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Abstract
A simulation framework is described in which a collection
of particles  moving in  continuous  two-dimensional  space
can be put  together  to build  machines.  A self  replicating
machine  has  been  designed  in  this  environment.  It  is
proposed  that  an environment  such as  this  may facilitate
the fabrication of self-replicating manufacturing systems.

Introduction
Artificial self-replicating manufacturing systems may offer
technological advantages in areas ranging from computer
systems  engineering  to  space  exploration  (Freitas  1981,
Drexler 1985), but no system offering such advantages has
yet been fabricated. 

Research into artificial self-replicating systems began in
the  late  1940s  with  von  Neumann's  proposal  for  a
universal constructor and computer embedded in a cellular
automaton  (CA)  array,  which  could  be programmed  to
build  arbitrary  objects  in  the  CA  array,  with  self-
reproduction as a special case (von Neumann 1966).

Since then,  several  other  self-replicating  systems have
been  devised  for  a  variety  of  reasons.  Sipper  gives  a
comprehensive list  of these systems (Sipper  1998,2003).
Artificial self-replicating systems typically possess one or
more of the following attributes:

a. Simple implementation (e.g. Langton 1984)
b. Constructional capability (e.g. von Neumann 1966)
c. Computational capability (e.g. Tempesti 1995)
d. Fast operation (e.g. Byl 1989)
e. Physical realism (e.g. Penrose 1959)
f. Evolutionary potential (e.g. Sayama 1999)
g. Reliable operation
h. Similarity to living systems

Any  artificial  self-replicating  manufacturing system
must at the very least possess attributes b and e. That is, it
must  be  capable  of  being  instructed  to  manufacture
something  other than  itself, and it  must  actually exist in
the physical world.

The simulation framework described in this paper was
originally  explored  because it  offers a  greater  degree of
physical  realism  than  the  cellular  automata  frameworks

that are often used to investigate self-replicating systems.
In  addition,  the  self-replicating  system  that  has  been
devised  in  this  framework  may  have  the  potential  for
limited  constructional  and  computational  capabilities,
though  these capabilities have not yet been demonstrated.

The  simulation  framework  and  the  self-replicating
machine described in this paper are offered as catalysts for
exploring attributes b and e in the above list, in the belief
that  simulations  of self-replicating  systems having  these
attributes  can  act  as  a  bridge towards the  fabrication  of
self-replicating manufacturing systems.

The NODES System
NODES  is  a  system  in  which  circular  particles  called
nodes  interact  with  each  other  in  a  two-dimensional
universe. There are several different  types of node. Each
type  performs  a  specific  function.  There  are  types  that
perform logical functions, types that  join nodes together,
and  types  that  exert  forces  on  nodes.  Nodes  have  four
terminals  which  are  used to send and  receive signals  to
and from other nodes.

The  two-dimensional  space  in  which  nodes  move  is
continuous  and  has  no  boundaries,  each  node  has  two
spatial  coordinates  and  an  orientation.  The  motion  of
nodes is governed by Newtonian-like laws. In addition to
these laws, there are also rules that determine how signals
can  pass  between  nodes,  how  nodes  can  be  connected
together  and  how  they  should  behave  when  they  are
connected. 

Machines can be constructed from collections of nodes
connected up in an appropriate way.



An Example
To  help  clarify  all  of  this,  here  is  an  example.  This
example uses three different types of node. 

Figure 1: The 'Insulator'  type has no function.  It  simply
obeys the laws of motion and can be connected up to other
nodes, but has no inputs or outputs.

Figure 2: The 'Not' type functions as an inverter. When it
receives  no  input  signal,  it  outputs  a  signal.  When  it
receives an input signal, it outputs nothing.

Figure 3: The 'Thrust' type exerts a force on itself when it
receives an  input  signal.  The force acts in  the direction
from the centre of the node towards its input terminal.

On  the  left  hand  side  of  figure  4,  a  'Not'  node  is
connected to a 'Thrust' node so that the output signal from
the 'Not' node feeds into the 'Thrust' node. Two 'Insulator'
nodes are connected to the other side of the 'Not' node. On
the  right  hand  side  of  the  figure  is  a  vertical  line  of
'Insulator' nodes, connected together.

Figure 4

When the arrangement shown in figure 4 is simulated,
the output from the 'Not' node activates the 'Thrust' node,
which exerts a force on itself. This force ultimately gets
transmitted along all of the nodes in the structure to which
the  'Thrust'  node  belongs,  and  so  the  whole  structure
moves towards the right and collides with the vertical line
of 'Insulator' nodes. Figure 5 shows this happening.

Figure 5

The vertical line of 'Insulator'  nodes is pushed aside and
comes to rest. Figure 6 shows the result.

Figure 6
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A Concise Description of NODES
In NODES, time is discrete, and moves forward in steps of
1  unit.  At  a  given  instant  of  time,  a  single  isolated
'Insulator'  node  can  be  described  by  its  position,
orientation, velocity and angular velocity. Every node has
a mass of 1 unit and a moment of inertia of 1 unit.

