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Abstract  

Dynamical movement primitives (DMPs) method is a useful tool for efficient robotic skills learning from 

human demonstrations. However, the DMPs method should know the specified constraints of tasks in 

advance. One flexible solution is to introduce the human superior experience as part of input. In this 

paper, we propose a framework for robot learning based on demonstration and supervision. Superior 

experience supplied by teleoperation is introduced to deal with unknown environment constrains and 

correct the demonstration for next execution. DMPs model with integral barrier Lyapunov function 

(IBLF) is used to deal with the constrains in robot learning. Additionally, a neural network-based 

controller is developed for teleoperation and the robot to track the generated motions. Then, we prove 

convergence of the generated path and controller. Finally, we deploy the novel framework with two 

Touch robots to certify its effectiveness. 
 

KEYWORDS: Dynamic movement primitives (DMPs). Robotic skill learning. Integral Barrier Lyapunov Function 

(IBLF).  

 

1.Introduction 

Robots are now widely used in many fields, from industrial manufacturing to daily life. They are not 

limited to structured environments and single, repetitive tasks. To reduce the programming effort for 

different tasks, learning from demonstrations[1] is proposed. The Dynamic movement primitives (DMPs) 
[2] method is a flexible and effective way to transfer manipulation skills from humans to robots easily. 

DMPs can generalize the actions learning from demonstration, and guarantee convergence to a goal 

position. The method has been successfully applied in many robotic scenarios, such as assembly 

operations[3-5], robotic surgery [6-8], and collaborative bimanual tasks[9]. 

However, there are many factors cause task failures using DMPs[10], inculding:1) the export cannot 

demonstrate every correct action for all the possible states. 2) the environment of the tasks may be 

variable in actual (e.g. new obstacles and constrains of manipulator). To solve these questions, some 

scholars introduced human supervision as a part of the system. In [11] , Losey et al. introduced the 

kinematic adjustments to successfully deduce parameters of an optimal policy. In [12] , Nemec et al. 

proposed a learning from demonstration framework where dynamic movement primitives based on 

kinematic corrections to the behavior of an impedance-controlled robot. In [13] , Hagenow et al. proposed 

corrective shared autonomy system, corrective shared autonomy is introduced to leverage user input to 

address uncertainty in robot tasks by targeting corrections to task-specific variables. Hagenow used the 

method of supervisory control[14] which is a kind of remote-control methods to remain the responsibility 

of the human operator. Rather than correcting the robot directly, the remote-based approach is safer and 

space-free[15]. In this article, corrections of operator are also introduced by a remote-control system. 

The correction of expert improves the quality of task completion, but it also raises new questions: 1) 

correction imposed by supervisor may cause manipulator over its constraint space; 2) and the correction 

of trajectory cannot be unable to discern the intent. One effective way to deal with constraint problems 

is Barrier Lyapunov Function (BLF). In[16], an asymmetric time-varying BLFs is used to guarantee the 

time-varying output constraints. In contrast to the log[17] and tan[18] type BLF, integral BLF can limit state 

signals directly, rather than error signals[19]. IBLF[20] is proposed to guarantee the end-effector of the 

robot in the constrained task space . As a result, IBLF is utilized in this article to ensure the manipulator's 

end-effector in the restricted task space following the repair of export. 

Then correction is divided into two kinds by supervisor: improve the quality of demonstrations and 

avoid the collision in complex environment. The corrected motion can be used as a new quality 

demonstration. Collision information can be got from the correction. In[21], constraints for DMPs have 

been successfully treated as point-like obstacles and volumetric obstacles. Based on DMPs model and 

BLFs，Lu[22] propose a BLFs based DMPs framework with the classified constraints. In this article, 

classic DMPs method with velocity limits inspired by[23] is used to improve corrected path and IBLF is 

combined to avoid collision. 



 
Fig. 1. Block diagram illustrating the constrained system 

 

In this article, remote control system is designed to provide the correction information of export and 

ensure the end-effector of manipulator within the confined space based on IBLF, where RBFNN is 

employed to approximate the unknown robot dynamics. A classic DMPs method with IBLF is designed 

to avoid collision. The following is a list of the major contributions: 

⚫ A novel framework based on supervision is proposed that considers both the motion learning and 

task executing, including a modified DMPs method and a remote-control system for supervision 

⚫ A new framework combining DMPs and IBLF is proposed to solve constrained trajectory planning 

problem based on the correction. Velocity limits are also met. 

⚫ A modified remote-control system is introduced, constrains of system are limited via the IBLF. 

Furthermore, the stability of the system can be ensured using Lyapunov stability theorem 

The following is the list of paper is organized as. Section 2 introduces basic information of the DMPs 

and IBLF. The learning process of the corrected motion and remote corrective control system are 

introduced in Section 3. The experiments are presented in Section 4. Section 5 concludes this paper. 

