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To setup a universal proper user toolbox from previous individual research publications, this study generalises the algorithms for
the U-model dynamic inversion based on the realisation of U-model from polynomial and state-space described continuous-time
(CT) systems and presents the corresponding U-control system design in a systematic procedure. Then, it selects four CT dynamic
plants plus a wind energy conversion system for simulation case studies in Matlab/Simulink to test/demonstrate the proposed
U-model-based design procedure and dynamic inversion algorithms. This work can be treated as a U-control system design user

manual in some sense.

1. Introduction

Linear control system design approaches can be divided into
state-space model-based [1] and polynomial model-based,
which have been well studied and are widely used. However,
in an actual production process, nonlinear control is
ubiquitous and more difficult as the superposition principle
no longer holds, in contrast to linear systems; therefore, how
to design a standard-compliant nonlinear control system to
match desired performance properly is a hot issue. For
nonlinear systems, a variety of analysis and design ap-
proaches already exist, and the most commonly used
method to design a nonlinear control system is still line-
arization. However, the linearization method has certain
limitations, and most linear control methods cannot be
applied to the design of nonlinear systems directly. For
example, compared with the linear polynomial model,
nonlinear polynomial models, such as the Nonlinear
Autoregressive Moving Average with eXogenous inputs
(NARMAX) [2] model, have been used widely in applica-
tions and academic research publications [3]; however, there
is no systematic routine to convert it into an equivalent state-
space model.

Generally, there are three methodologies for the non-
linear plant-model-based control system design, two widely
used and one less-attended. The first approach is using linear
expressions to describe the nonlinear state-space models by
feedback linearization approach [4, 5] and then designing
this linear-expression corresponding control systems by
linear state-space approaches, which has been well studied in
[1]. However, this case-by-case method requires certain
skills in selecting the appropriate coordinate system and
solving the equations requires extraeffort. Furthermore, this
state-space linearization approach cannot be directly applied
for nonlinear polynomial models. The second method is to
use a time-varying linear model to fit the polynomial model,
for example, state-dependent parameter (SDP) transfor-
mation [6, 7] method can use specified (desired) poles to
transform a nonlinear closed-loop control system model to a
linear transfer function expression. In summary, it is clear
that these approaches for designing a nonlinear control
system are trying to convert the original nonlinear system
into a quasi-linear domain system firstly and then to choose
an opportune linear control approach for the system. In the
model structure, the other variables in the system can also
determine this quasi-linear SDP transformation’s
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parameters [8]. The nonlinear polynomial model can be
converted into a time-varying linear state-space model by
the second method; however, there are obstacles for using
this method because this design and transform procedure is
not unique, that is, personal and subjective for selection of
SDP models.

The third approach is the U-model-based design, which
is relatively new and less-attended. The U-model is defined
as a polynomial or state space function, with time-varying
parameters, representing a class of smooth and analytic
systems. Zhu et al. [9] proposed the use of a New-
ton-Raphson iterative algorithm for the root solving of the
controller output function, which provided a basic proce-
dure for the design of controllers in the U-model. Zhu and
Guo [10] formally proposed the concept of U-model and
established the U-model-based control, U-control in short,
and system design framework, which provides a general
routine to convert smooth nonlinear plant models into
U-model. The U-model-based design method can be rec-
ognised as converting nonlinear models to time-varying
parameter models associated with controller output u, that
is, linear control-oriented model structure [10-13].

Regarding the research status of U-model-based control, the
discrete-time systems has been studied with more attention,
especially the representative approaches including pole place-
ment control design method [13, 14], U-Smith predictor with
input time delay [15], adaptive U-control of total nonlinear
dynamic systems [16], U-neural network enhanced control [17],
and underactuated coupled nonlinear adaptive control syn-
thesis, using U-model for multivariable unmanned marine
robotics [18]. However, the majority of U-control approaches
have assumed that the plant model can be detected without
errors or inaccuracies. Therefore, designing an adaptive
U-model controller when the plant model is inaccurate, espe-
cially the robustness control, will be a hotspot and difficult study
area for intensive research. At the same time, there is very little
research on U-model-based control system design for contin-
uous-time systems so far [19]. Consequently, the main purpose
of this study is to provide a pack of dynamic inversion routines
for U-model-based continuous-time control systems.

