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Abstract 

 

 In a chiller plant, primary or critical sensors are used to control the system operation 

while secondary sensors are installed to monitor the performance/health of individual 

equipment. Current sensor fault detection and diagnosis (SFDD) approaches are not 

applicable to secondary sensors which usually are not involved in the system control. 

Consequently, a hybrid multiple sensor fault detection, diagnosis and reconstruction 

(HMSFDDR) algorithm for chiller plants was developed. Machine learning and pattern 

recognition were used to predict the primary sensor faults through the comparison of the 

weekly performance curves. With the primary sensors signals reconstructed, the secondary 

sensor faults were estimated based on mass and energy balance. By applying the algorithm 

with various logged plant data and comparison with site checking results, a maximum of 

75% effectiveness could be achieved. The merits of the present approach were further 

justified through off-site sensor testing which reinforced the usefulness of proposed 

HMSFDDR algorithm. 
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1. Introduction 

 

Digitalization in HVAC systems is getting popular nowadays. By the proper 

analysis on past performance data and issue trends through fault detection and diagnosis 

(FDD), abnormal or faulty control and energy saving opportunities may be identified 

through simulation and predictive technologies. Studies on FDD of air-conditioning 

systems have been made in recent decades. The applied methods for FDD can be mainly 

divided into three categories according to the system modeling approach, namely 

quantitative model-based, qualitative model-based and process history-based according to 

Venkatasubramanian et al. (2003a~c). According to Kim and Katipamula (2018), over 60% 

of the published FDD studies adopted the process history-based approach particularly using 

statistical black box methods. 

 

In the chiller plant, reliable and accurate sensor measurements are essential for 

monitoring the system/equipment performance, implementing control strategies and 

diagnosing equipment and system performance. Primary or critical sensors (CS) are used 

in the system control while secondary sensors (SS) were employed to indicate the 

performance/health of individual equipment. Since different kinds of sensor faults may 

occur in the chiller plant, sensor fault detection and diagnosis (SFDD) is useful and 

somehow critical to ensure the proper system operation. In particular, sensor fault 

reconstruction is sometimes essential as it may not be convenient to replace a faulty sensor 

immediately in actual practice. 

 

Numbers of studies have been made on SFDD of chiller plants using the process 

history-based approach. Wang et al. (2001) devised a method for the SFDD of chiller 

system based on a normalized energy balance residual approach. Wang and Cui (2005) 

applied PCA method to diagnose and reconstruct sensor faults in centrifugal chiller 

systems. Sun et al. (2010) presented a sensor fault diagnosis method for a chiller plant 

which employed a data fusion algorithm to diagnose the faults when calculating the system 

cooling load through direct measurement. Wang et al. (2010) proposed a FDD strategy 

which involved system and sensor faults for HVAC systems. They remarked that SFDD 

with reconstruction could still work well under different system fault situations. Li et al. 
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(2016) applied the support vector data description (SVDD) algorithm to conduct SFDD of 

a screw chiller system. They compared the SFDD effectiveness with that based on the PCA 

and found that the proposed method offered similar performance in fault detection but 

better results in fault diagnosis under various fault conditions. 

 

Wang et al. (2018) presented a decentralized SFDD method with reconstruction for 

HVAC systems by employing an exponential function to diagnose and reconstruct the 

sensor readings. Gao et al. (2019) devised a SFDD algorithm by using virtual sensors which 

were highly correlated to different groups of actual sensors in an air-conditioning system. 

Zhang et al. (2019) proposed a SFDD approach based on PCA and clustering method with 

the combined k-means and subtractive clustering employed to identify and classify 

modeling data in unsteady operating conditions. Luo et al. (2019) developed a SFDD 

strategy by employing k-means clustering for a chilled water system. With system 

operation data simulated by using TRNSYS, a total centroid score profile was established 

for four typical weeks throughout a year to detect and diagnose the various sensor faults. 

Elnour et al. (2020) presented a SFDD method based on auto-associative neural network 

(AANN). They found that data validation and diagnostic accuracy was improved as 

compared to that based on the PCA. However, their method could not reconstruct the sensor 

signal. Ng et al. (2020) employed the Bayesian method to predict the temperature and flow 

sensor faults in a chiller plant with ideal sensor arrangement. Wu et al. (2021) applied the 

partial least square method to diagnose the sensor fault in a chiller plant. They claimed that 

the results were better than those using the PCA method. 

 

Through the above literature review, studies on SFDD using big data analytics were 

mainly focused on primary or critical sensors which were used in the system control. For 

secondary sensors, the employed approaches are generally not effective. Moreover, 

secondary sensors can be correlated to the system performance only when the associated 

equipment is in operation. For example, when any chiller is not running, there will be no 

water flow past that chiller according to the common design practice. In this regard, the 

water temperatures at both ends of the chiller can be quite different from those of the critical 

ones even if the secondary temperature sensors are still healthy. If the same approach is to 

be used for both types of sensors, then only those operating data in which all the major 

equipment are in operation can be used. This may only occur during the peak-load period, 

and SFDD cannot be conducted outside the peak-load period. 



 

4 

 

 

To solve the problem, it is evident that a different approach should be used in order 

to perform SFDD for the secondary sensors. Hence, it was the intent of this paper to derive 

an algorithm to diagnose and reconstruct both primary and secondary sensor faults in a 

chilled water system which combined big data analytics and thermodynamics. Actual 

logged system operation data and site checking reports from various plants were used to 

justify the effectiveness of the algorithm. Besides, a comprehensive data refinement 

procedure was introduced to better the quality of the input data for system modeling and 

fault evaluation rather than just screening out the suspected data set. 

 

2. Algorithm development 

 

2.1 Research methodology and outline of algorithm 

 

Figure 1 depicts the symbolic diagram of a centralized water-cooled chilled water 

system which indicates the locations of the various CS and SS considered. It was evident 

that all critical sensors were correlated to the chiller plant performance whenever the plant 

was in operation but not necessarily for all the secondary sensors. The SS were not included 

in the plant control.  Their readings were coupled with the plant operation only when the 

associated equipment was running as indicated in Figure 1. 

 

 

Figure 1. Symbolic diagram of a centralized water-cooled chilled water system. 
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 In this study, a hybrid multiple sensor fault detection, diagnosis and reconstruction 

(HMSFDDR) algorithm [with a patent application filed (Lo et al. 2022)] was developed 

and executed to determine any potential sensor fault signals from both CS and SS. For CS, 

it was based on machine learning and pattern recognition. For SS, their readings might not 

be closely coupled to the chiller plant performance throughout the entire operating 

schedule. Hence, the analysis method was different from those for the critical sensors. 

Instead, thermodynamics approach was employed. The open-source Python programming 

platform was employed to build the HMSFDDR algorithm due to its familiarity in artificial 

intelligence and machine-learning studies. Many downloadable plugins are available which 

are commonly used in pattern recognition like ANN modeling and k-means clustering. 

Figure 2, shows the outline of the HMSFDDR algorithm. Detailed description would be 

given in Section 2.2. 
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Figure 2. Overall flowchart for the HMSFDDR algorithm. 

 

2.2. Detailed description of algorithm 

 

 According to Figure 2, the HMSFDDR comprised various processes, namely 

system modeling and sensor selection, database building, evaluation for CS and 
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evaluation for SS. Different subroutines were involved, namely data refinement (DRef), 

system modeling (SMod), sensor selection (SSel) for CS, sensor fault detection (SFDet) for 

CS, sensor fault diagnosis (SFDia) for CS, sensor fault reconstruction (SFRec) for CS and 

fault evaluation of SS as detailed in the following sub-sections. Before performing the 

HMSFDDR, it might be useful and necessary to pre-screen the quality of the logged data 

first in order to determine whether it could be used for HMSFDDR. Hence, the programme 

allowed if only a quality check of the input data was to be done. In this way, only the DRef 

subroutine was executed. Users could then determine if HMSFDDR should be continued. 

 

 Figure 3 shows the detailed description of the HMSFDDR algorithm. During the 

execution of HMSFDDR, information transfer across the different processes was needed 

through data files as indicated by ○A  to ○G  in Figure 3. 

 

 In system modeling and sensor selection, three input datasets would be generated 

for system modeling, fault evaluation of CS (○A ) and SS (○B ) respectively. Then, the ANN 

system model was established by using the SMod subroutine, followed by the SSel 

subroutine to determine if all the critical sensors should be involved. The normalized 

dataset used for SMod (○C ) as well as the parameters of the ANN model (○D ) were stored 

for later use. 