 

2. Preliminary work 

 

2.1. Dynamics Modeling of remote System 

The dynamics of the teleoperation system for master and slave in the task space can be modeled as 

follows: 

( ) ( ) ( )m m m m m m m m m m mM x +C x ,x x +G x D fx + =                  (1) 

( ) ( ) ( )s s s s s s s s s s sM x x +C x ,x x +G x +D = f                   (2) 

where
mx , 

mx , 
mx  and 

sx , 
sx , 

sx  are the position, velocity, and acceleration signals of end-effort 

for master and slave manipulators, ( )m mM x  and ( )s sM x  are the inertia matrices, ( )m m mC x ,x  and 

( )s s sC x ,x  account centrifugal/ Coriolis terms, ( )m mG x  and ( )s sG x  are the gravitational matrices. 

mD  and 
sD  are the modeling errors and external disturbance. 

mf  and 
sf  are the control input of 

master and slave devices.  

Property 1: The matrices 
m mM  - 2C  and 

s sM  - 2C  are skew-symmetric. 

 

2.2. RBFNN 

RBFNN is used to approximation manipulator uncertainties to handle the uncertainty issue in the 

dynamic model. The following introduces the definition of the RBF neural network utilized in this 

article: 

( )TF( )=W S +                               (3) 

where   denotes the input of the neural network, 
1 2[ , ,... ]T

nW   = is the ideal weight parameter, n

is the number of RBFNN nodes, ( )  is the approximation errors. ( ) 1 2[ ( ), ( ),... ( )]T

nS s s s   = is 

the Gaussian basis function in the form as: 
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Where ci
, bi

 are the center and width of the neuron. The ideal weight vectors *W is an artificial 

quantity for the purposed method, which aims to minimizes the value of W   

* argmin{| |}W =                                (5) 

 

2.3. General DMPs model 

Dynamic Movement Primitives (DMPs) is used to trajectory learning. DMPs consists of two main 

components: 1) spring-damper type equation which draw our system to the target 2) a forcing term which 

get the desire behaviors.  

The DMPs model is firstly introduced as: 
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where ,z  
z  are the positive parameters, x  is the position variable, g is the goal point, v  is the 

velocity, v  is the acceleration, 0   is the time constant, s  is a phase variable that avoid explicit 

time dependence, the initial value of s is set as 1, 
s  is the factor to modify the converging time  

The forcing term ( )f s  is defined as: 
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                             (7)  

The forcing term has the components consists of N Gaussian basis functions, enable the encoding of 

demonstrated trajectory, where and 
0y  is the starting position state, 

iw  is the column of the weight 

vector, 
i  is Gaussian Radial Basis function, where ( ) ( )( )2

exp s ci i is h = − − , ci
 is the center of 

Gaussian kernels and 
ih  is the variance. The vector 

iw  can be trained with supervised learning 

algorithms such as locally weighted regression (LWR).  

The calculating process is proposed to minimize the error function as following: 

( ) ( )min{ }tf s f s−                               (8) 

where ( )f s  is an item calculated by the trajectory in demonstration, and ( )tf s  represents the target 

value as following: 

( ) ( )( )t

z zf s v g x v  = − − −                     (9) 

 

2.4. General IBLF 

Consider the strict feedback nonlinear system described as: 

1 1 1 2
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= +
 =

                              (10)                            

Where 
1 2 1 2, , ,f f g g   are smooth functions, 

1 2,x x   are the states, u   and y   are the input and 

output. 
Introduce the IBLF candidate in the following: 
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where
ck  is the constant, 

rx  is the variable,   is a member of integrating, the error variable 

1 1  rz x x= − ,  
2 2 z x = − ,   is a continuously differentiable function.  

The time derivative of 
1V  is given by 
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where 
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The virtual control variable  can be designed as follows: 

( )2 2

1 1

1 1 2

1

1( )
1 c r
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g k x x
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g k


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−
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where 
1k is positive constant. Substituting (15) into (12), we can get 

2 2 2

1 1 1 2
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Then, a Lyapunov function candidate is chosen as follows: 

2

2 1 2

1

2
V V z= +                              (17) 

The time derivative of 
2V  is given by 
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The control law is designed as 
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3. Proposed Framework 

A novel approach that combines DMPs and IBLF is introduced to address limited trajectory planning 

based on the correction. The remote-control system is made to guarantee that the manipulator end-

effector is within the restricted space and to offer export corrective information. The controller of master 

and salve is designed and analyzed. 

 

3.1. DMPs based on IBLF  

The expression of DMPs as (6) can be revised as nonlinear system as follows: 
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Where
1 2 1, ,x x g   represent the , ,1/x v   in eq (5), ( )( ) ( )2 ( γ ) /z zf g x v v   = − − + , u is the forcing 

function ( )f s , u  is a term added by IBLF, γ ,
0 ,

1  are the positive constants, to allow the 

velocity being close to the limit while still not exceeding it, the 
i  is designed as 
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Where 𝐴𝑖, 𝐵𝑖  are the positive constants. 

