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SEQUENTIAL AND CONTINUUM BIFURCATIONS 
IN DEGENERATE ELLIPTIC EQUATIONS 

R. E. BEARDMORE AND R. LAISTER 

(Communicated by Carmen C. Chicone) 

ABSTRACT. We examine the bifurcations to positive and sign-changing solu- 
tions of degenerate elliptic equations. In the problems we study, which do not 
represent Fredholm operators, we show that there is a critical parameter value 
at which an infinity of bifurcations occur from the trivial solution. Moreover, 
a bifurcation occurs at each point in some unbounded interval in parameter 
space. We apply our results to non-monotone eigenvalue problems, degenerate 
semi-linear elliptic equations, boundary value differential-algebraic equations 
and fully non-linear elliptic equations. 

1. INTRODUCTION 

In this paper we consider the non-linear, degenerate eigenvalue problem 

(1) Lg(u) = u, x E :=(0, 1), 

(2) u = O, x E 0Q, 

where Lu := -(a(x)uX)x + b(x)u and the coefficients a, b E C'1() satisfy a > 0 
and b > 0 on Q. Consequently L is uniformly elliptic, but the non-linear function 
g E C1(IR) is assumed to degenerate at zero with g(0) = g'(0) = 0. 

Let us define 7(u) = g(u)/u with 7y(O) = 0 and begin with the statement of our 
assumptions on g: 

G1. g is an odd, strictly increasing function on I, 
G2. u > 0 implies y'(u) > 0, 
G3. y(u) -- oo as ul -- oo. 

These are all satisfied if, for instance, g(u) = ululm, where m > 0. 

Definition 1.1. Let X, Y be Banach spaces, F: X x 1R -- Y be continuous and 
satisfy F(0, A) = 0 for all A E R. Let E C X x R denote the set of all non-trivial 
(u a 0) solutions of F(u, A) = 0. We say that A0 is a sequential bifurcation point 
from the trivial solution for F(u, A) = 0 if there is a sequence (Un, An) E E such 
that (un,An) -~ (0, OA) in X x R as n -- oo. If such a sequence (un, An) lies in 
some connected set C C E, then A0 is said to be a continuum bifurcation point. 
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We prove the following for (1)-(2). To each A > 0 there is a sequence un(A) E 
CO?() of solutions of (1)-(2) such that (i) the number of zeros of un(A) in Q is n, 
(ii) un(A) - 0 in C?(Q) as n - oo, (iii) u,(A) - 0 in C?(Q) as A -> 0, (iv) every 
A > 0 is a sequential bifurcation point but not a continuum bifurcation point and 
(v) A = 0 is a continuum bifurcation point. 

We remark that the theory in [1] could be used to obtain local versions of some of 
the results proved here. However, our results are complementary to [1] in that they 
are global and impose no conditions on the growth of g-1 near zero. Furthermore, 
we establish the existence of an unbounded interval of sequential bifurcation points. 
For the special case g(u) = ululm, we note that a global branch of positive solutions 
was shown to exist in [2] in a study of flows in porous media. 

The remainder of the paper is structured as follows. Section 2 introduces some 
notation and preliminary results. The main results of the paper appear in Section 3. 
Finally, in Section 4 we apply our results to non-monotone degenerate eigenvalue 
problems, degenerate semi-linear elliptic equations, boundary value differential- 
algebraic equations and fully non-linear elliptic equations. 

2. PRELIMINARIES 

Throughout we write U for the closure of U in a given metric space. We denote by 
Ck (Q) the space of k-times differentiable functions on Q, henceforth written simply 
as Ck when there is no ambiguity. We note here that the imbedding Ck ' Cr is 
compact if k > r. For any u E CO with finitely many zeros we shall denote the 
number of zeros of u in Q by ((u). 

It is well known that L : C2 -+ CO together with the Dirichlet boundary condition 
(2) has positive, simple eigenvalues, henceforth denoted by pj for j E No := N U 
{0}, where the principal eigenvalue ,0 has an associated positive eigenfunction 0o. 
Furthermore, L has a continuous inverse K : CO -0 C2 which induces a compact 
linear map K: CO -- C?. 