Compared with methods 1 (linear model approxima-
tion) and 2 (time-varying linear model approximation),
aforementioned, the main contributions of this U-design
method are as follows:

(1) In dealing with nonlinearity, the U-model-based
design method does not require linearization of the
nonlinear models in advance. Instead, this nonlinear
plant model-based system is designed directly using
linear design methods.

(2) In methodology, using those well-studied linear
methods to design nonlinear control systems greatly
reduces the complexity of the design procedure.

(3) In design, once the closed loop system output is
specified, the only remaining work is to calculate the
output of the U model controller.

(4) U-model-based design procedure is more general
and effective for designing a linearly behaved control
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system, which provides new insight and solutions to
design the controller.

(5) U-control can be applied together with the other
well-developed control system design methods, such
as pole placement control, sliding mode control,
general predictive control, adaptive, and Smith
predictive control [20, 21].

(6) It should be noted that unless the plant model is
accurately known, U-model dynamic inversion is
very sensitive to internal uncertainties, so the whole
control system performance.

Accordingly, the main contributions of this study are as
follows:

(1) Generalise dynamic inversion algorithms for con-
tinuous-time U-model

(2) Generalise U-model-based design procedure for
continuous-time dynamic plants in forms of linear/
nonlinear and polynomial/state space

(3) Showcases for bench tests and illustration of
applications

(4) An industrial backgrounded study: U-control of a
wind energy conversion system

For the rest of the study, Section 2 generalises U-poly-
nomial and U-state space model sets and its associated step-by-
step U-control design procedure. Section 3 generalises the
dynamic inversion algorithms. Section 4 presents a series of
computational case studies to test/demonstrate the analytical
results numerically and provides an effective procedure for
testing designed U-control systems with computational ex-
periments. Section 5 presents an industrial backgrounded case
study from modelling, dynamic inversion, and U-control
system design to simulation. Section 6 concludes the study.

2. U-Model and U-Control System Design
2.1. Polynomial U-Model: Single Layer Realisation

2.1.1. Basic Polynomial U-Model. Consider a general con-
tinuous-time U-model [19] for Single-Input and Single-
Output (SISO) polynomial dynamic systems with a triplet of
(y (), u(t),A(t)), y(t) € R, and u(t) € R for the output,
input, and parameter, respectively, at time ¢t € R*:

(M) (N)
y ‘ZA (YMl’UN1’®)< ), M>N, (1)
j=0

M) (N
u

where are the Mth and Nth order derivatives

of the plant output y and the plant input u, respectively, the
time-varying parameter A;(x) € R*, associated with the

i
input <(Z;])> , absorbs all the other terms in
[(m— 1) (m 2

(n-1) (n 2)

UNI_[ >

'y
u ] € RY, and coefficients ©.
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Here is an example for understanding, consider a
classical NAMAX polynomial model:

= -Dy+(1+y )u+(1+ 57 + y+(y+ 5 ).

(2)
Its U-model realisation can be determined with
[ § =My + A u+ Au? + A,
L=(-Dy+y,
1A =1+y% (3)
Ay =1+ 9%
[ A=y + 57

Inspection of (2) and (3), the U-realisation is straight-
forward generally.

It should be remarked that the U-polynomial is the same as
its presented classical polynomials in the model properties, but
oriented expression for control system design [14].

