
An Environment for Simulating Kinematic Self-Replicating Machines
William M. Stevens

Open University, England
william.stevens@open.ac.uk

Abstract
A simulation framework is described in which a collection
of particles moving in continuous two-dimensional space
can be put together to build machines. A self replicating
machine has been designed in this environment. It is
proposed that an environment such as this may facilitate
the fabrication of self-replicating manufacturing systems.

Introduction
Artificial self-replicating manufacturing systems may offer
technological advantages in areas ranging from computer
systems engineering to space exploration (Freitas 1981,
Drexler 1985), but no system offering such advantages has
yet been fabricated.

Research into artificial self-replicating systems began in
the late 1940s with von Neumann's proposal for a
universal constructor and computer embedded in a cellular
automaton (CA) array, which could be programmed to
build arbitrary objects in the CA array, with self-
reproduction as a special case (von Neumann 1966).

Since then, several other self-replicating systems have
been devised for a variety of reasons. Sipper gives a
comprehensive list of these systems (Sipper 1998,2003).
Artificial self-replicating systems typically possess one or
more of the following attributes:

a. Simple implementation (e.g. Langton 1984)
b. Constructional capability (e.g. von Neumann 1966)
c. Computational capability (e.g. Tempesti 1995)
d. Fast operation (e.g. Byl 1989)
e. Physical realism (e.g. Penrose 1959)
f. Evolutionary potential (e.g. Sayama 1999)
g. Reliable operation
h. Similarity to living systems

Any artificial self-replicating manufacturing system
must at the very least possess attributes b and e. That is, it
must be capable of being instructed to manufacture
something other than itself, and it must actually exist in
the physical world.

The simulation framework described in this paper was
originally explored because it offers a greater degree of
physical realism than the cellular automata frameworks

that are often used to investigate self-replicating systems.
In addition, the self-replicating system that has been
devised in this framework may have the potential for
limited constructional and computational capabilities,
though these capabilities have not yet been demonstrated.

The simulation framework and the self-replicating
machine described in this paper are offered as catalysts for
exploring attributes b and e in the above list, in the belief
that simulations of self-replicating systems having these
attributes can act as a bridge towards the fabrication of
self-replicating manufacturing systems.

The NODES System
NODES is a system in which circular particles called
nodes interact with each other in a two-dimensional
universe. There are several different types of node. Each
type performs a specific function. There are types that
perform logical functions, types that join nodes together,
and types that exert forces on nodes. Nodes have four
terminals which are used to send and receive signals to
and from other nodes.

The two-dimensional space in which nodes move is
continuous and has no boundaries, each node has two
spatial coordinates and an orientation. The motion of
nodes is governed by Newtonian-like laws. In addition to
these laws, there are also rules that determine how signals
can pass between nodes, how nodes can be connected
together and how they should behave when they are
connected.

Machines can be constructed from collections of nodes
connected up in an appropriate way.

An Example
To help clarify all of this, here is an example. This
example uses three different types of node.

Figure 1: The 'Insulator' type has no function. It simply
obeys the laws of motion and can be connected up to other
nodes, but has no inputs or outputs.

Figure 2: The 'Not' type functions as an inverter. When it
receives no input signal, it outputs a signal. When it
receives an input signal, it outputs nothing.

Figure 3: The 'Thrust' type exerts a force on itself when it
receives an input signal. The force acts in the direction
from the centre of the node towards its input terminal.

On the left hand side of figure 4, a 'Not' node is
connected to a 'Thrust' node so that the output signal from
the 'Not' node feeds into the 'Thrust' node. Two 'Insulator'
nodes are connected to the other side of the 'Not' node. On
the right hand side of the figure is a vertical line of
'Insulator' nodes, connected together.

Figure 4

When the arrangement shown in figure 4 is simulated,
the output from the 'Not' node activates the 'Thrust' node,
which exerts a force on itself. This force ultimately gets
transmitted along all of the nodes in the structure to which
the 'Thrust' node belongs, and so the whole structure
moves towards the right and collides with the vertical line
of 'Insulator' nodes. Figure 5 shows this happening.

Figure 5

The vertical line of 'Insulator' nodes is pushed aside and
comes to rest. Figure 6 shows the result.

Figure 6

Output

Input

Input

A Concise Description of NODES
In NODES, time is discrete, and moves forward in steps of
1 unit. At a given instant of time, a single isolated
'Insulator' node can be described by its position,
orientation, velocity and angular velocity. Every node has
a mass of 1 unit and a moment of inertia of 1 unit.

All nodes in the universe experience a frictional force
proportional to their velocity, and an angular frictional
force proportional to their angular velocity.

Nodes have a radius of 1 unit and there is a repulsive
force between any pair of overlapping nodes.

Nodes can be connected to other nodes. When two
nodes are connected, they exert forces on each other in
such a way as to bring themselves into proximity and
alignment. Every node has four terminals evenly spaced
around its edge which can be used to make connections
with the terminals of other nodes. A line of connected
nodes is called a filament.