 

 In database building, the databases for the fault-free and faulty centroid scores of 

the considered critical sensors were built in the SFDet and SFDia (for database building) 

subroutines for use in the fault evaluation of CS as shown in Figure 3. The normalized 

dataset used for SMod (○C ) as well as the parameters of the ANN model (○D ) were read in 

order to determine the respective fault-free (○E ) and faulty (○F ) centroid score database. 

 

 In evaluation for CS, the input dataset (○A ) and the fault-free centroid score 

database (○E ) were used generate the evaluation centroid score database in SFDet (for 

evaluation). Then, the respective faults for the critical sensors were determined in SFDia 

(for evaluation) and the fault reconstruction database (○G ) generated in SFRec. 
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Figure 3. Detailed description of the HMSFDDR algorithm. 



 

9 

 

 In evaluation for SS, the input dataset (○B ) and the fault reconstruction database 

(○G ) were used to compute the temperature bias profile of each secondary sensor. 

 

2.2.1 Data refinement 

  

The logged data from the BMS system at different sites may have different formats 

and structures for the same signals. Sometimes, the logged information is incomplete with 

missing data at particular time steps and/or signals. To worsen the situation, some logged 

data may not be within the reasonable range, say a negative value for equipment power, 

and that some logged data may appear to be in conflict such as a recorded equipment power 

when the equipment status is OFF. Consequently, a data refinement procedure is necessary 

which has two purposes. The first one is to check the quality of the logged data. This is 

useful as some information may be collected regarding the health of the sensors through 

this process. The second purpose is that a reasonable logged data is important for building 

the system model (further elaborated in the Section 2.2.2). 

 

 The data refinement steps can be grouped into four categories, namely conversion 

of non-numeric data to numeric (R0), check for missing data (R1), check for data out-of-

range (R2) and check for data conflict with equipment on/off status (R3) as summarized in 

Appendix B. Upon completion of the data refinement subroutine, various data files would 

be created which recorded the data refinement checking results. In the complete 

HMSFDDR algorithm, three datasets are required as already mentioned before. The time-

dependent input data was divided into two parts. The first part was used for modeling 

training and database building while the latter one was used for fault evaluation of critical 

sensors. The ratio of the training period was governed by the training period ratio (Trainratio) 

as specified in the time-independent input template. As the model training, database 

building and fault evaluation of critical sensors did not require secondary sensor signals 

(except the chilled water supply temperature), less information was needed. Meanwhile, 

the dataset for the fault evaluation of secondary sensors involved all the data points within 

the evaluation period. 
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2.2.2 System modeling 

  

To investigate the performance of the system under a faulty signal, a proper system 

model should be developed. For a chiller plant, various design configurations may be 

adopted which include water-cooled system, air-cooled system, primary chilled water pipe 

system, primary and secondary chilled water pipe system, constant-speed pumps, variable-

speed pumps, etc. To further complicate the situation, different control strategies may be 

implemented and the operation of the system may be continuous or scheduled. All these 

factors make it time-consuming to build the system model based on the dynamic system 

simulation software like TRNSYS, particularly in view of the fact that specific models 

might be needed for different chiller plant systems to be investigated. Consequently, a more 

generic modeling approach based on ANN was selected. By using the ANN model, there 

was no need to consider the detailed operation of the system. Fixed input templates as 

shown in Appendix A could then be used. The logged data was used to train and test the 

ANN model. In this regard, the data refinement procedure was crucial in order to build an 

appropriate system model. 

 

Table 1. Summarized input and output layer of the system model. 

Input layer Output layer 

1 T 13 Tchwr,2  1 Qe  10 mchw  

2 D 14 Tchwr,3  2 Pch  11 mcw  

3 M 15 Tchws,2  3 Pchwp  12 mca  

4 To,db 16 Tchws,3  4 Pct  13 Tchwr,1  

5 To,wb  17 mchw
i-1  5 Pcwp  14 Tchws,1  

6 Tchwr,1  18 Tchwr,1
i-1  6 Nch  15 Tchwr,2  

7 Tchws,1  19 Tchws,1
i-1  7 Nchwp  16 Tchwr,3  

8 Tcwr  20 Tchwr,2
i-1  8 Nct  17 Tchws,2  

9 Tcws  21 Tchws,2
i-1  9 Ncwp  18 Tchws,3  

10 mchw  22 Tchwr,3
i-1    

11 mcw  23 Tchws,3
i-1    

12 mca      

 

 Before training and testing the system model, it is necessary to define the input and 

output data sets. The input data set should be taken as much as possible those parameters 

needed to characterize the system performance. For a dynamic system, the operating 

parameters in the previous time step can affect the system performance in the current time 

step. Consequently, it is appropriate to include some of these “old” operating parameters 

into the input data set. Meanwhile, the output data set mainly highlights the key operating 



 

11 

 

parameters of those major equipment and the system. Table 1 summarizes the input and 

output layer of the ANN model used in this study. Here, Inputs 17 to 23 referred to those 

operating parameters in the previous time step (i-1). At maximum three supply and return 

header streams was considered. As shown in Table 1, only CS were involved for building 

the system model. There were some parameters that appeared in both the input and output 

layers. The purpose was to enhance the modeling accuracy of those parameters in the model 

training process. 

 

 The structure of the ANN network can substantially affect the accuracy of the 

model. In general, the use of more intermediate layers and neurons in each layer can 

improve the precision of the model but at the expense of longer computation time. While 

there is no simple way to find the optimal configuration, the usual practice is by repeated 

trials. In this study, two intermediate layers were employed, the first one having 460 

neurons and the second one having 360 neurons. The resulting accuracy of the ANN model 

was discussed in Section 5. Before conducting the model training, all input and output 

parameters were normalized between the minimum and maximum values of those 

parameters in the time-dependent input database. For any input/output parameter x, the 

respective normalized value X was given by 

𝑋 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                (1) 

 

 To train the system modeling, 70% of the time steps in the time-dependent input 

template (the first part for modeling training and database building) was randomly selected. 

The remaining was used for model validation (15%) and testing (15%). For a building 

which is not operating in 24 hours basis, the performance of the chiller system during the 

night period usually appears to be intermittent which influences the effectiveness of the 

system modeling. Consequently, in such case, the operating data between 10:00 pm and 

8:00 am was not used in system modeling and subsequent sensor fault detection and 

diagnosis.  

 

2.2.3 Sensor selection 

  

With the ANN model developed, it is necessary to identify which critical sensor 

signal affects the system performance to a greater extent. This is important as a more 
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significant difference in the system performance can be detected under the faulty situations 

for a critical or primary sensor in which the system performance is more sensitive to. To 

do so, all critical sensors were considered. Again, to facilitate the direct use of the ANN 

model, normalized parameter values were adopted. For each selected normalized parameter 

X, a base value (Xbase) was defined which was taken as the median value in the input 

database. Then, respective maximum (Xmax) and minimum (Xmin) values were found within 

the input database. The parameter range of X (X) employed in the sensitivity analysis was 

then determined based on the following approach: 

∆𝑋 = 𝑀𝑖𝑛(𝑋𝑚𝑎𝑥 − 𝑋𝑏𝑎𝑠𝑒 , 𝑋𝑏𝑎𝑠𝑒 − 𝑋𝑚𝑖𝑛)             (2) 

𝑋𝑙𝑙 = 𝑋𝑏𝑎𝑠𝑒 − 𝑠𝑓∆𝑋                (3) 

𝑋𝑢𝑙 = 𝑋𝑏𝑎𝑠𝑒 + 𝑠𝑓∆𝑋                (4) 

Here, sf was a span factor which ranged between 0 and 1. The use of this span factor was 

to ensure that the resulting combination of the operating parameters was within the realistic 

range. In this study, sf was taken as 0.2. 

 

 With the parameter ranges set, respective sensitivity analyses were conducted. The 

system coefficient of performance (COPsys) was selected as the parameter for comparison. 

When investigating the system sensitivity to one parameter, base values of the other 

operating parameters were adopted. The differences in COPsys over the entire parameter 

range {Xll, Xul} in the sensitivity analyses were compared. A greater difference in COPsys 

indicated a higher sensitivity of the system performance to that parameter. 