2.1.2. Extended U-Model (Rational Models). Rational model
is totally nonlinear [3], and its polynomial expression is a
ratio of two polynomials, that is,

M) £ (1,(08,)

= (4)
y fpd(‘l’d(*)@)d)
where f,, is the input-output mapping function of the
polynomial in the numerator and f,; is the input-output
mapping function of the polynomial in the denominator. Its
U-realisation is accordingly described by

(N)
(M) Z?:O An] (YMI’UN1’®)fnj( )

_ u M=>N,

) (N)Y’
Z?:o Adj (YM—I’UN—P@)fdj( )

u

(5)
where f,;and f; are vector functions of the control vector

N) . . .
15 ) in numerator and denominator, respectively, and A,,;
and A,; are the associated parameters vectors absorbing all

the other terms in the model. Here is a simple example of the
rational model:

. 0.1y% +sin(u) + 0.5u3
PR () . )

1+ cos(y) +u?

Its U-model realisation can be determined with

o Ao+ Ay sin (u) + Aot + A0
2
/\dO + Adlu + Adzu

, (7)

where

3
Ay = 0.1y2,
Anl =1,
<
AnZ = 0’
L An3 = 05, (8)
(Ago =1+ cos(y),
1A =0,
L Adz = 1

2.2. State Space U-Model: Multilayer Realisation. For a
general SISO CT state space model,

1X=me,

9)
y=H(X),

where u, y € R, X € R", and F € R" are smooth mapping to
represent the input to the state and H € R is a smooth
mapping to drive the states to the outputs. In this study,
assume that there is no unstable zero dynamics (i.e., the
model reversible) and that the state X can be obtained
through measurement or observation.

Expand state-space model (9) into a multilayer poly-
normal expression as follows:

(%, = Fy (x1, %5 ..., %,)
Xy = Fy (%, %5, ..., X,),

1 (10)
X, = F, (x5, %5 .., X, 1h),

| y = H(x1,%5...,%,).

Convert state-space model (10) into a multilayer
U-model expression as follows:

Xy = g/\nfli (xz)’
X = g)/\Zifzi (x3),
' (11)

xn = Z Anifm' (I/l),
i=0

y: ;)hi(xlax2>--.,xn).

For each line of (11), A,, and f,, are time-varying
parameter absorbing all the other variables and the U-basis
function, respectively.

For illustration, consider a nonlinear SISO system state-
space model of

X = x; +0.5sin(x,),
X, = —x; + U, (12)
y=x.

Using the absorbing rule to convert (12) into multilayer
U-model as
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%y = Mo+ A f(x2),
Xy = Ay + Ay fo1 (W), (13)
Yy =Xp
where
[ Ao = x5
A,y =0.5,
X,) = sin(x,),
<fll( 2) 1(2) (14)
Ay = —x15
Ay =1,
[ [ (W) =u.

2.3. U-Control System Design. Here is a systematic summary
of the U-control framework.

Figure 1 shows the classical control system framework,
where Gp is the plant model, which could be linear or
nonlinear dynamics and can be described by polynomial and
state space models [14]. Let G (not shown in the figure) be
the closed-loop performance function, specified with ad hoc
applications in advance by designers and/or customers, r is
the reference, which is the desired output of the control
system, e is the difference (error) between the output y, and
the reference r. G, is the designed controller.

The main principles of this kind of control system design
framework are to generate a suitable control input signal u to
drive the system output trajectory y following a set of
specified closed loop performances (both transient and
steady state).

Figure 2 shows the U-control system framework [3, 5], in
which G, is a linear invariant controller, can be designed by
G,; = G/(1-G) while G;'Gp = 1, where G;' is the con-
trolled plant’s dynamic inverse. U-control framework is
applicable to both linear and nonlinear structures as long as
dynamic inverse Gp' exist.