All nodes in the universe experience a frictional  force
proportional  to  their  velocity,  and  an  angular  frictional
force proportional to their angular velocity.

Nodes have a radius of 1 unit and there is a repulsive
force between any pair of overlapping nodes.

Nodes  can  be  connected  to  other  nodes.  When  two
nodes are  connected,  they exert  forces on each other  in
such  a  way as  to  bring  themselves  into  proximity and
alignment.  Every node has four terminals  evenly spaced
around its edge which can be used to make connections
with  the  terminals  of other  nodes.  A line  of connected
nodes is called a filament.

Node Types and Signals
Three  node types have already been introduced –  these
were the 'Insulator', 'Not' and 'Thrust' types. Signals were
mentioned in the informal descriptions of these types.

The terminals which are used to connect nodes together
are  also used as  inputs  and  outputs  for  passing  signals
between  nodes.  Nodes  do  not  need  to  be connected  in
order  for  signals  to  pass  between  them.  If  an  output
terminal  is near  an  input  terminal,  then  any signal  it  is
outputting  will  be received by the  input  terminal.  Each
terminal is either an input or an output. If a terminal has
no explicit definition, it is effectively an output producing
no signal.

Signals  are  32-bit  integer  values.  The  absence  of  a
signal corresponds to a value of zero.

A  node's  type  determines  how  it  responds  to  input
signals, and whether it produces any output signals.

Table 2 gives an informal description of 22 commonly
used node types. In table 2 the letters N,S,E and W (for
North, South, East and West) are used to refer to terminals
and  also  to  indicate  directions.  The  context  should
indicate which usage is meant.

The notation used for expressions in table 2 is that used
by the C programming language, summarized in table 1.

Operator Name and meaning
+ Plus

Sum of operands

* Times
Product of operands

== Equals
1 if operands are equal, zero otherwise

!= Not Equals
zero if operands are equal, 1 otherwise

! Logical Not
1 if operand is zero, zero otherwise

&& Logical And
1 if both operands are non-zero, zero
otherwise

|| Logical Or
1 if any operand is non-zero, zero otherwise
Table 1: Operators used in table 2



Insulator Wire
N=S

Delta
N,E,W=S

Not
N=!S

NDelta
 N,E,W=!S

Cross
N=S, E=W

NotNot
N=!!S

Or
N=E+W

Maj
 N=E*W+E*S+S*W

Pulse
N=S only when S
changes from zero
to non-zero. N=0

otherwise.

FlipFlop
N,S set to 1 when
E!=0, reset to 0

when W!=0

Equal
N=E&&(E==W) ||

E&&(E==S) ||
S&&(S==W)

Store
N set to S when S
changes from zero
to non-zero, reset
when E or W!=0 

LFuse
When S!=0,

connect the nodes
that lie N and NW

RFuse
When S!=0,

connect the nodes
that lie N and NE

LUnFuse
When S!=0,

disconnect nodes
that lie N and NW

Detect
S is non-zero only
when a node lies

N

Thrust
When S!=0, apply
a force on self in S

direction

Push
When S!=0, apply

a force on node
that lies N, in the

N direction

LSlide
When S!=0, apply

a force on node
that lies N, in the

W direction

RSlide
When S!=0, apply

a force on node
that lies N, in the

E direction

Creator
When S is non-zero, create a node in the N direction. The

type and orientation or the new node depend on S
Table 2: Common node types

A Self Replicating Machine in NODES
The  node  types  described  in  the  previous  section  have
been used to make a self replicating machine (SRM). This
SRM is made from several smaller machines, which will
be referred to by name. The names of these machines are:
'Instruction Tape', 'Tape Reader',  'Tape Copier', 'Dragger',
'Releaser' and 'End Finder and Reader' (EFR).

The SRM would be far more complex were it not for the
'Creator' node type. This type allows new nodes to appear
from nowhere and is the least physically realistic part of
the SRM.

Figure 7 shows the machine shortly after it starts. The
Tape  Reader  is  advancing  along  the  Instruction  Tape,
creating  a  filament  of nodes.  Several  filaments  will  be
created,  and  will  assemble  themselves  to  form  a  'Tape
Copier', two 'End Finders and Readers' a 'Releaser' and a
'Dragger'.  The  Tape  Copier  makes  a  copy  of  the
instruction tape. The Dragger takes the end of this copy,
and pulls it to a new position in the universe. The Releaser
disconnects the Dragger from the copy. Then, one of the
'End  Finder  and  Reader'  machines  finds  the  end  of the
copy and starts the cycle again  at  the tape reading step.
The  second  'End  Finder  and  Reader'  machine  does the
same with  the  original  tape.  Figure 8 shows the  system
part way through the first replication cycle.

