K ¼ � FLC
pEI

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p
þ sinh�1ðCÞ

2BC

 !
; ð8Þ

M ¼ FLC
2p

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p
þ sinh�1ðCÞ

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p
ellF C2

C2þ1

� �
0
@

1
A: ð9Þ

is obtained. In (9), the term inside the brackets is approximately
constant and is approximately equal to 4=p. Thus,

M ffi 2FA0

p
ð10Þ

In other words, the reaction moment M is approximately a linear
function of initial amplitude A0 and thus, of the amplitude ratio
A0=L as seen in 33.

The expression for bending moment My along the y-coordinate
of the beam is given by

My ¼ M � Fx

¼ FLC
2p

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p
þ sinh�1ðCÞ

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p
ellF C2

C2þ1

� �
0
@

1
A� FA0 sin

py
L

� �
ð11Þ
od agreement with the FE solution. Coincidentally, the linear approximation is better
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As shown in Fig. 34, the bending moment My is maximum at the
ends due to the anti-clockwise reaction moment M. The bending
moment My decreases and changes sign towards the centre of the
beam due to the clockwise moment induced by the applied force
and the initial amplitude A0. There are two points of inflection
(shown in Fig. 34) at which the bending moment is zero as expected
whose position can be determined using,

y
L

� �
My¼0

¼ 1
p

sin�1 1
2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p
þ sinh�1ðCÞ

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p
ellF C2

C2þ1

� �
0
@

1
A; ð12Þ

and are found to be at y=L ¼ 0:212 and 0:788.
Axial stiffness ðKyÞ The displacement ðdyÞ along the y-direction

can be obtained using Castigliano’s second theorem considering
both axial and bending deformations

dy ¼
Z

My

EI
@My

@F
dsþ

Z
Py

EA
@Py

@F
ds ð13Þ

Py is the axial force acting at any section of the beam along the y-
direction. Using the differential arc length,

Py ¼ F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2 cos2ðByÞ

q
ð14Þ

Therefore,
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The axial stiffness of the sinusoidal curved beam is given by
Fig. 34. Bending moment of the sinusoidal beam (CCBC) along the y-coordinate for vari

21
Ky ¼ F
dy

ð16Þ

The axial stiffness obtained from (16) for various amplitude ratios of
the sinusoidal curved beam with clamped–clamped boundary con-
ditions is shown in Fig. 29.

Bending stiffness ðKhÞ The bending stiffness of the beam can be
obtained using Castigliano’s second theorem considering only the
bending deformation. The beam bending equation gives bending
stiffness as,

Kh ¼ My

jðyÞ ; ð17Þ

where My and jðyÞ are the bending moment and curvature along
the y-coordinate of the deformed beam respectively. For the sinu-
soidal beam, bending stiffness also varies along the height of the
beam due to the changes in bending moment and curvature. The
curvature of the deformed beam is,

jðsÞ ¼ dhðyÞ
ds

: ð18Þ

Combining (3), (4) and (5), (18) can be written as

jðyÞ ¼ My

EI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2 cos2ðByÞ

q
: ð19Þ

Fig. 35 shows that, for a small amplitude ratio of 0.01, the bend-
ing stiffness of the beam is constant along the height of the beam
and is close to that of a straight beam. As the amplitude ratio
increases, the bending stiffness decreases due to the increase in
bending moment offered by the product of increasing initial ampli-
tude and applied force. The counter intuitive observation (Fig. 36)
that stiffness is maximised at the centre and minimised at the
roots, can be explained due to the symmetric bending about the
beams centre, with the applied force inducing a loading similar
to that of a cantilever with an applied moment.

B.3. Simply-supported boundary conditions

For the sinusoidal beam with simply supported boundary con-
ditions, the ends of the beam are free to rotate and therefore
M ¼ 0. The axial stiffness (SSBC) shown in Fig. 29 is obtained from
this simplification of (4) giving (16),
ous amplitude ratios. The points of inflection lie at 0.212L and 0.788L of the beam.



Fig. 35. Bending stiffness ðKhÞ of the sinusoidal beam (CCBC or SSBC) along the normalized y-coordinate of the beam for amplitude ratios 0:1;0:15 and 0:30.

Fig. 36. Bending stiffness of the sinusoidal beam at the root ðy=L ¼ 0Þ, at point of inflection ðy=L ¼ 0:212 or 0:788Þ, at the centre of the beam ðy=L ¼ 0:5Þ and the average
bending moment over the normalized y-coordinates of the beam against amplitude ratio.
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The bending stiffness of the sinusoidal beam with simply supported
boundary conditions can be obtained using the approach explained
22
in B.2. The results are identical to clamped–clamped boundary con-
ditions due to the absence of effect of boundary conditions when
obtaining bending stiffness ðKhÞ.