To explain the control system design procedure, consider
a CT SISO linear closed-loop feedback control system
framework with a set of (F,G, Gip):

Y =(F,G,1,Gy), (15)

where G,, = G,'Gp.
In general, the U-control system design procedure has
two separate steps:

(1) Assume the plant model G, stable and bounded, and
its inversse G! exists. From Figure 2, the controller
which is shown in the dashed line block has two
parts: the invariant controller G, and plant’s dy-
namic inverter G3'. To facilitate the design of G;', the
convert plant model Gp (1) into its U-model. Al-
ternatively, (15) can be expressed as

Y =(F,U(G.,G}').G,), (16)

where (G,;,Gp') is defined as U-controller. Deter-
mine G3' to work out the controller output v, which
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F1Gurke 1: Classical control system framework.

FIGURE 2: U-control system framework.

is the control input to the plant Gp. The eventual goal
is to make plant output equal to the invariant (IV)
controller output: v = y, that is, to reach Gp'Gp = 1
under the proper dynamic inversion.

(2) Design invariant controller G,,. Figure 3 shows the
U-control structure while G3!Gp = 1 achieved, that
is,

Y. = (F.Gy). (17)

This is a type of linear control systems. Therefore, the
desired closed-loop transfer function G can be expressed as
G =G, /(1 +G,), where G can be effectively designed with
two significant factors shaping linear system response,
damping ratio {, and undamped natural frequency w,.
Therefore, the invariant controller G, can be obtained by
inversing G into G, = G/(1 - G) while G;'Gp = 1.

As the invariant controller G, design is independent of
plant Gp, the U-control allows once-off design for all stable-
nonminimum phase plants, except designing the inverter
Gp' of the considered plant.

3. UM-Dynamic Inversion

Nonlinear dynamic inversion (NDI) is a generic control
technique in nature, that is, improving control performance
through control system design. Currently, NDI has been a
challenging research issue and practical significance in
mechanical motion control systems, such as turbines, robots,
and flying vehicles [22]. Basic NDI calculation procedure is
differentiating the plant output equation results N times to
find the direct relationship between the input u and Nth
order derivative of the output y under the Lie derivative
formulation [22]. However, NDI is very sensitive and un-
stable in case of model inaccuracies and mismatch. In order
to combat the uncertainty of the plant and improve the
system robustness, Incremental Nonlinear Dynamic In-
version (INDI) [22] and adaptive INDI [23] have been
introduced in another complicated formulation.

Different from the computational complexity of basic
NDI under the Lie derivative expression, this study converts
the plant model into U-model realisation in a systematic
concise formulation, which is generically applicable to both
polynomial and state space equations. This also establishes a
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FIGURE 3: U-model-based simplified control system.

foundation for future development of robust UM-dynamic
inversion.

The U-model-based dynamic inversion (UM-dynamic
inversion) algorithm is to obtain the input u by solving the
root from (1), that is,

L)) Ny
GPI@ € —Z/lj(YMl,UMl,G)( =0.
u y =0 u
(18)
For the solution which exists, the systems must be
Bounded Input and Bounded Output (BIBO) stable and no
unstable zero dynamic (nonminimum phase).

3.1. Algorithms for Polynomial Models

3.1.1. Linear Plant. Use Laplace transform (S operator,

()
y

where Y and U are Laplace transform of the output and
input, respectively, and M and N are the orders (highest
power) of the denominator and numerator functions,
respectively.

Accordingly, its U-realisation is given as

M)
Y j=0

(N)Y
LU ®) ) )
u
where

i-M-1 i i=N-1 _
—Z§:1 a;SM JY+2§:1 ﬁjSN u

Ao (YM—I’UN—1’®) = o
0

P
MYy Uy, ®) = a_0~
0

(21)

As the drives are sensitive to noise signals in applica-
tions, convert the operations into integral implementations
by multiplying 1/s¥ on both sides of (20), and this gives

(M-N) X (Vg1 Uy, @)