The problem of finding continuous solutions of (1)-(2) with g(u(.)) E C2 is 
therefore equivalent to 

(3) F(u, A) := g(u) - Ku = 0, u E C?, 

where g : CO - CO is the C1 Nemytskii operator for g defined by (g(u))(x) = 

g(u(x)). Our approach to solving (3) will be based on the regularized problem 

(4) F(u, A; E) := g(u) + (EI- AK)u = 0, e > 0. 

We define some solution sets. Throughout E := CO x R is endowed with the 
norm |(u, A) IE = IIUII + |A1, where || * |I denotes the sup-norm on C?. The symbol 
(., -) denotes the usual L2 inner product. For E > 0, E(E) C E will denote the set 
of non-trivial solutions (u, A) of F(u, A; E) = 0 in E. For j E No we write Ej(E) for 
the subset of E(E) consisting of functions with j zeros in Q. By E+ (E) (E -(?)) we 
denote the subset of Ej(e) of functions u such that g(u)x(0) > 0 (g(u)x(0) < 0). For 
notational convenience we will simply write E instead of E(0) and SE for E (0). 
We note here that since g is odd, (u,A) E ES() if and only if (-u,A) E ES(). 
Consequently ES () = -ES+(). 

Remark 1. The map F : CO x IR - CO is C1 and has partial Frechet derivative 
duF(u, A)[h] = g'(u)h - AKh which is not a Fredholm mapping at u = 0 since 

g'(0) = 0. Consequently, one cannot use reduction methods based on the implicit 
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function theorem to study bifurcations of (3) from the trivial solution. See also 

[3, 4, 15]. Moreover, duF(O, A) - AK which, for A 0, has point spectrum and zero 
in the essential spectrum, but when A = 0, the spectrum consists only of zero. 

Lemma 2.1. Fix E > O. If (u, A) E E(6), then A > O; that is, E(E) C CO x (0, oo). 

Proof. Multiplying the relation F(u, A; e) = 0 by u and integrating over Q gives, 
after setting v = Ku, 

eu2 +ug(u) dx = A uKu dx = A vLv dx. 

Noting that ug(u) > 0 and (v, Lv) > 0, the result follows. D 

Lemma 2.2. For E E [0, 1] the following a priori bound applies: to each f > 0 there 
is an M(f) > 0, independent of e, such that if A E [0, ], then lullI < M(?) whenever 

(u, A) E (E). 

Proof. Suppose that eu + g(u) = AKu, where 0 < E < 1, 0 < A < and let xo E Q 
satisfy lull = lu(xo)l. Then 

lg(u(xo))I - I - u(xo)ll < g1(u(xo)) + u(xo)l < AX\KIIlu(xo)l , 

where IIKI[ denotes the operator norm of K E BL(C?). We therefore obtain 

y(IlluI) < AIIKI| + E < iIKII + 1. Noting that 7 : [0, oo) - [0, oo) is surjective 
(by G3) and non-decreasing (by G2), the result follows on defining M(f) to be any 
positive solution of y(M) = [\lKII + 1. 0 

Since E+g'(u) > E > 0 for all u E R and e > 0, the algebraic equation eu+g(u) = 
v has a unique solution u = G(v; E), where G(.; e) E C1 (R). When e = 0 we simply 
have G(v;0) = g-l(v), which is continuous. Moreover, G: IR x [0,oo) * 1R is 
continuous. We shall use this notation throughout and in the following theorem, 
which is a consequence of global bifurcation theory. 

Theorem 2.3. For each e > 0 and j E No, there are open, connected and un- 
bounded sets Cj(E) c ES:(E) such that (0, e/j) E Cj'(E). Furthermore, for every 
A > elpj there exist (ruj,, A) E Cj(E), so that (?[j,oc) C II (Cj (E)), where 
H : E - R is the natural projection. 

Proof. For each fixed e > 0, apply global bifurcation results [13] to v = AKG(v; e) 
and use the nodal properties of solutions to regular elliptic equations to demonstrate 
the existence of disjoint, unbounded continua CJ (e) with the stated properties. The 
existence of (+uj,e, A) for A > e6j follows from the unboundedness of Ct(E) in E, 
Lemma 2.1 and Lemma 2.2. I 

If u is a non-trivial solution of (4) with e > 0, then the zeros of the function 
eu + g(u) are transverse. The following result shows that transversality persists 
when e = 0. 