 

2.2.4 Sensor fault detection 

  

In SFDet (for database building), the fault pattern database for the fault-free and 

faulty cases were determined by using the total centroid score (CSt) as proposed by Luo et 

al. (2009). For each week of the model training dataset, respective fault-free and faulty 

patterns were generated to characterize the weekly performance of the system by using the 

modeled results. With Ns selected sensor signals, a normalized fault-free modeled sensor 

signal dataset Xff={Xi,j,ff, i=1,2,..,tmax, j=1,2,..,Ns} was built, where tmax was the maximum 

time step in a week. Then, k-means clustering was applied to group the sensor data into 

numbers of clusters N where N was given by a rule-of-thumb 𝑁 = √𝑡𝑚𝑎𝑥 2⁄2
. With the 

centroid dataset of the clusters C={ck,j, k=1,2,..,N, j=1,2,..,Ns} computed, the clustered fault-
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free data subsets Gff={Gk,ff, k=1,N} were determined where ⋃ {𝐺𝑘,𝑓𝑓} = 𝓧𝑓𝑓
𝑁
𝑘=1 . The fault-

free total centroid score at any time step (CSt,i,ff) was then given by 

𝐶𝑆𝑡,𝑖,𝑓𝑓 =
‖𝑋𝑖,𝑓𝑓−𝑐𝑘‖

(
∑ ‖𝑋𝑓𝑓−𝑐𝑘‖𝐺𝑘,𝑓𝑓

𝑛𝑘
)

               (5) 

where nk is the number of time steps in the clustered subset Gk,ff containing that at time step 

i, and ‖ ‖ was the Euclidean distance. Then, all the CSt,i,ff would be divided by the weekly 

mean fault-free total centroid score [not adopted by Luo et al. (2019)] such that 

𝐶𝑆𝑡,𝑖,𝑓𝑓 =
𝐶𝑆𝑡,𝑖,𝑓𝑓

(
∑ 𝐶𝑆𝑡,𝑖,𝑓𝑓

𝑡𝑚𝑎𝑥
1

𝑡𝑚𝑎𝑥
)

               (6) 

 

 In SFDet (for evaluation), the weekly centroid score (CSt,i,e) profiles based on the 

modeled results were calculated similarly to those of the fault-free case, i.e. 

𝐶𝑆𝑡,𝑖,𝑒 =
‖𝑋𝑖,𝑒−𝑐𝑘‖

(
∑ ‖𝑋𝑓𝑓−𝑐𝑘‖𝐺𝑘,𝑓𝑓

𝑛𝑘
)

               (7) 

and the final values were given by 

𝐶𝑆𝑡,𝑖,𝑒 =
𝐶𝑆𝑡,𝑖,𝑒

(
∑ 𝐶𝑆𝑡,𝑖,𝑒

𝑡𝑚𝑎𝑥
1

𝑡𝑚𝑎𝑥
)

                (8) 

In Eq. (7), the same denominator as that used in Eq. (5) on the right hand side was 

employed. Again, this was different from that proposed in Luo et al. (2019) as it was found 

that a better pattern recognition result could be obtained. Here, the same fault-free cluster 

centroid dataset was used when evaluating the CSt,i,e and that the weekly fault-free cluster 

sequence was applied to the weekly evaluation data. 

 

2.2.5 Sensor fault diagnosis 

  

Three types of fault signals were considered in this study, namely bias (B) (both 

positive and negative), drift (D) (both positive and negative) and precision degradation (P). 

Each type of fault signal had different characteristics as summarized in Table 2. The 

instantaneous signal error (ei) for bias was constant throughout the whole evaluation period 

while the magnitude increased with time for drift. For precision degradation, it was 

determined from a Gaussian distribution function (G) with mean value zero and standard 

deviation . 
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Table 2. Summarized characteristics of the different fault signals. 

Fault type Fault strength Error correlation 

Bias  ei =  

Drift  ei = ei-1 + t 

Precision degradation  ei = G(0,) 

 

 To generate the fault pattern database for the faulty cases in SFDia (for database 

building), a faulty sensor signal was used to determine the faulty system performance 

through the ANN model where 

𝑥𝑖𝑗,𝑓𝑡 = 𝑥𝑖𝑗,𝑓𝑓 + 𝑒𝑖𝑗                (9) 

Again, normalization of parameters were required when using the ANN model. For each 

week of data in the modeling training dataset, a faulty total centroid score (CSt,i,ft) was 

defined similar to the evaluation total centroid score in which 

𝐶𝑆𝑡,𝑖,𝑓𝑡 =
‖𝑋𝑖,𝑓𝑡−𝑐𝑘‖

(
∑ ‖𝑋𝑓𝑓−𝑐𝑘‖𝐺𝑘,𝑓𝑓

𝑛𝑘
)

             (10) 

Same as that for the fault-free and evaluation total centroid scores, all the CSt,i,ft should be 

divided by the weekly mean faulty total centroid score as indicated in Eqs. (6) and (8). 

 

Table 3. Definition of different fault cases for both temperature and flow sensors. 

Fault type Strength Number of cases 

Bias 

Temperature 

min = 0.1 °C 

max = 1.0 °C 

Flow 

min = 5% of mmax 
1 

max = 10% of mmax 

10 for positive bias 

10 for negative bias 

Drift 

Temperature 

min = 0.005 °C/h 

max = 0.025 °C/h 

Flow 

min = 0.1% of mmax /h 

max = 1% of mmax /h 

6 for positive drift 

6 for negative drift 

Precision degradation 
max = max 

min = 10% of max 
6 

1  Maximum system flow. 
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 To build the faulty database, different fault cases were considered. This included all 

the three fault types with different fault strengths. In this study, two types of sensors were 

involved, namely temperature and flow sensors. Table 3 summarizes the variation of fault 

cases investigated. For each sensor signal, there would be totally 38 fault cases. To 

complicate the situation, if multiple sensor faults were to be dealt with, the number of fault 

combinations would be enormous (totally 1,520 faulty cases for two sensors only). The 

required memory and computational time would be very costing. In view of this, a 

maximum of two sensor signals would be handled in each round of fault evaluation for the 

critical sensors. 

 

 During SFDia (for evaluation), the evaluation profile for each evaluation week 

would be compared with all the weekly fault-free and faulty profiles week-by-week. The 

fitness of the profiles was determined by the Euclidean distance between the fault-

free/faulty CSt profiles and the evaluation ones. Then, the fault case with the smallest 

Euclidean distance would be identified for each evaluation week. The fault case with the 

highest frequency of occurrence throughout the whole evaluation period would be taken as 

the fault diagnosis result for the selected critical sensor. 

 

 To proceed with the fault evaluation of SS, various BASE reference temperatures 

of CS needed to be established. They were the return chilled water header temperatures and 

the cooling water supply and return header temperatures (for water-cooled systems only). 

The chilled water system flow was also necessary if there was no individual chilled water 

flowmeter for each chiller. To achieve, they had to be checked through the fault evaluation 

of CS. As mentioned previously, the simultaneous checking of more than two sensors 

would involve a very large fault pattern database. Hence, it was decided after vigorous trials 

that the fault evaluation of each return chilled water header temperature would be done 

together with the system chilled water flow one-by-one. In this regard, the conduction of 

multiple sensor fault detection, diagnosis and reconstruction could be demonstrated. Then, 

the fault evaluation of cooling water supply and return header temperatures (if required) 

would be made individually. 

 

2.2.6 Sensor fault reconstruction 
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With the fault evaluation of all the critical sensors completed, a reconstruction file 

would be generated which recorded the starting time (Year, month and day), type ("B" for 

bias, "D" for drift and "P" for precision degradation) and value of the fault reconstructions. 

For precision degradation, the reconstruction value was set to zero. For bias and drift, it 

was simply the negative of the fault value. The information would be used in the fault 

evaluation of SS to reconstruct the respective CS when appropriate. 

 

2.2.7 Fault evaluation of secondary sensors 

  

As the chiller plant performance was less sensitive to SS, the previous approach of 

employing pattern recognition technique was not suitable. Instead, the corresponding 

temperature bias of the SS were computed by using energy and mass balance method. On 

the chilled water side, the SS included those installed at the chilled water inlet and outlet 

of each chiller as well as that at the chilled water supply header. On the cooling water side 

which only applied to water-cooled systems, the SS included those placed at the cooling 

water inlet and outlet of each chiller as well as the water inlet and outlet of each cooling 

tower. In actual situations, not all these sensors were available, and the algorithm would 

check for this. 

 

 Before starting the computation of the respective temperature bias profiles, the input 

dataset were first screened. If the number of installed chillers was greater than two, only 

those time steps when at least two chillers were in operation would be selected. Otherwise, 

all those time steps with at least one chiller in operation would be considered. Similar to 

that in the fault evaluation of CS, only those time steps between 8:00 am to 10:00 pm were 

considered if the chiller plant was not operated in 24-hours basis. 