= (dy/dt))esiY, I--~Iydt(:>(1/sj)Y) to expresses a & i (22)
s
set of general linear dynamic plants as y
N .
_ i BN e BosN + BisN o+ Pyis+ By U
Z;iéwijSM’f apsM 4y M gy g s oy where
M=N,
(19)
j=M-1 M-j N j=N-1 N-j/N
Lo (MY + YT B (NN U
Ao (YM—1>UN—1’ ®) = ! ’ a : : >
(23)
M (YM—I’UN—l’ ®) = [3_0’
R0
. . (N
Therefore, the alternative U-model is z;’,zo A (Yoo Unirs ®)< )
(M-N) { . -1 B u _
= Z/\j SEYENNENC)IT (24) Gy oucy M =0
=0 (26)

3.1.2. Nonlinear Plant. For UM-dynamic inversion of (18),
replace all the derivatives with integrals through division by
the output derivative order, which is formulated as

() (M), M-j
- () (25)
y y
where }(/J ) _ (dy/dti)

Here is the practical implementation of (18):

To illustrate the conversion to U-model from a nonlinear
polynomial, consider an example of

J=(1-y")y—u+ L+ ypi+(1+57)d +d’.  (27)
In U-realisation, its derivative-based operation becomes
§ = Ao + Ayui + Ayui® + A, (28)

where



Ao=(1=y)y-u
A=+ y2+57),
Ay =1+ 5%

A =1

(29)

To convert it into integration operation, the corre-
sponding U-realisation has the form of
b Mo ho A

=2+ 20+ 20 (30)
Y 2 s s s

3.2. Algorithms for State Space Models
3.2.1. Linear Plant. For a general SISO linear CT state-space
system model, it has

{ x = Ax + Bu,

(31)
y=Cx+Du,

o 1 0 ---
where u,yeR, xeR", let A= ... "~ " .. |
—‘Xl .o (xn

- B, ],and D = 0. Expanding

(14) gives rise to

1 n 32
Xy = Y X+ u, (32)
=
n
y =2 Bxp
j=1

where x is the state vector and u and y are the input and
output of the model, respectively.

For taking up such UM-dynamic inversion, first use a
systematic approach [24] to convert the linear state space
model into input/output transfer function by

Y (s)

_ _ -1
U (S)—C[sln A]"'B, (33)

where Y (s) and U(s) are the Laplace transforms of the
output and input, respectively, and I,, is an identity matrix of
dimension #.

Then, use the linear polynomial dynamic inversion
procedure presented in Section 3.1.1.

(M)
(N) (N) y

(N)\/
- Z§:0 Aj (YM—I’UM—1’®)< >
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3.2.2. Nonlinear Plant. For the model of (10), here is the step
by step procedure for UM-dynamic inversion.

(1) Generate direct mapping between the output y and
the input u, by differentiating the state variables in
the output equation till it is directly related to u in the
state equation

(2) Use the procedure for nonlinear polynomial dy-
namic inversion in Section 3.1.2 to determine the
solutions

It should be noted that the above computations require
the full state variable necessarily available/measurable.

To illustrate the realisation, consider a nonlinear state
space model of

. 2
X, = —X; + x5 —x

2 1t X5~ X3,

) (34)
X3 = —X] — X, + X3 + 14,
Yy =X

Differentiating y twice against x; with the output
equation gives

) =X, = X, — X, — X3,

)"' '1 . 1~ X~ X3 (35)
V=% — Xy = 2x3(xF = x5 + x5 +u).

As the second line of (35) directly relates the output and

the input, it can be used for the dynamic inversion. The
corresponding polynomial U-model is given by

y =2+ Mu,
Ao = X — Xy = 2x5 (%7 — x5 + x3), (36)
A = —2x5.
Convert to integral expression as
Ay Ay
y= 5—2 + 5—2 u. (37)

3.3. Iterative Algorithms. There are systematic routines to
find roots for the 1st order (linear) and 2nd order (non-
linear) polynomials. However, it is difficult analytically to
determine the roots for the 3rd and up order polynomials.
Commonly iterative root-solving algorithms are considered.
Newton-Raphson algorithm [25] is a classical iterative
algorithm, which can be used to determine the roots of
polynomial U-models, that is, the solution of UM-dynamic
inversion. In formulation, this algorithm is given by

u

K+1 U

. d( (M)
Y

N\ (N)
- Z§:0 Aj (YM—I’UM—I’ ®) /d
u u

. (38)
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In addition, to test U-control systems in Simulink/
Matlab simulation, Matlab functions can be used to find the
roots directly.