Similar to the general form of IBLF, we define 
1 1 rz x x= − ,

2 2z x = − ,
rx  is the desired state in control 

system, while there is no such state in DMPs, so here we introduce the motion generated by DMPs 

method without any limits as the desired state: 
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Theorem 1: The output constraint is never violated and all closed loop signals are confined if the 

following conditions are met for the DMPs function represented by (20). 
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Where   is introduced in (14) 

To get the form of u ,we calculate u  without added term is 

 
2u v f= −                                (24) 

So 
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Proof:  

we synthesize a Lyapunov function as 
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Where 
1V  is the IBLF candidate in (11) 
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Taking the expressions of (16) into (20), we have  
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where
21,k k are positive numbers. according to Lyapunov stability theorem, we know that above 

expression guarantees global stability and the global tracking convergence in the system.  

 

3.2. Master controller design 

The control command on the master robot is designed as an impedance controller, such that the 

position of the robot end effector can be moved by export, let us consider the modeling of the operating 

torque. In this paper, a damping-stiffness model is considered, 

 e ee m m m mF k d= +                             (29) 

Where 
mk  and 

md denote designed damping and stiffness matrices, where 
m md me x x= − , 

mdx  is 

the desired state, in this remote corrective system, it is fixed value. For avoiding the slave robot moving 

off the edge of the surface during control, a variable stiffness is proposed 

 
( ) ( )e md x

m min max mink k k k
−

= + −                        (30) 

where 𝛼 is the proximity of distance to boundary, closer get to the boundary, the closer get to 1, where 

( )md x is the distance to the nearest edge, 
maxk mink are positive numbers. 



Then, the control torque can be designed as 

 uĜm m m ef F= + +                              (31) 

Where 
mu is robust term，and 

mG is the estimation of G ，which satisfies: Ĝm mG − = . 

 

3.3. Slave controller design 

Inspired by [24], the desired position signal 
sdx  can be derived via the slave trajectory creator. For 

simplicity, a filter as 

( ) ( )
2

1/ 1f fV s s= +                           (32) 

It is used with the input of ( )( ) – mx t T t  to create the correction state 
scx , then 

sd sd sdmpx x x+=  , 

where
sdx dsc sx x = −  is the forward kinematic function of the Touch 

sdmpx  is the path generate by 

DMPs. 

Due to the disturb and errors in tracking, the trajectory generated by creator may not guarantee the x  

in the constraint space all the time, we can obtain x  by a soft saturation function, then if the x cross 

the bound it will map the inside state. We derive the following via a saturation function to guarantee 

that the reference trajectory stays inside the limited region: 
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where   is a constant very close to 1. 

Because the uncertain of robot dynamic and model, reference trajectory cannot ensure the end-effector 

stay in the constrained space. IBLF method is introduced to ensure the constrains of the predefined task 

space met. 

we can obtain the dynamics system of slave  

  ( )
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s s s s ss

x x

x M f D

y x

xG C−
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Then, we define
1 1 sdz x x= − ,

2 2z x = −  , where 
1z  ,

2z  are error variables.   denotes the virtual 

control variable, we design it as 

( )2 2

c 1 r

s 1 21

c

k - x x
a = -k z +

k


                         (35) 

where 
1sk  is positive number, 

ck is the limit in cartesian space,  is given in (14) 

The control law is designed as 

( )ˆ
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T1 c

s s2 2 s2 2

c 1
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f = - k z +W- S Z +u

k - x
                   (36) 

In the actual system, the dynamics parameters and are typically unknown. RBFNN is used to 

approximation manipulator uncertainties to handle the uncertainty issue in the dynamic model. The 

neural network's input on the slave side can be chosen as  s sZ = x ,x ,α,α  . RBF neural network is 

defined as 

( )T

s s s sW S Z = M a+C a+G +e                   (37) 

 

3.4. Stability Analysis 

Define the Lyapunov function of master and salve as 
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Where ˆW W W= −  

The Lyapunov candidate function of whole system as 
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Then, the derivative of V𝑚 can be calculated as 
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Combine (1), (2), (16), (41) 
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Substituting (31) (36) into (42), we have 
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then 
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Furthermore, the robust term in a controller, which is used to deal with estimating error, external 

disturbance, and modelling error, can be created as 

 ( ) ( )u εm m mb md sgn x= − +                                (45) 

where 
mDm d , ε εm mb ,

md  and εmb
are positive constants. 

( ) ( )s s 2u ε sgnsbd z= − +                                 (46) 

where 
s sD d , ε εs sb  

sd and εsb
 are positive constants. 