 

 The algorithm started on the chilled water side. The temperature bias at different 

locations were determined by using the chilled water return temperature as the BASE value. 

The reference or correct values and the corresponding temperature bias at various locations 

were determined as follows: 

𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑖,𝑐ℎ = 𝑇𝑐ℎ𝑤𝑟              (11) 

Here, the reference value for the chiller entering chilled water temperature (Tref,chwi,ch) was 

taken as the chilled water temperature at the return header. Should there be more than one 
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chilled water return header, the mean value from all the chilled water return headers was 

used. Then, the temperature bias of the chilled water temperature sensor at the chiller inlet 

(Tchwi,ch) was given by 

𝛿𝑇𝑐ℎ𝑤𝑖,𝑐ℎ = 𝑇𝑐ℎ𝑤𝑖,𝑐ℎ − 𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑖,𝑐ℎ            (12) 

The reference temperature (Tref,chwo,ch) and the corresponding temperature bias (Tchwo,ch) of 

the chilled water temperature sensor at the chiller outlet was calculated from 

thermodynamics so that 

𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑜,𝑐ℎ = 𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑖,𝑐ℎ −
𝑄𝑐ℎ

𝑚𝑐ℎ𝑤,𝑐ℎ𝑐𝑝
           (13) 

𝛿𝑇𝑐ℎ𝑤𝑜,𝑐ℎ = 𝑇𝑐ℎ𝑤𝑜,𝑐ℎ − 𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑜,𝑐ℎ            (14) 

If both chiller COP and power input information are available, 

𝑄𝑐ℎ = 𝐶𝑂𝑃𝑐ℎ𝑃𝑐ℎ              (15) 

Otherwise, 

𝑄𝑐ℎ = 𝑚𝑐ℎ𝑤,𝑐ℎ𝑐𝑝(𝑇𝑐ℎ𝑤𝑖,𝑐ℎ − 𝑇𝑐ℎ𝑤𝑜,𝑐ℎ)           (16) 

In the latter case, the chilled water temperature bias at both chiller inlet and outlet would 

be the same, and 

𝛿𝑇𝑐ℎ𝑤𝑜,𝑐ℎ = 𝛿𝑇𝑐ℎ𝑤𝑖,𝑐ℎ              (17) 

The reference temperature for the chilled water temperature at the supply header (Tref,chws) 

was computed from energy balance which was given by 

𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑠 =
∑ 𝑚𝑐ℎ𝑤,𝑐ℎ𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑜,𝑐ℎ

𝑁𝑐ℎ
1

∑ 𝑚𝑐ℎ𝑤,𝑐ℎ
𝑁𝑐ℎ
1

            (18) 

The temperature bias at the chilled water supply header (Tchws) was then 

𝛿𝑇𝑐ℎ𝑤𝑠 = 𝑇𝑐ℎ𝑤𝑠 − 𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑠             (19) 

 

 For the cooling water side (only applicable to water-cooled system), the cooling 

water supply and return temperatures were used as the BASIS for calculating the reference 

temperatures. By applying the similar approach as for the chilled water side, the respective 

reference temperature and temperature bias at various locations could be calculated as 

follows: 

𝑇𝑟𝑒𝑓,𝑐𝑤𝑖,𝑐ℎ = 𝑇𝑐𝑤𝑠             (20) 

𝛿𝑇𝑐𝑤𝑖,𝑐ℎ = 𝑇𝑐𝑤𝑖,𝑐ℎ − 𝑇𝑟𝑒𝑓,𝑐𝑤𝑖,𝑐ℎ           (21) 

𝑇𝑟𝑒𝑓,𝑐𝑤𝑜,𝑐ℎ = 𝑇𝑟𝑒𝑓,𝑐𝑤𝑖,𝑐ℎ +
(𝑄𝑐ℎ+𝑃𝑐ℎ)

𝑚𝑐𝑤,𝑐ℎ𝑐𝑝
           (22) 

𝛿𝑇𝑐ℎ𝑤𝑜,𝑐ℎ = 𝑇𝑐ℎ𝑤𝑜,𝑐ℎ − 𝑇𝑟𝑒𝑓,𝑐ℎ𝑤𝑜,𝑐ℎ           (23) 
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𝑇𝑟𝑒𝑓,𝑐𝑤𝑖,𝑐𝑡 = 𝑇𝑐𝑤𝑟             (24) 

𝛿𝑇𝑐𝑤𝑖,𝑐𝑡 = 𝑇𝑐𝑤𝑖,𝑐𝑡 − 𝑇𝑟𝑒𝑓,𝑐𝑤𝑖,𝑐𝑡           (25) 

𝑇𝑟𝑒𝑓,𝑐𝑤𝑜,𝑐𝑡 = 𝑇𝑟𝑒𝑓,𝑐𝑤𝑖,𝑐𝑡 +
𝑚𝑐𝑤(𝑇𝑐𝑤𝑟−𝑇𝑐𝑤𝑠)

𝑁𝑐𝑡𝑚𝑐𝑤,𝑐𝑡
          (26) 

𝛿𝑇𝑐𝑤𝑜,𝑐𝑡 = 𝑇𝑐𝑤𝑜,𝑐𝑡 − 𝑇𝑟𝑒𝑓,𝑐𝑤𝑜,𝑐𝑡           (27) 

 

 For each selected time step, the computation of the bias were only made to those 

sets of equipment which were in operation. Respective trend data of the temperature bias 

for the SS were then generated. The next step was to smooth or flatten the trend profiles in 

order to determine the representative bias throughout the whole record period. This was 

accomplished in three stages. In the first stage, the trend profiles were segmented in various 

groups by using the moving average approach. A moving average was computed along 

each trend profile. For a group of temperature bias (Tm), the moving average before the 

second instant would be T1. The moving average before the third instant would be 

(T1+T2)/2, and the corresponding value before the n instant would be given by 

∑ 𝛿𝑇𝑚
𝑛−1
1 (𝑛 − 1)⁄ . If this value deviated from Tn by more than 0.3 °C, a new group would 

be formed starting with Tn and the new moving average calculated until the end of the 

trend profile. In the next stage, the trend profile of each group was leveled based on the 

group average value. The final step involved the merging of adjacent groups with group 

average values differed by less than 0.2 °C, starting from the first instant of the trend profile. 

The new average values for the merged groups would then be re-calculated. The process 

repeated until there was no more group merging. The selection of 0.3 °C in the profile 

segmentation and 0.2 °C in group merging was based on repeated trials so that the final 

step averages best represented the original trend profiles. 

 

Upon completion of the calculation, two data files would be created. Appendix C 

indicates samples of the two files. The first file summarized the checking results of all the 

sensors including both CS and SS. For CS, it might be bias, drift or precision degradation 

while it was always bias only for the SS. For air-cooled systems or in case no cooling water 

flow information was available, only those parameters involving chilled water would be 

shown. If the usable data set was less than 11 or when no chilled water flow signal was 

detected, SS checking would not be conducted. Only the results for CS [including the 

chilled water flow (if flow signal available), chilled water return header temperatures, 
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cooling water header supply and return header temperatures (for water-cooled system)] 

would be indicated, and no trend plot would be generated. Depending on the completeness 

and appropriateness of the dataset, not all the bias of the SS could be determined. Several 

remark messages might then be shown in the summary file as briefed in Table 4. The second 

file indicates the temperature bias trend plots (both original and flattened) of all the SS that 

could be calculated. 

 

Table 4. Summarized remark messages in the overall summary report. 

Message Reason 

No signal 
This occurred when the collected data values of particular 

sensor at all the usable time steps were less than 0.1. 

Running time insufficient 
This occurred when the number of usable time steps of 

particular chiller or cooling tower was less than 11. 

Cannot calculate 

This occurred when both the COP and power input of the 

chiller as well as the sensor signal for the chilled water 

temperature leaving the chiller were unavailable in the 

calculation of bias for the chilled water temperature leaving 

the chiller. When this happened, the bias for the chilled 

water main supply temperature would also be unable to 

calculate. Moreover, for a water-cooled plant, if the COP 

and cooling capacity of the chiller could not be found, the 

cooling water temperature leaving the chiller could not be 

calculated. 

 

 It might be queried how the HMSFDDR differentiated between sensor faults and 

equipment faults. In In a chiller plant, the major types of equipment included chillers, 

cooling towers for air cooled chillers and water pumps. The failure of these types of 

equipment could generally be traced from respective fault signals and the readings of 

correlated secondary sensors. Hence, they could be easily identified by the plant operators 

through the building automation system. Of course, if equipment faults occurred, the data 

within the equipment fault period would not be used for the HMSFDDR process. Hence, it 

could be confident that only sensors faults were found. 