4. Simulation Demonstrations

This simulation demonstration selected four plant models to
tests the UM-dynamic inversion and their associated
U-control systems with the following bullet points:

(i) To demonstrate the generality and effectiveness of
UM dynamic inversion

(ii) To demonstrate the principle of model-independent
design in U-control, supported by the dynamic
inversions

(iii) To demonstrate a once-oft design with the linear
invariant controller in accordance with a closed-
loop performance specification irrespective of the
plant model structures

(iv) To validate the applicability, conciseness, and
efficiency of the U-control and UM-dynamic
inversion, particularly in designing nonlinear
control systems

4.1. U-Control System Design. With reference to the previous
introduction in Section 2, for these simulations, design a
unique U-control system with a desired system output re-
sponse in terms of damping ratio { = 0.7, undamped natural
frequency w, =1, and zero steady state error to a step
reference input [15]. Accordingly, this closed-loop transfer
function was specified as

Y (S) 1

R(S) =G = 24145+ 1 (39)

The invariant controller G.; was determined by taking

the inverse of (39):

G 1
G == 40
TG 2+ 14s (40)

4.2. Case 1: Linear Polynomial and State Space Models

4.2.1. Plant 1: Polynomial Model.

3 +6s+4
G == (41)
r(s) s2+2s+1

The corresponding U-model was
y = s_g +Mu,

1 Ao =2y - y+60+4u, (42)

|1, =3.

4.2.2. Plant 2: State Space Model.
MR MU
. = + >
% ~0.5 -2 || x, 1

y=[1 0][x1]+[0].

X2

(43)

The corresponding U-model was
J =y +Au,
Ao = 1.5(=0.5x; — 2x,), (44)
A, =15

4.3. Case 2: Nonlinear Polynomial and State Space Models

4.3.1. Plant 3: Polynomial Model.
y =1 +1u> —1i—0.5y + sin (u). (45)

The corresponding U-model was
V= Ao + A+ A + Ayii,
= —0.5y + sin (u),

4.3.2. Plant 4: State Space Model.

X = %y

X, = sin(x;) +u, (47)

¥y =X,

The corresponding U-model model was

y =1 +Au,
Ao = sin(x,), (48)
A =1

4.4. Simulation. Figures 4 and 5 show the U-control system
design simulation structures. Figure 6 and 7 show the
simulation results. All of these have demonstrated that the
purposes outlined at the beginning of the section have been
achieved.

5. Test of U-Control of a Wind Energy
Conversion System

5.1. Brief Review of Wind Energy Conversion Control Systems.
Wind power is a clean natural resource to supplement the
other power resources from fossil fuels, coal, solar, and so
on. This rich power source is widely distributed, renewable,
has no greenhouse gas emissions, and uses little land [26]. In
conversion of wind power, in which air flows drive wind
turbines to generate electrical power, the need of effective
control strategies for cost reduction and power acquisition
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performance is commonly recognised. Particularly, such
control system design is very critical for Variable Speed
Wind Turbines (VSWT). The other unavoidable issue in
wind energy conversion is that the turbine performs
according to linear dynamics, but the power conversion is
nonlinear from the multiplication of two dynamic variables
(the wind power is obtained as a product of torque/input and
rotor angular speed). Designing such control systems is

challenging in formulation and implementation. Precup
et al. [27] gives a collection of the up to date research on
advanced control and optimization paradigms for wind
energy systems. Regarding U-control of the wind energy
conversion systems, Zhu et al. [28] presents the Ist
U-model-based control system formulisation and design for

wind energy conversion systems. In contrast, this study
removes the demand on solving Diophantine equation for
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FIGURE 7: (a) Plant outputs and reference for plant 3 and plant 4. (b) Controller outputs for plant 3 and plant 4.

pole placement assignment and directly uses closed loop
inversion to design the invariant controller. Furthermore,
this study is a continuous time control and gives emphasis
on illustration of the general platform for industrial appli-
cations using Simulink block diagram connections, rather
than Matlab-coded programs.