Node Types and Signals
Three node types have already been introduced – these
were the 'Insulator', 'Not' and 'Thrust' types. Signals were
mentioned in the informal descriptions of these types.

The terminals which are used to connect nodes together
are also used as inputs and outputs for passing signals
between nodes. Nodes do not need to be connected in
order for signals to pass between them. If an output
terminal is near an input terminal, then any signal it is
outputting will be received by the input terminal. Each
terminal is either an input or an output. If a terminal has
no explicit definition, it is effectively an output producing
no signal.

Signals are 32-bit integer values. The absence of a
signal corresponds to a value of zero.

A node's type determines how it responds to input
signals, and whether it produces any output signals.

Table 2 gives an informal description of 22 commonly
used node types. In table 2 the letters N,S,E and W (for
North, South, East and West) are used to refer to terminals
and also to indicate directions. The context should
indicate which usage is meant.

The notation used for expressions in table 2 is that used
by the C programming language, summarized in table 1.

Operator Name and meaning
+ Plus

Sum of operands

* Times
Product of operands

== Equals
1 if operands are equal, zero otherwise

!= Not Equals
zero if operands are equal, 1 otherwise

! Logical Not
1 if operand is zero, zero otherwise

&& Logical And
1 if both operands are non-zero, zero
otherwise

|| Logical Or
1 if any operand is non-zero, zero otherwise
Table 1: Operators used in table 2

Insulator Wire
N=S

Delta
N,E,W=S

Not
N=!S

NDelta
 N,E,W=!S

Cross
N=S, E=W

NotNot
N=!!S

Or
N=E+W

Maj
 N=E*W+E*S+S*W

Pulse
N=S only when S
changes from zero
to non-zero. N=0

otherwise.

FlipFlop
N,S set to 1 when
E!=0, reset to 0

when W!=0

Equal
N=E&&(E==W) ||

E&&(E==S) ||
S&&(S==W)

Store
N set to S when S
changes from zero
to non-zero, reset
when E or W!=0

LFuse
When S!=0,

connect the nodes
that lie N and NW

RFuse
When S!=0,

connect the nodes
that lie N and NE

LUnFuse
When S!=0,

disconnect nodes
that lie N and NW

Detect
S is non-zero only
when a node lies

N

Thrust
When S!=0, apply
a force on self in S

direction

Push
When S!=0, apply

a force on node
that lies N, in the

N direction

LSlide
When S!=0, apply

a force on node
that lies N, in the

W direction

RSlide
When S!=0, apply

a force on node
that lies N, in the

E direction

Creator
When S is non-zero, create a node in the N direction. The

type and orientation or the new node depend on S
Table 2: Common node types

A Self Replicating Machine in NODES
The node types described in the previous section have
been used to make a self replicating machine (SRM). This
SRM is made from several smaller machines, which will
be referred to by name. The names of these machines are:
'Instruction Tape', 'Tape Reader', 'Tape Copier', 'Dragger',
'Releaser' and 'End Finder and Reader' (EFR).

The SRM would be far more complex were it not for the
'Creator' node type. This type allows new nodes to appear
from nowhere and is the least physically realistic part of
the SRM.

Figure 7 shows the machine shortly after it starts. The
Tape Reader is advancing along the Instruction Tape,
creating a filament of nodes. Several filaments will be
created, and will assemble themselves to form a 'Tape
Copier', two 'End Finders and Readers' a 'Releaser' and a
'Dragger'. The Tape Copier makes a copy of the
instruction tape. The Dragger takes the end of this copy,
and pulls it to a new position in the universe. The Releaser
disconnects the Dragger from the copy. Then, one of the
'End Finder and Reader' machines finds the end of the
copy and starts the cycle again at the tape reading step.
The second 'End Finder and Reader' machine does the
same with the original tape. Figure 8 shows the system
part way through the first replication cycle.

Figure 7: The SRM shortly after it is started. Note that
only the rightmost part of the instruction tape is shown.

Figure 8:The SRM part way through the first replication
cycle. The Dragger is dragging the new tape away from
the original tape. The Tape Reader and the Tape Copier
that worked on the original tape have finished their jobs
and are outside the frame of this picture.

Instruction Tape
Tape Reader

Newly created filament

EFR for original tape
EFR for new tape

Releaser

Dragger

The following sections briefly describe the components
of the self replicating machine. There is not room here for
a complete description of these components. Further
details can be discovered by obtaining the software
required to simulate the system, details of which are given
near the end of this paper.

The Instruction Tape
The instruction tape is a filament of Store nodes, the
outputs of which lie along one side of the filament, as
shown in figure 7.

The Tape Reader
The Tape Reader is a very simple component used only in
the parent self-replicating machine. For all descendants of
this parent, the function of the Tape Reader is included in
the EFR components.
The job of the Tape Reader is to move along the
Instruction Tape, passing the signals it encounters from
the Store nodes in the Instruction Tape to a Creator node
to create a sequence of nodes, which it joins together to
form a filament. The Tape Reader also outputs a signal to
act as a trigger to any filament that needs it.