 

3. Algorithm testing procedures 

 

 To test the HMSFDDR algorithm, the operating data of four chiller plants were 

employed. Table 5 summarizes the general information of the four chiller plants. Chiller 

Plant 1 (CP1) and Chiller Plant 2 (CP2) were water-cooled systems while Chiller Plant 3 
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(CP3) and Chiller Plant 4 (CP4) were air-cooled ones. Only CP1 was operated in 24-hour 

basis. The configuration of each chiller plant differed from each other to certain extent. 

 

Table 5. Summarized general information of the four chiller plants. 

Item CP1 CP2 CP3 CP4 

Type Water-cooled Water-cooled Air-cooled Air-cooled 

Operation 

schedule 
24 hours Non 24 hours Non 24 hours Non 24 hours 

No. of chillers 4 2 4 6 

No. of chilled 

water pumps 
4 3 8 6 

No. of cooling 

towers 
4 3 NA NA 

No. of cooling 

water pumps 
3 3 NA NA 

Rated plant 

cooling capacity 

(kW) 

8,440 2,110 3,460 7,345 

Rated plant 

chilled water 

flow (kg/s) 

402 101 228 318 

Rated plant 

cooling water 

flow (kg/s) 

440 119 NA NA 

Design chilled 

water supply 

temperature (°C) 

7 7 7 7 

Design cooling 

water supply 

temperature (°C) 

30 32 NA NA 

Data time span 

2017.07.30 

to 

2018.08.04 

2018.07.29 

to 

2019.08.03 

2019.06.09 

to 

2020.02.29 

2019.06.16 

to 

2020.02.29 

Data time step 15 minutes 15 minutes 5 minutes 5 minutes 

 

 Based on the logged plant data, the complete HMSFDDR algorithm was executed 

for each plant. The modeling accuracies for the various plants would be discussed. The 

summary results were then compared with those from manual site checking reports to 

assess the appropriateness of the HMSFDDR algorithm. Here, the judgement was based on 

whether the HMSFDDR results would bring the same action [reconstruct (if the magnitude 

of the fault value was greater than 0.5) or not] in the same direction (both positive and 

negative) as those from the site checking reports for each sensor signal. If yes, the 

assessment of the HMSFDDR for the respective signal would be declared PASS. 
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Otherwise, it would be considered FAIL. A HMSFDDR effectiveness (HMSFDDR) was 

defined in which 

𝜁𝐻𝑀𝑆𝐹𝐷𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐴𝑆𝑆′𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠
×100%           (28) 

The reconstruction threshold depended on the accuracy of the sensors used in the plant. It 

was recommended that the sensor accuracy should not be too low in order to allow a smaller 

reconstruction threshold to be used. 

 

To further justify the merit of the HMSFDDR, the results from the HMSFDDR were 

compared with those from off-site testing. Here, particular temperature sensors were 

collected from various sites and the readings compared with calibrated temperature reading 

device at various temperature levels. Figure 4 shows the flowchart for the algorithm testing 

procedure. 

 

 

Figure 4. Flowchart for the algorithm testing procedure of the HMSFDDR. 

 

4. Results and discussions 

 

4.1 Analysis of system modeling accuracy 
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 As mentioned in Section 2.2.2, ANN technique was employed to model the chiller 

system. To investigate the appropriateness of this approach, the respective accuracies of 

the ANN models for the four chiller plants were analyzed as summarized in Table 6. The 

wide variation of the calculated model accuracies somehow reflected the quality of the 

input data. For CP1, no cooling water flow information was provided. Meanwhile, the 

logged total chilled water flow for CP4 was constant even at mid-night when all the chillers 

were not in operation. Consequently, the completeness and preciseness of the input data 

was critical to a proper modeling of the system performance. The data refinement 

subroutine could only help reset particular out-of-range parameters to their bounded values 

but not the proper ones. In this regard, it was necessary to ensure that the logged data was 

appropriate. Otherwise, the reliability of the HMSFDDR results would be affected. For a 

new system, a new database and system model was needed. Even for the same system, the 

fault-free database should preferably be updated periodically with a new system model 

developed in order to cope with the continual change throughout the building life. 

 

Table 6. Summarized accuracies of the ANN model for the four chiller plants. 

Plant Average accuracy 

CP1 59.4% 

CP2 83.9% 

CP3 97.4% 

CP4 64.2% 

 

4.2 Summarized HMSFDDR results for the various chiller plants 

 

 Table 7 shows the summarized HMSFDDR results for the various chiller plants. 

The first five rows (those highlighted orange) were CS in which the fault type might be 

bias, drift or precision degradation. For the four chiller plants considered, there were all 

found to be bias. When the absolute bias values exceeded 0.5, they were marked with red 

colors as it meant that reconstruction of the sensor signals were required according to the 

strategy set in Section 3. For CP1, as no cooling water flow information was available, no 

calculation could be made for the respective sensors. For CP2, as there were no temperature 

sensors installed at the cooling water inlet of the cooling towers, no sensor signals were 

detected and the corresponding fault evaluation could not be made for those sensors. 
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Table 7. Summarized HMSFDDR results for various chiller plants. 

Sensor 
Fault (% of maximum flow, °C) 

CP1 CP2 CP3 CP4 

mchw NF 1 NF NF NF 

Tchwr,1 NF NF NF NF 

Tchwr,2 NF -0.1 (B) NA NA 

Tcwr NC 2 NF NA NA 

Tcws NC NF NA NA 

Tchws,1 0.19 0.10 -0.58 -1.30 

Tchws,2 0.41 NA NA NA 

Tchwi,Ch1 0.18 0.12 0.46 -0.64 

Tchwo,Ch1 -0.04 0.12 0.46 -0.63 

Tcwi,Ch1 NC 0.09 NA NA 

Tcwo,Ch1 NC -0.44 NA NA 

Tchwi,Ch2 -1.94 0.13 -0.46 -0.31 

Tchwo,Ch2 -2.14 0.13 -0.46 -0.31 

Tcwi,Ch2 NC -0.04 NA NA 

Tcwo,Ch2 NC -0.26 NA NA 

Tchwi,Ch3 0.20 NA -0.34 -0.62 

Tchwo,Ch3 0.19 NA -0.34 -0.62 

Tcwi,Ch3 NC NA NA NA 

Tcwo,Ch3 NC NA NA NA 

Tchwi,Ch4 RTI 3 NA 1.77 -0.80 

Tchwo,Ch4 RTI NA 1.77 -0.80 

Tcwi,Ch4 NC NA NA NA 

Tcwo,Ch4 NC NA NA NA 

Tchwi,Ch5 NA NA NA -0.6 

Tchwo,Ch5 NA NA NA -0.6 

Tchwi,Ch6 NA NA NA -0.54 

Tchwo,Ch6 NA NA NA -0.54 

Tcwi,Ct1 NC NS 4 NA NA 

Tcwo,Ct1 NC 0.29 NA NA 

Tcwi,Ct2 NC NS NA NA 

Tcwo,Ct2 NC 0.04 NA NA 

Tcwi,Ct3 NC NS NA NA 

Tcwo,Ct3 NC 0.11 NA NA 

Tcwi,Ct4 NC NA NA NA 

Tcwo,Ct4 NC NA NA NA 
 1  No fault. 2  Not calculated.  3  Running time insufficient.   3  No signal. 

 

 Besides CP1, there were no logged COP information for the chillers. Hence, the 

predicted temperature bias for the sensors at chiller inlet and outlet were the same according 

to Section 2.2.7. The only exception was the chiller water temperature sensors for Chiller 

1 in CP4 which exhibited a slight difference. To explain, it was found that during some 

operating time for Chiller 1, the temperature sensor at the chilled water outlet outputted 
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some illegal range of data which was ignored by the algorithm. Consequently, the 

temperature bias profiles for the two chilled water temperature sensors for Chiller 1 were 

not exactly the same although no COP information was provided. For CP2, the predicted 

sensor faults were weak which did not require reconstruction to be made. 