5.2. Plant Models [29]. Modelling of the wind turbine has
played a significant role in understanding of the behaviour of
the wind turbine over its region of operation because it
allows for the development of comprehensive control sys-
tems that aid in optimal operation of a wind turbine. Such
mathematical models are the foundation to quantify control
performance of the energy systems. Furthermore, these
models are essential reference for the design of the turbines
and minimise generation costs leading to cost reduction in
wind energy, consequently making it an economically viable
alternative source of energy [30]. This section characterises
these wind turbine section models into an integrated
nonlinear dynamic plant operational model to describe
input/output relationships.

5.2.1. Drive Train in Lumped Mass Model (as Shown in
Figure 8). Here is the nomenclature list.

w,: rotor angular speed aerodynamic torque

J, and ] ;: rotor and generator inertias, respectively.

K, and K, : rotor and generator external damping,
respectively

J;: integrated inertia
K,: integrated damping
T,,.: converted electromagnetic torque

T ,: rotor torque, from external wind power in practical
systems

T 4+ generator torque, regulate the system operation to
generate power

The rotor speed w, is driven by the rotor torque T, and
the low-speed torque T';. The generator speed w,, is driven
by the high-speed torque T}, and the electromagnetic
torque T,,,. It should be noted that using the gear box can
change the generator speed. The dynamics of the rotor and

the generator can be described by Newton’s law in forms
of

]r(br = Ta - Krwr - Tls’
. (49)
Jgwy, =Ty —Kywy =T,y
Define the gearbox ratio n, as
w, T
n, =-2=_b (50)

7 w, - Ths.
Invoking (50), the generator dynamic in (49) can be

rewritten as

1] g0, = Tj = 1K g, =1, T e (51)

Thus, the drive train model can be described by com-
bining (49) with (51) as
Jio, =T, — Koo, — Ty, (52)
where
Je=T + n;] pe
K, =K, + 2K,
T,=n,T,,.

(53)

5.2.2. Power Output P,. P,, the power output from the
generator, is given by

(54)
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F1GURE 8: Schematic diagram of the drive train.

5.2.3. Wind Speed Torque T,. In system (1), external wind is
the source of the driven force. The wind speed torque is given

by
T, =L pnR? V-8 55
a—zanCq()t,/})(v &7, (55)

where p, v, and R are the air density, wind speed, and rotor
radius, respectively, 8 is the blade pitch angle, A = Rw, /v is
the tip-speed ratio; ¥ is the estimation of the effective wind
speed v, which can be measured via anemometer, and ¢
denotes the measurement noise; C, (A, B), the efficiency for
the wind turbine power conversion, is given by

C, (L) = 0% <lmE _0.48- S)exp<¥), (56)

with 1/m = (1/(X + 0.08B)) — (0.035/ (B> + 1))

5.2.4. Energy Conversion Input-Output Model for Control
System Design. From the above physical principle models,
the energy conversion input-output model for control
system design can be expressed as

5 : 1. K 1,3

Png—Tgpg =]—tTaTg——tpng—]—tTg, (57)
where the control input is the generator torque T, and the
plant output is the power output P,

5.2.5. Power Conversion in Low Speed Region. For the drive
train (49) to collect the maximum quantity of energy em-
bedded in the low speed wind region, it requires

Pd = nPPamaX, (58)
with
L 3
Pamax = EPT[R Cpmaxv > (59)
where C,, ..., is the maximum power coefficient and n,, is the

ratio between the desired generator power P; and the

maximised available power P, ...