Figure 7:  The SRM shortly after  it  is started.  Note that
only the rightmost part of the instruction tape is shown.

Figure 8:The SRM part  way through the first replication
cycle. The Dragger  is dragging the new tape away from
the original tape. The Tape Reader and the Tape Copier
that  worked on the original  tape have finished their  jobs
and are outside the frame of this picture.

Instruction Tape
Tape Reader

Newly created filament

EFR for original tape
EFR for new tape

Releaser

Dragger



The following sections briefly describe the components
of the self replicating machine. There is not room here for
a  complete  description  of  these  components.  Further
details  can  be  discovered  by  obtaining  the  software
required to simulate the system, details of which are given
near the end of this paper.

The Instruction Tape
The  instruction  tape  is  a  filament  of  Store  nodes,  the
outputs  of which  lie  along  one side of the  filament,  as
shown in figure 7.

The Tape Reader
The Tape Reader is a very simple component used only in
the parent self-replicating machine. For all descendants of
this parent, the function of the Tape Reader is included in
the EFR components.
The  job  of  the  Tape  Reader  is  to  move  along  the
Instruction  Tape,  passing the  signals  it  encounters  from
the Store nodes in the Instruction Tape to a Creator node
to create a sequence of nodes, which it  joins together to
form a filament. The Tape Reader also outputs a signal to
act as a trigger to any filament that needs it.

The Tape Copier
The Tape Copier is the first component to become active
after  the  Tape  Reader  has  finished  its  task.  The  Tape
Copier  moves  from  its  initial  position  towards  the
rightmost end of the Instruction Tape. When it touches the
Instruction Tape it changes direction and begins to move
along the tape, creating new Store nodes and connecting
them together to make a second Instruction Tape. 

Figure 9: The Tape Copier in action, copying the leftmost
end  of  the  original  Instruction  Tape.  The  V-shaped
component just above Tape Copier is the Dragger, not yet
fully assembled.  To the right  is the Releaser,  assembled
and waiting to be activated.

The Dragger
The  Dragger  is  designed  so  that  the  time  it  takes  to
assemble is longer than the time taken for the Tape Copier

to  finish  its  task.  When  it  is  active,  the  Dragger  starts
moving  towards  the  leftmost  end  of  the  copy  of  the
Instruction  Tape.  It  connects  itself  near  the  end  of this
tape and then starts pulling it away from the original tape,
as shown in figure 8. As the tape is pulled, it touches and
activates the Releaser and the two EFRs.

The Releaser
After the Releaser is activated by contact with the second
Instruction  Tape,  it  proceeds  to  move  along  this  tape,
heading  towards the Dragger.  It  moves very slowly, but
eventually  catches  up  with  the  Dragger.  When  the
Releaser  touches  the  Dragger,  the  Dragger  disconnects
itself from the tape.

The End Finder and Reader for the Copy
As the second Instruction Tape is dragged away from the
original  Instruction  Tape,  it  brushes  against  this  EFR.
Before  it  is  fully  assembled,  this  component  detects  a
signal  from a Store node near the end of the  Instruction
Tape, and in response it connects itself to the end of this
tape.  It  is  then  dragged along  with  the  tape.  When  the
Releaser causes the Dragger to let go of the tape, this EFR
can finish assembling and then begin its task of reading
the second Instruction  Tape,  starting  another  replication
cycle.

The End Finder and Reader for the Original
Once all  of  the  components  needed  for  the  child  SRM
have  moved  away  from  the  original  Instruction  Tape,
reading of the original tape can begin again. The second
EFR component  initiates  this.  After  it  is  assembled,  it
moves slowly towards the end of the original Instruction
Tape, where it starts reading the tape.



The SRM in Action
Figure  10  illustrates  the  SRM  in  action.  The  original
machine  has  produced  three  children,  and  is  part  way
through making a fourth.  The first child has produced a
child of its own.

Figure  10:  One  SRM has  produced several  others.  The
separation between the SRMs has been reduced here to fit
them all on the page.

Conclusion
A  system  has  been  demonstrated  in  which  a  self-
replicating  machine  can  be  constructed.  The  laws  of
motion used in  this system are based on Newton's laws.
The  particles  in  this  system are  simple,  except  for  the
'Creator'  type which  can  produce other  particles  out  of
nowhere. With further work, it may be possible to improve
on the self replicating machine described here with respect
to attributes b and e defined in the introduction.

It seems reasonable to suppose that the SRM described
here can be modified so as to construct things other than
copies of  itself. To devise a SRM in NODES which is not
dependant  on  the  'Creator'  type  seems  much  more
challenging.

Obtaining NODES for your System
Source  code,  examples  (including  the  self  replicating
machine described here) and a user guide for NODES are
available by following the URL:

http://willsthings.mysite.freeserve.com/SRM/presentation.htm

NODES is written in C++ and has been compiled under
Linux and under DOS (Using DJGPP)
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