 

4.3 Comparison of HMSFDDR results with site checking reports 

 

As CP1 had been demolished, no site sensor checking report was available.  Hence, 

the comparison could only be made on CP2, CP3 and CP4. Site checking was the present 

method used to calibrate the temperature sensors at site. With the system approached a 

steady state, the temperature sensors (RDT type) were removed from the sensor pockets 

(one-by-one). At the same time, the measuring probe (also RDT type) of a calibrated 

temperature reader would be inserted into the sensor pockets. The readings from the 

temperature sensors (read through the CCMS) were then compared with those from the 

calibrated temperature reader one-by-one. In site checking, each individual temperature 

sensor and the measuring probe of the calibrated temperature reader were not placed in the 

corresponding sensor pocket simultaneously. Tables 8 to 10 summarize the corresponding 

site sensor checking results (only bias) for the temperature sensors in CP2, CP3 and CP4 

respectively together with the HMSFDDR assessment. The assessment result for CP2 was 

the best with 75% of correct prediction which was then followed by CP3 with 70% 

HMSFDDR effectiveness. The result for CP4 was the worst in which the HMSFDDR 

algorithm was only 36% effective. This was not surprising as the model accuracy for CP4 

was also the lowest according to Table 6. 

 

Table 8. Site checking results and HMSFDDR assessment for CP2. 

Sensor 

Fault from site 

checking 

report (°C) 

HMSFDDR 

assessment 
Sensor 

Fault from site 

checking 

report (°C) 

HMSFDDR 

assessment 

Tchwr,1 0.3 PASS Tcwo,Ch1 -0.1 PASS 
Tchwr,2 -0.1 PASS Tchwi,Ch2 -0.2 PASS 
Tcwr 1.0 FAIL Tchwo,Ch2 -0.8 FAIL 
Tcws 0.1 PASS Tcwi,Ch2 -0.3 PASS 
Tchws 0.1 PASS Tcwo,Ch2 -0.5 PASS 

Tchwi,Ch1 -2.4 FAIL Tcwo,CT1 -0.2 PASS 
Tchwo,Ch1 -2.3 FAIL Tcwo,CT2 -0.1 PASS 
Tcwi,Ch1 -0.4 PASS Tcwo,CT3 -0.1 PASS 

HMSFDDR 75% 
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Table 9. Site checking results and HMSFDDR assessment for CP3. 

Sensor 

Fault from site 

checking 

report (°C) 

HMSFDDR 

assessment 
Sensor 

Fault from site 

checking 

report (°C) 

HMSFDDR 

assessment 

Tchwr,1 0.25 PASS Tchwo,Ch2 -0.50 PASS 
Tchws -1.43 PASS Tchwi,Ch3 0.28 PASS 

Tchwi,Ch1 1.80 FAIL Tchwo,Ch3 -0.02 PASS 
Tchwo,Ch1 -0.70 FAIL Tchwi,Ch4 0.94 PASS 
Tchwi,Ch2 -0.54 FAIL Tchwo,Ch4 0.92 PASS 

HMSFDDR 70% 

 

 

Table 10 Site checking results and HMSFDDR assessment for CP4 

Sensor 

Fault from site 

checking 

report (°C) 

HMSFDDR 

assessment 
Sensor 

Fault from site 

checking 

report (°C) 

HMSFDDR 

assessment 

Tchwr,1 0.3 PASS Tchwo,Ch3 -0.2 FAIL 
Tchws 0.3 FAIL Tchwi,Ch4 -0.4 FAIL 

Tchwi,Ch1 -0.9 PASS Tchwo,Ch4 -0.8 PASS 
Tchwo,Ch1 2.1 FAIL Tchwi,Ch5 -0.2 FAIL 
Tchwi,Ch2 -1.8 FAIL Tchwo,Ch5 -0.4 FAIL 
Tchwo,Ch2 -3.3 FAIL Tchwi,Ch6 -0.1 FAIL 
Tchwi,Ch3 -1.9 PASS Tchwo,Ch6 -0.7 PASS 

HMSFDDR 36% 

 

 It might be expected that the HMSFDDR effectiveness should be the highest for 

CP3 as the corresponding model accuracy was the best. However, both CP3 and CP4 

missed the information for chiller COP. Hence, the calculated temperature bias at the 

chilled water inlet and outlet could only be the same according to Section 3.2.7 as also be 

found in Table 7. This would somehow restrict the HMSFDDR outcomes and consequently 

the effectiveness of the algorithm. 

 

4.4 Comparison of HMSFDDR results with off-site testing data 

 

To further justify the accuracy of the HMSFDDR algorithm, off-site tests were 

conducted for some temperature sensors collected at respective sites. Each temperature 

sensor was placed in a water pool simultaneously with the measuring probe of the calibrated 

temperature reader. The readings from the temperature sensors (read through a control 

module) were then compared with those from the calibrated temperature reader. The sensor 

readings were compared with a calibrated temperature meter under various water 
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temperatures. Table 11 summarizes the corresponding off-site test results and the 

comparison with those from site checking reports and the HMSFDDR algorithm. It could 

be found that the HMSFDDR algorithm offered results which were closer to those from 

off-site testing as compared to those from the site checking reports. In this regard, the 

HMSFDDR algorithm was more reliable than site sensor checking. 

 

Table 11 Comparison of the off-site test results with those from sensor checking reports 

and HMSFDDR algorithm 

Site Sensor 

Temperature bias (°C) 

Site 

checking 
HMSFDDR 

Off-site testing 

At 17.4 °C At 20.2 °C 

CP2 Tchwr,2 0.65 0.00 0.28 0.20 

CP2 Tcwr 0.50 0.30 -0.52 -0.63 

CP2 Tchwi,Ch1 0.40 0.00 -0.18 -0.42 

CP5 Tchwr,1 -0.60 0.54 1.11 0.92 

 

When performing the site sensor checking, the same measuring ports are used for 

both the sensors and the calibrating device. In this regard, the measurement taken from the 

sensors and the calibrating device cannot be simultaneous. This can induce some degrees 

of error particularly for a dynamic system in which the system response can be highly 

transient. To complicate the situation, substantial time is usually required by the sensors 

and the calibrating device to obtain steady state results. This further increases the 

uncertainty in the site checking results. In fact, sensor faults may exhibit some degrees of 

stochastic nature. Hence, the one-shot site measurement may not truly reflect the actual 

situation. In this sense, the HMSFDDR effectiveness achieved is considered acceptable, 

and the proposed new HMSFDDR approach is regarded as an effective method for use in 

such application. Indeed, this study was supported by one of the major building control 

suppliers. They provided the required logged data and site checking reports as well as the 

off-site testing results. Besides the four sites mentioned in the manuscript, they continually 

apply the algorithm to other sites as they are satisfied with the performance of the algorithm. 

 

5. Conclusions 

 

 A hybrid multiple sensor fault detection, diagnosis and reconstruction (HMSFDDR) 

algorithm for both primary/critical sensors (CS) and secondary sensors (SS) of chiller 

plants through big data analytics and thermodynamics was developed. It employed ANN 
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technique to model the chiller plant performance and k-means clustering method to predict 

various types of sensor faults for CS; while thermodynamics approach to determine the bias 

for SS. To test the algorithm, logged data from various chiller plants were used and the 

respective reconstruction results were presented and discussed. Meanwhile, site checking 

reports were employed to verify the algorithm with the maximum HMSFDDR effectiveness 

reached 75%. Some key factors that affected the effectiveness of the HMSFDDR algorithm 

were highlighted. The conduction of off-site sensor testing further reinforced the merit of 

the HMSFDDR algorithm which deemed the performance of the HMSFDDR algorithm 

satisfactory. 