Thus, the adaptive law, which is used to estimate the RBF neural network parameters online and real 

time, can be designed as 
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According to the Lyapunov stability theorem, the Lyapunov function is uniformly positive defined, its 

derivative is negative defined. The aforementioned formula ensures global stability and the 

convergence of global tracking in the system employing the suggested controller. 

 

4. Experiment 

The proposed method has been verified on two Touch robots, which are haptic devices manufactured by 

3D Systems. As shown in Fig.2, the device has three degrees-of-freedom (DOF) can be driven by a torque 

controller. In our experiments, two Touch robots were served as master and slave. The dynamics of two 

Touch robot can be modeled as (1) and (2), where the knowledge of the dynamic parameters is estimated 

by RBF neural network in the teleoperation process. The proposed method is tested by two groups of 

experiments:  

⚫ The test of controllers: The slave robot is performed to move along the learned trajectory to 

accomplish the task, trajectory is modified through operating the master robot in remote 

environment by human operator. 

⚫ The test of trajectory learning: The IBLF-based DMPs is used to generate a learned trajectory. 

Constraints of task space and velocity is considered. 

 
Fig. 2. Experimental setup for testing 

 

4.1. Constrainted control effect 

In this part, we apply the designed controllers to verify work of the proposed algorithm. The experiments 

are performed on the two touch robots. First, a demonstration trajectory is given by operator, then the 

slave robot moves along the trajectory and the master robot is operated to modify the trajectory of the 

slave robot. 



 
Fig. 3. Results of remote corrective control 

 

For the master robot, the parameters are chosen as 10mink = ,
max 100k = , 0.1m mbd + = , 1D = ,Γ 1m =

[50,0,60]mdx =  is near the mid of its workspace. For the slave robot, control parameters are chosen as 

1   10sk = , 60ck = and
2 15sk = , 0.1s sbd + = , Γ 1s = . The slave robot receives the correction 

information from the master after filter and then applies the soft saturation function to generate the 

desired trajectory of the end effector in task space. Parameter of soft saturation function is designed as

0.98 = , the weight parameters of the RBF NN are initialized as 0, and the centers of the functions are 

distributed in the interval [0, 1]. The human operates the master device toward boundaries in the y-axes 

orderly. 

The experiment results are shown in Fig.3, our suggested controller guarantees that the end-effector 

tracks the reference trajectory in real time while operating inside the restricted area. Operator can feel 

the resistance when moving away from the hold position which prevent accidental contact. When the 

operator forced the slave to cross the bound of 60y = , the soft saturation function and IBLF controller 

work together to ensure the end-effector stay below the limit. 



 
Fig. 4. Motion generation of different methods 

 

4.2. Trajectory learning 

The second group of experiments aims to test the ILBF-based motion model. The ability of constrains of 

task space and the velocity are tested. A drawing task is designed for the test. The common parameters 

of DMPs are chosen as 5s = , 10z = , 100z =  and others are set separately in each experiment. 

To validate the correction performance of the IBLF based DMPs, the parameters of IBLF are 
1 1k = ,

2 10k =  , 8ck =  . As shown in Fig. 4, during the operation, the track was corrected by teleoperation 

equipment, and an obstacle was added in the early stage of the experiment to make the movement within 

the edge. The corrected trajectory will be learned then, we hope that the learned trajectory will not cross 

the limit where we get the information from correction. 

As shown in Fig. 5, The classical DMPs method is compared with the IBLF based method. In the 

generalization process, both of them better learn the characteristics of the trajectory, and finally 

approach the target point. However, due to the few selected neural network nodes, the local features 

cannot be perfectly expressed. Compared with the classical method, IBLF based method can constrain 

the motion within the set range.  

 



 
Fig. 5. Motion generation of different methods 

 
Fig. 6. Velocity comparison of DMPs and proposed method 

 

Fig.6 shows the speed constraint capability. The speed constraint item is added to the IBLF-based method, 

and the selected parameter is 100A = 100B = − 10 = 0 5 = 1 10 =  

It can be seen that velocity is able to stay within the limits comparing with the classic DMPs. The velocity 



oscillation at 0.3 is a confrontation to prevent crossing the obstacle and the desired trajectory. 

 

5. Conclusion  

In this article, a IBLF constrained DMPs has been designed to generate the trajectory under limits. 

Our proposed controller guaranteed the state avoid the obstacle and velocity follow the bound. A control 

system involving IBLF based slave controller and impedance master controller has been applied, and 

dynamic uncertainties is approximated by the RBFNN learning method. The proposed controller 

guaranteed the constrained performance in task space and robustness of the controller. The effectiveness 

of the system has been verified on the Touch robots experiment platform. In our future work, we will 

further research on the full state constrain problem of constrained DMPs method and focus on varying 

constrained methods.  
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