However, the effective bending stiffness (shown in Fig. 36) is
obtained by incorporating the boundary conditions using the effec-
tive length approach which is similar to that used for understand-
ing the buckling of straight columns. The effective length i.e., the
effective height ðLeÞ of a deformed clamped–clamped sinusoidal
beam is the distance between points of inflection that forms the
deflection curve similar to that of a simply-supported sinusoidal
beam. Therefore, the effective height of the clamped–clamped
sinusoidal beam is 0.576 times the height ðLÞ of the sinusoidal
beam. The effective bending stiffness plotted in Fig. 30 is obtained
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from the average bending stiffness plotted in Fig. 36. The effective
bending stiffness of a clamped–clamped sinusoidal beam is
observed to be 3.01 times that of a simply supported sinusoidal
beam which is significant.

Appendix C. Analytical estimation of stiffness of lattice

Using the stiffness equations derived for a simply-supported
sinusoidal beam, the pre-contact and post-contact load–displace-
ment behaviour of the sinusoidal lattice can be determined. The
following assumptions are made to derive the analytical model:

(i) Sinusoidal beams in the lattice remains sinusoidal through-
out the deformation.

(ii) Sinusoidal beams in the lattice are inextensible.
(iii) Boundary effects are not present. That is, the deformation of

all unit-cells in the lattice is identical. Therefore, contacts in
all unit-cells occur simultaneously and exactly at half the
width of the unit-cell.

The initial arclength of a sinusoidal beam is given by

Si ¼
Z L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2 cos2ðByÞ

q
dy ð21Þ

At contact, the amplitude ratio of the sinusoidal beam can be calcu-
lated as

An

Ln
¼ 0:5 � ðLR� tÞ

Ln
ð22Þ

where An=Ln and Ln are the amplitude ratio and height of the
deformed sinusoidal beam at contact, respectively. The arclength
of a deformed sinusoidal beam is given by

Sc ¼
Z Ln

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

n cos2 Bnð Þ
q

dy ð23Þ

where

Bn ¼ p
Ln

; Cn ¼ An

Ln

� �
p:
Fig. 37. Compression load versus displacement for lattices with amplitude ratios 0.18, 0.2
In order to reduce the influence of boundary effects due to compression by plates, the fi
boundary conditions only at the joints of the lattice as shown in figure.

23
As the arclength of the sinusoidal beam remains constant through-
out deformation, the unknown variable Ln, i.e. the deformed height
of the sinusoidal beam at contact can be computed numerically
using

Sc ¼ Si:

The compression of the lattice at contact is given by

dyc ¼ Ny L� Lnð Þ: ð24Þ
dyc is also the maximum displacement undergone by the lattice in
the pre-contact regime.

Therefore, the pre-contact compressive stiffness (and also the
load–displacement curve) of the sinusoidal lattice can be calcu-
lated using

KLy ¼ Nx þ 1
Ny

1

Q2 Ky; ð25Þ

where KLy is the pre-contact compressive stiffness of lattice and Q is
the effective length factor which accounts for the elastic end
restraint conditions of a sinusoidal beam in the lattice.

The stiffness (Kypc) of the post-contact sinusoidal beam is calcu-
lated by considering the deformed amplitude ratio (An=Ln) and
deformed height (Ln) of the beam. The post-contact stiffness of
the lattice is given by

KLypc ¼ Nx þ 1
Ny

1
Q2 Kypc: ð26Þ

For a lattice with unit-cell aspect ratio, R = 0.5, the effective length
factor can be calculated as Q = 0.7 from the method given in [28].
Therefore, for a lattice with Nx = 7 and Ny = 4, the pre-contact stiff-
ness is approximately four times that of a sinusoidal beam with
simply supported end conditions and is given by

KLy ffi 4Ky: ð27Þ
The post-contact stiffness for the lattice considered is given by

KLypc ffi 4KLy: ð28Þ
The post-contact stiffness is found to be approximately four times
that of the pre-contact stiffness of the lattice which is attributed
0 and 0.22 obtained using analytical equations. L = 48 mm, R = 0.5, Nx = 7 and Ny = 4.
nite element results plotted in this figure are obtained by applying the loading and
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to the length of the sinusoidal beams being halved due to contact
connections. The load–displacement curves obtained using the
Eqs. 25 and 26 are in good agreement with finite element results
as shown in Fig. 37.
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