The Tape Copier
The Tape Copier is the first component to become active
after the Tape Reader has finished its task. The Tape
Copier moves from its initial position towards the
rightmost end of the Instruction Tape. When it touches the
Instruction Tape it changes direction and begins to move
along the tape, creating new Store nodes and connecting
them together to make a second Instruction Tape.

Figure 9: The Tape Copier in action, copying the leftmost
end of the original Instruction Tape. The V-shaped
component just above Tape Copier is the Dragger, not yet
fully assembled. To the right is the Releaser, assembled
and waiting to be activated.

The Dragger
The Dragger is designed so that the time it takes to
assemble is longer than the time taken for the Tape Copier

to finish its task. When it is active, the Dragger starts
moving towards the leftmost end of the copy of the
Instruction Tape. It connects itself near the end of this
tape and then starts pulling it away from the original tape,
as shown in figure 8. As the tape is pulled, it touches and
activates the Releaser and the two EFRs.

The Releaser
After the Releaser is activated by contact with the second
Instruction Tape, it proceeds to move along this tape,
heading towards the Dragger. It moves very slowly, but
eventually catches up with the Dragger. When the
Releaser touches the Dragger, the Dragger disconnects
itself from the tape.

The End Finder and Reader for the Copy
As the second Instruction Tape is dragged away from the
original Instruction Tape, it brushes against this EFR.
Before it is fully assembled, this component detects a
signal from a Store node near the end of the Instruction
Tape, and in response it connects itself to the end of this
tape. It is then dragged along with the tape. When the
Releaser causes the Dragger to let go of the tape, this EFR
can finish assembling and then begin its task of reading
the second Instruction Tape, starting another replication
cycle.

The End Finder and Reader for the Original
Once all of the components needed for the child SRM
have moved away from the original Instruction Tape,
reading of the original tape can begin again. The second
EFR component initiates this. After it is assembled, it
moves slowly towards the end of the original Instruction
Tape, where it starts reading the tape.

The SRM in Action
Figure 10 illustrates the SRM in action. The original
machine has produced three children, and is part way
through making a fourth. The first child has produced a
child of its own.

Figure 10: One SRM has produced several others. The
separation between the SRMs has been reduced here to fit
them all on the page.

Conclusion
A system has been demonstrated in which a self-
replicating machine can be constructed. The laws of
motion used in this system are based on Newton's laws.
The particles in this system are simple, except for the
'Creator' type which can produce other particles out of
nowhere. With further work, it may be possible to improve
on the self replicating machine described here with respect
to attributes b and e defined in the introduction.

It seems reasonable to suppose that the SRM described
here can be modified so as to construct things other than
copies of itself. To devise a SRM in NODES which is not
dependant on the 'Creator' type seems much more
challenging.

Obtaining NODES for your System
Source code, examples (including the self replicating
machine described here) and a user guide for NODES are
available by following the URL:

http://willsthings.mysite.freeserve.com/SRM/presentation.htm

NODES is written in C++ and has been compiled under
Linux and under DOS (Using DJGPP)

References

Byl J. 1989. Self-Reproduction in small cellular automata.
Physica D, Vol. 34, 295-299

Drexler K. E. 1985. Engines of Creation: The Coming Era
of Nanotechnology. London: Fourth Estate.
URL: http://www.foresight.org/EOC/index.html

Freitas R. A. Jr. 1981. Report on the NASA/ASEE
summer study on advanced automation for space missions.
Journal of the British Interplanetary Society, Vol. 34,
September 1981: 407-408.

Langton C.G. 1984. Self-reproduction in cellular
automata. Physica D, Vol. 10: 135-144.

Penrose L.S. 1959. Self-reproducing machines. Scientific
American, Vol. 200, No. 6: 105-114

Sayama H. 1998. Constructing Evolutionary Systems on a
Simple Deterministic Cellular Automata Space. Ph. D
Dissertation, Department of Information Science,
Graduate School of Science, University of Tokyo.

Sipper, M. 1998. Fifty years of research on self-
replication: An overview. Artificial Life, Vol. 4, No. 3:
237-257.

Sipper M. 2003. The Artificial Self-replication page.
URL: http://www.cs.bgu.ac.il/~sipper/selfrep/

Tempesti G. 1995. A new self-reproducing cellular
automaton capable of construction and computatioon. In
F. Morán, A. Moreno, J.J. Merelo, and P. Chacón, editors,
ECAL'95: Third European Conference on Artificial Life,
volume 929 of Lecture Notes in Computer Science, pages
555-563, Berlin, Springer-Verlag.

von Neumann, J. 1966. Theory of Self-Reproducing
Automata. Edited and completed by A.W. Burks. Urbana,
Illinois: University of Illinois Press.