 

Nomenclature 

 

Symbols 

c  cluster centroid (°C, kg/s) 

C  dataset of cluster centroids (°C, kg/s) 

COP  coefficient of performance of chiller 

COPsys  system coefficient of performance 

cp  specific heat capacity (kJ/kg∙°C) 

CSt  total centroid score 

D  day of a week 

DoM  day of month 

e  sensor error (°C, kg/s) 

G  clustered data subsets 

G  dataset of cluster subsets 

G  Gaussian distribution function 

M  month 

m  mass flow rate (kg/s) 

mca,d  design air flow rate of cooling tower (m3/s) 

mchw,flag flag for availability of main chilled water flow sensor and signal (1=yes,  

  0=no) 

mmax  maximum system mass flow (kg/s) 

N  number of clusters 

Nch  number of chillers 
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Nchwp  number of chilled water pumps 

Nchrp  number of chilled water return main pipes 

Nchsp  number of chilled water supply main pipes 

Nct  number of cooling towers 

Ncwp  number of cooling water pumps 

Ns  number of sensor signals 

n  number of time steps in each clustered subset 

Ohours  chiller plant operation schedule ("24 hours", "non-24") 

P  power consumption (kW) 

Pname  chiller plant name 

PLF  power limiting factor 

Qch  cooling capacity of individual chiller (kW) 

Qe  system cooling capacity (kW) 

sf  span factor 

T  temperature (°C) 

Tcooled  chiller plant type ("air", "water") 

Trainratio Training period ratio in the time-dependent input template 

tstep  time steps per hour 

t  time (hour) 

tmax  maximum time step in a week 

x  input/out parameter of system model (°C, kg/s, kW, -) 

X  normalized input/output parameter of system model 

X  dataset of normalized sensor signals 

Y  year 

T  temperature change (°C) 

T  temperature bias (°C) 

t  time step of logged data (hour) 

X  span of normalized input/output parameter from the base condition 

  bias strength (°C, kg/s) 

  drift strength (°C/hour, kg/s∙hour) 

  standard deviation of Gaussian distribution function (°C, kg/s) 

MSFDDR MSFDDR effectiveness 

‖ ‖  Euclidean distance 
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Subscripts 

1, 2, 3  designation of chilled water supply and return headers 

accuracy accuracy of temperature sensor 

base  base condition 

ca  cooling tower air 

Chk  Chiller k 

ch  chiller 

chw  chilled water 

chwi  chilled water at inlet 

chwo  chilled water at outlet 

chwp  chilled water pump 

chwr  chilled water at return header 

chws  chilled water at supply header 

cw  cooling water 

cwi  cooling water at inlet 

cwo  cooling water at outlet 

cwp  cooling water pump 

cwr  cooling water at return header 

cws  cooling water at supply header 

Ctk  Cooling tower k 

ct  cooling tower 

d  design condition 

db  dry-bulb 

e  evaluation 

ff  fault-free 

ft  faulty 

HMSFDDR hybrid multiple sensor fault detection, diagnosis and reconstruction 

i  designation of time step 

j  designation of sensor signal 

k  designation of cluster 

ll  lower limit 

max  maximum 

min  minimum 
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m, n  designation in a temperature bias profile segment 

o  outdoor 

r  rated value 

ref  reference value in MSFDDR of non-critical sensors 

set  set point 

ul  upper limit 

wb  wet-bulb 

 

Superscripts 

i-1  previous time step 

 

Abbreviations 

AANN  auto-associative neural network 

ANN  artificial neural network 

B  bias 

CP1~4  Chiller Plant 1~4 

CS  critical sensors 

D  drift 

DRef  data refinement 

FDD  fault detection and diagnosis 

HMSFDDR hybrid multiple sensor fault detection, diagnosis and reconstruction 

NA  not applicable 

NC  not calculated 

NF  no fault 

NS  no signal 

P  precision degradation 

PCA  principal component analysis 

R0..R3  data refinement rule categories 

RTI  running time insufficient 

SFDD  sensor fault detection and diagnosis 

SFDet  sensor fault detection 

SFDia  sensor fault diagnosis 

SFRec  sensor fault reconstruction 

SMod  system modeling 
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SS  secondary sensors 

SSel  sensor selection 

SVDD  support vector data description 
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Appendix A – Input data templates 

 

A.1 Time-independent input template 

 

Table A.1. Structure of time-independent input template. 

Items Symbol 
Default 

unit Input 

Chiller plant name: Pname NA  

Type: air/water cooled ("air"/"water")* Tcooled NA  

Operation schedule ("24 hours"/"non-24") * Ohours NA  

No. of chillers * Nch NA  

No. of chilled water pumps * Nchwp NA  

No. of cooling water pumps # Ncwp NA  

No. of cooling towers # Nct NA  

Design cooling capacity listed in chiller schedule * Qe,d kW  
Design chilled water supply temperature listed in chiller 

schedule * Tchws,d ℃  
Design chilled water temperature drop listed in chiller 

schedule * Tchw,d ℃  

Design chilled water flow rate listed in chiller schedule * mchw,d kg/s  

Design cooling water flow rate listed in chiller schedule * mcw,d kg/s  

No. of chilled water supply main pipes (maximum 3) * Nchsp NA  

No. of chilled water return main pipes(maximum 3) * Nchrp NA  

Rated power input listed in chilled water pump schedule 
Pchwp,r kW  

Rated power input listed in cooling water pump schedule 
Pcwp,r kW  

Maximum cooling water supply temperature listed in cooling 

tower schedule or flow chart of cooling tower sequence control 

# Tcws,max ℃  
Design cooling water temperature drop listed in cooling tower 

schedule # Tcw,d ℃  

Design air flow rate listed in cooling tower schedule # mca,d m3/s  

Recorded highest outdoor dry-bulb temperature in Hong 

Kong's weather observatory history To,db,max ℃  

Recorded lowest outdoor wet-bulb temperature in Hong 

Kong's weather observatory history To,db,min ℃  

Accuracy of temperature sensor (default 0.5) Taccuracy ℃  

Time steps per hour (default 4) * tstep NA  

Rated power input listed in chiller schedule Pch,r kW  

Rated power input listed in cooling tower schedule Pct,r kW  
Main chilled water flow sensor installed and log data available 

(1=yes, 0=no) mchw,flag NA  

Training period ratio (less than 1.0) Trainratio NA  
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 Table A.1 shows the details of the time-independent input template. Those items 

marked with “*” and “#” are essential parameters but “#” are only applicable to water-

cooled systems. It is expected that most of the information required can be found in the 

equipment schedules of the system. 

 

A.2 Time-dependent input template 

 

 Table A.2 indicates the structure of the time-dependent input template. The first 21 

columns (A~U) refer to the system operating data. The next 21 columns (V~AP) show the 

operating data for individual chiller, chilled water pump, cooling water pump and cooling 

tower. Should there be more than one unit for any type of equipment, additional 21 columns 

will be added and so on until all equipment units are included. In case the number of units 

for each type of equipment are not equal, say two sets of chillers with three sets of chilled 

water pumps, the data for Chiller 3 will be left blank. Again, those items marked with “*” 

and “#” are essential parameters but “#” are only applicable to water-cooled systems. 
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Table A.2. Structure of time-dependent input template. 
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP … 

1                                            

2                                            

3                                            

4                                            

…                                            

…                                            

 

Column Meaning Column Meaning Column Meaning Column Meaning 

A Y (Year)* V Pch of CH1 (kW) * AQ Pch of CH2 (kW) * … … 

B M (Month)* W On/Off status of CH1* AR On/Off status of CH2* … … 

C DoM (Day of month)* X COP of CH1* AS COP of CH2 (°C) * … … 

D D (Day of a week) * 1 Y Tchwi,ch of CH1 (°C) * AT Tchwi,ch of CH2 (°C) * … … 

E t (time) * 2 Z Tchwo,ch of CH1 (°C) * AU Tchwo,ch of CH2 (°C) * … … 

F Tchws at main 1 (°C) * AA mchw of CH1 (kg/s) * AV mchw of CH2 (kg/s) * … … 

G Tchws at main 2 (°C) AB Valve On/Off status of CH1 AW Valve On/Off status of CH2 … … 

H Tchws at main 3 (°C) AC Tcwi,ch of CH1 (°C) # AX Tcwi,ch of CH2 (°C) # … … 

I Tchwr at main 1 (°C) * AD Tcwo,ch of CH1 (°C) # AY Tcwo,ch of CH2 (°C) # … … 

J Tchwr at main 2(°C) AE mcw of CH1 (kg/s) # AW mcw of CH2 (kg/s) # … … 

K Tchwr at main 3 (°C) AF Pchwp of CHWP1 (kW) AX Pchwp of CHWP2 (kW) … … 

L Tcws at main (°C) # AG On/Off status of CHWP1 AY On/Off status of CHWP2 … … 

M Tcwr at main (°C) # AH Pcwp of CWP1 (kW) AZ Pcwp of CWP2 (kW) … … 

N mchw at main (kg/s) * AI On/Off status of CWP1 BA On/Off status of CWP2 … … 

O mcw at main (kg/s) # AJ Pct of CT1 (kW) BB Pct of CT2 (kW) … … 

P Tchws,set (°C) * AK On/Off status of CT1 BC On/Off status of CT2 … … 

Q Tcws,set (°C) # AL Tcwi,ct of CT1 (°C) # BD Tcwi,ct of CT2 (°C) # … … 

R Qe (kW) AM Tcwo,ct of CT1 (°C) # BE Tcwo,ct of CT2 (°C) # … … 

S To,db  (°C) * AN mcw of CT1 (kg/s) # BF mcw of CT2 (kg/s) # … … 

T To,wb  (°C) # AO mca of CT1 (Hz) BG mca of CT2 (Hz) … … 

U RH (%) AP Valve On/Off status of CT1 BH Valve On/Off status of CT2 … … 

Remarks: 1.  Day of a week: 0 ~ 6 for Sunday ~ Saturday 2.  Time: 0, 0.25, 0.5, 0.75, …, 23.0, 23.25, 23.50, 23.75 for 15-minute time step 

 

 

 

Measurement data related to chiller plant and others Measurement data related to CH1, CHWP1, CWP1 and CT1, .. 
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Appendix B – Data refinement rules 

 

Table B.1. Summarized data refinement rules. 