5.3. U-Control System. The U-control system was the same
as designed in Section 4. The U-realisation of the input-
output plant model was derived as

11
TaBLE 1: Wind turbine characteristics.
Rated power 1.5 MW
Rotor radius R=385m
Rotor inertia J, = 4456761 kg-m*
Generator inertia J,=123 kg-m?

Rotor friction coefficient
Generator friction coefficient

K,=45.52 N-m/rad/s
K,=04 N-m/rad/s

Gearbox ratio n,=104.494
P,=ly+MT,,
(T (KR, - ()T
O - 3
T, (60)
P
A= 7
g

5.4. Simulation Results. The selected generator, equipped
with three blade, horizontal axis, and up wind variable speed
wind turbine, generates 1.5 MW electrical output, made by
WINDEY Co. This category of generators has been used
worldwide [27]. The major parameters are listed in Table 1.

In consequence, the parameters of the turbine dynamic
model are determined with

Ji=1J,+n], = 57998 x 10°,

_ 2 _ 3
K, =K, +n K, = 44131 x 10°, 61)

K
—t=7.609x10 %
Ji

For U-model (60), its time varying parameters are
assigned with

[Py =Ao+ M\ T,

1 2

1
TT -7609%107%P ———_p?
957998 x 106 9

Ay=—
1707 57998 x 106" ¢ 9

A=

e |‘Q"U

(62)

The rest of the simulation conditions/parameters include
the desired power P, wind torque T, from (55) and (56), the
specified wind speed v with a mean of 9 m/s and turbulence
intensity of 10%, sensor noise represented by a uniformly
distributed random sequence of [-0.3, 0.3], n, =0.8 for the
ratio between the desired generator power P; and the
maximum available power P .., Cp oy = 0.4382 for the
maximum power ratio, and p = 1.12 for the air density.

Figure 9 shows the constructed U-control system in
Simulink block diagrams. Figure 10 shows the simulation
results which are the same as those obtained from [27].
However, the differences are (1) this study is continuous
time control system against the discrete time control systems
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[27]; (2) this study uses concise closed loop inversion to
determine the invariant controller against solving the
complicated Diophantine equation; and (3) this study uses
the Simulink block diagram to build up the control system
against using Matlab functions to develop coded programs,
which block diagram-based simulation is much more en-
gineering meaningful, transparent, and cost-effective than
coded programming. Inspection of the generated plots:
Figure 10(a) shows the simulated wind speed profile,
Figure 10(b) shows that the generated output power
properly follows the specified power trajectory and is similar
to wind speed profile even though with wind measurement
noise, Figure 10(c) shows the variation of the rotor torque
following the wind force, and Figure 10(d) shows the
tracking error amplitude converged to zero mean and small
variance, and this indicates that the U-control system has
converted into the maximum available power from the wind
power.

6. Conclusions

In U-control system design/operation, the condition of
G,'G, =1 is the backbone. Therefore, this requires an ac-
curate model of G, and an effective routine/algorithm for
the UM-dynamic inversion G,'. This study provides a
generalised methodology, with the assumption of an accu-
rate model of G, a set of algorithms for the UM-dynamic
inversion G,!. Simulated bench examples have demon-
strated the analytical results and provided an effective
procedure in testing designed control systems with com-
putational experiments.

The remaining challenging issues with UM-dynamic
inversion are robust UM-dynamic inversion dealing with
uncertainties in model G, and data driven dynamic in-
version (DD-dynamic inversion) for an unknown model of
G,. These solutions, no doubt will significantly make
U-control realistically feasible and supplementary to the
other exiting approaches for a wide range of applications.

Data Availability

The Simulink block diagrams are included within the article
to generate the plot data for supporting the findings of this
study.
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