Rule Description 

R0 Conversion of all non-numeric data to numeric. 

R1-0 Estimation of all missing data by interpolation. 

R1-1 Estimation of missing Tchwr (Done in R1-0). 

R1-2 Estimation of missing Tchws (Done in R1-0). 

R1-3 Estimation of missing Tcwr (Done in R1-0, not applicable to air-cooled plant). 

R1-4 Estimation of missing Tcws (Done in R1-0, not applicable to air-cooled plant). 

R1-5 Estimation of missing To,db (Done in R1-0). 

R1-6 Estimation of missing To,wb (Done in R1-0, not applicable to air cooled plant). 

R1-7 Estimation of missing mchw when all missing. 

If mchw = 0, set  𝑚𝑐ℎ𝑤 = ∑ 𝑚𝑐ℎ𝑤,𝑐ℎ
𝑁𝑐ℎ
1 . 

R1-8 Estimation of Nch when all missing. 

If Pch > PLF 1 ⁎ Pch,r, set Pch =PLF ⁎ Pch,r. 

If Pch > 0.1 ⁎ Pch,r, chiller is on. Otherwise, chiller is off. 

R1-9 Estimation of Nchwp when all missing. 

If Pchwp > PLF ⁎ Pchwp,r, set Pchwp = PLF ⁎ Pchwp,r. 

If Pchwp > 0.1 ⁎ Pchwp,r, chilled water pump is on. Otherwise, chilled water pump 

is off. 

R1-10 Estimation of Nct when all missing (Not applicable to air-cooled plant). 

If Pct > PLF ⁎ Pct,r, set Pct = PLF ⁎ Pct,r. 

If Pct > 0.1 ⁎ Pct,r, cooling tower is on. Otherwise, cooling tower is off. 

R1-11 Estimation of Ncwp when all missing (Not applicable to air-cooled plant). 

If Pcwp > PLF ⁎ Pcwp,r, set Pcwp = PLF ⁎ Pcwp,r. 

If Pcwp > 0.1 ⁎ Pcwp,r, cooling water pump is on. Otherwise, cooling water pump 

is off. 

R1-12 Estimation of mcw when all missing (Not applicable to air-cooled plant). 

If mcw = 0, set  𝑚𝑐𝑤 = ∑ 𝑚𝑐𝑤,𝑐ℎ
𝑁𝑐ℎ
1 . 

R2-1 Check if To,db exceeds upper limit. 

If yes, reset value to upper limit. 

R2-2 Check if To,db below lower limit. 

If yes, reset value to lower limit. 

R2-3 Check if To,wb exceeds To,db. 

If yes, reset value to dry-bulb temperature. 

R2-4 Check if Tchws below lower limit. 

If yes, reset value to chilled water supply setpoint. 

R2-5 Check if Tchw exceeds upper or lower limit (Not applicable to multiple chilled 

and return headers as well as evaluation data). 

If Tchw > Tchw,d, set Tchwr = Tchws + Tchw,d. 

If Tchw < 0, set Tchwr = Tchws. 

R2-6 Check if Tcws exceeds upper limit (Not applicable to air-cooled plant). 

If less than 5% of data exceeds limit, reset value to cooling water supply 

setpoint. Otherwise, no refinement. 
1  PLF is a power limiting factor which is currently set to 2. 
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Table B.1. Summarized data refinement rules (continued). 

Rule Description 

R2-7 Check if Tcw exceeds upper or lower limit (Not applicable to air-cooled plant). 

If Tcw > Tcw,d, set Tcwr = Tcws + Tcw,d. 

If Tcw < 0, set Tcwr = Tcws. 

R3-1 Check and refine chilled water system data conflict against Nch and Nchwp. 

If (Tchwr < Tchws) AND (Nchwp = 0) AND (Nch /= 0), set Nch = 0. 

If (Tchwr < Tchws) AND (Nchwp /= 0) AND (Nch /= 0), set Tchws = Tchws,set. 

R3-2 Check and refine cooling water system data conflict against Nch and Nct (Not 

applicable to air cooled plant). 

If (Tcwr < Tcws) AND (Nct = 0) AND (Nch /= 0), set Nch = 0. 

If (Tcwr < Tcws) AND (Nct /= 0) AND (Nch /= 0), set Tcws = Tcws,set. 

R3-3 Check and refine chilled water pump operating data conflict. 

If (mchw = 0) AND (Pchwp = 0) AND (Nchwp /= 0), set Nchwp =0. 

If (mchw =0) AND (Pchwp > 0) AND (Nchwp /= 0), 

 mchw = mchw,d ⁎ Qe / (Nch ⁎ Qch,d). 

R3-4 Check and refine cooling tower operating data conflict (Not applicable to air-

cooled plant). 

If (Tcwr < Tcws) AND (mca = 0) AND (Nct /= 0), set Nct = 0. 

If (Tcwr < Tcws) AND (mca /= 0) AND (Nct /= 0), 

 Tcws = Tcws,set 

 Tcwr = Tcws + (Qe + Pch) / (mcw ⁎ cp). 

If (Tcwr < Tcws) AND (mca /= 0) AND (Nct = 0), set mca = 0. 

R3-5 Check and refine cooling water pump operating data conflict (Not applicable 

to air-cooled plant). 

If (mcw = 0) AND (Pcwp = 0) AND (Ncwp /= 0), set Ncwp = 0. 

R3-6 Check and refine Nch against Nct, Nchwp and Ncwp (Not applicable to air-cooled 

plant). 

If (Nch /= 0) AND (Nchwp = 0) AND (Nct = 0), set Nch = 0. 

If (Nch /= 0) AND (Ncwp = 0) AND (Nct = 0), set Nch = 0. 

If (Nch /= 0) AND (Nchwp = 0) AND (Ncwp = 0), set Nch = 0. 

R3-7 Check and refine Nchwp against Nch. 

If (Nchwp = 0) AND (Nch /= 0), set Nchwp = Nch. 

R3-8 Check and refine Nct against Nch (Not applicable to air-cooled plant). 

If (Nct = 0) AND (Nch /= 0), set Nct = Nch. 

R3-9 Check and refine Ncwp against Nct (Not applicable to air-cooled plant). 

If (Ncwp = 0) AND (Nct /= 0), set Ncwp = Nct. 
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Appendix C – Sample of overall sensor checking reports 

 

 A sample of the sensor checking summary report is given below. Figure C.1 shows 

samples of the temperature bias trend plots for non-critical sensors. The orange lines 

represent the flattened profiles while the blue lines are the original ones. 

 

Chiller plant sensor fault checking report... 

  

 Total number of raw data set =  35616 

 Total number of usable data set =  17789 

  

 Maximum system chilled water flow =   100.8 kg/s 

  

        Sensor Fault type     Value 

                 m_chw                                No fault                       

            T_chwr_1                                 No fault      

            T_chwr_2                Bias               -0.10  degC             

                  T_cwr                                 No fault             

                  T_cws                Bias               -0.10  degC             

                T_chws                Bias                0.10  degC       

        T_chwi_Ch1                Bias                0.02  degC       

       T_chwo_Ch1                Bias                0.02  degC       

          T_cwi_Ch1                Bias                0.08  degC       

         T_cwo_Ch1                Bias               -0.44  degC       

        T_chwi_Ch2                Bias                0.13  degC       

       T_chwo_Ch2                Bias                0.13  degC       

          T_cwi_Ch2                Bias               -0.04  degC       

         T_cwo_Ch2                Bias               -0.25  degC       

          T_cwi_CT1                               No signal             

         T_cwo_CT1                Bias                0.29  degC       

          T_cwi_CT2                               No signal             

         T_cwo_CT2                Bias                0.04  degC       

          T_cwi_CT3                               No signal             

         T_cwo_CT3                Bias                0.11  degC       

   

 Sensor fault checking completed... 
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Figure C.1. Samples of temperature bias trend plots for secondary sensors. 

 