Theorem 2.4 (see [9, Theorem 2.2]). Suppose that f E C7?(R) is strictly increasing 
and f(O) = O. If u E C2(Q) is a solution of the initial value problem Lu = f(u) on 
fQ with u(a) = ux(a) = 0 for some a E Q, then u = 0 on fl. Furthermore, u has a 
finite number of zeros in Q. 

Corollary 2.5. If (u, A) E , then C(u) = ((g(u)) < oc and all zeros of g(u) in fl 
are transverse. In particular, E = Uj=o (E+ u E ). C~7I:L~U7YVr7 ~.17 YU L~C'L6CLI, L~- j= 3 "j 
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Proof. If (u, A) E E and v := g(u), then Lv = Ag-l(v). The result follows from 
Lemma 2.1 and Theorem 2.4 with f(v) = Ag-l(v). D 

3. THE MAIN RESULTS 

In this section we prove the main results on the existence of non-trivial solutions 
of (3) and the nature of bifurcation points. 

3.1. Existence of non-trivial solutions. We begin with an existence and unique- 
ness result for elliptic equations. 

Lemma 3.1. Suppose Au := -(a(x)ux) + /3(x)u, where a and 3 satisfy the same 
assumptions as a and b. Let A > 0 and e > 0 be fixed. If there exists a positive 
subsolution e$ of the elliptic problem 

(5) Av = AG(v; e), v(O) = v(l) = 0, 

then there exists a unique non-trivial, non-negative solution v of (5). Moreover, 
v > _ . 

Proof. By assumption G3, limvo, G(v; e)/v = 0 for fixed e > 0. In particular this 
implies that lim supv,, AG(v; e)/v < nio, where 0o denotes the principal eigenvalue 
of A. It is well known [6, 11] that non-negative solutions of the associated parabolic 
problem 

(6) Vt = -Av + AG(v; e), v(0, t) = v(l, t) = 0 

(with continuous initial condition v(x, O) = vo(x)) have non-empty omega-limit sets 

w(vo) contained in the equilibrium set, comprising of solutions of (5). In particular, 
since 0 is also a subsolution of (6), there exists a solution v of (5) such that v > ~. 
It therefore remains only to establish the uniqueness of v. 

Suppose w is any non-trivial, non-negative solution of (5). By G1 and the 
maximum principle, w > 0 in Q. Now, fo vAw- wAv dx = 0 so that 

(G(w; E) G(v; E) A vG(w; e)- wG(v; e) dx= 
1 

Avw (G(w) dx = 0. 
Jo Jo \ w v 

By G2, s i-> G(s; E)/s is decreasing for all s > 0. Hence if v and w are ordered in 

C?, then v = w and v is unique. If v and w are not ordered in C?, then, for any 
vo > max{v, w}, w(vo) must contain a solution z of (5) such that z > max{v, w}, 
whence z 7: v and z = w. Hence z and v are ordered in Co and the above argument 
(with w replaced by z) yields z = v, a contradiction. D 

The following result is crucial, showing that non-trivial j-zero solutions of the 

regularized problem (4) cannot accumulate on the trivial branch as e -) 0, except 
possibly at the origin. 

Proposition 3.2. Let j C N0 be fixed and 0 < e? - 0 as n -* oo. If (un, An) e 
E +(n) satisfies (un, An) -* (0, A) in E as n -* oo, then A = O. An analogous result 

holds for S- (E). 

Proof. Necessarily A > 0 by Lemma 2.1, so suppose that A > 0. We first consider 
the case j = 0 (positive solutions). Fix AX E (0, A) and choose no such that 

nE < min{to, (A*/0o)} and An > AX for all n > no. By the degeneracy of g there is 
a U > 0 (independent of n) such that g(u) + E,u < (A.//to)u for all u E [0, U] and 
n > no. Hence there is a V > 0 (independent of n) such that G(v; E,) > (/uo/A*)v 
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for all v E [0, V] and n > no. Let us normalise the principal eigenfunction of L, 0o, 
so that IlIoll = V. Since G(Qo0,En) > (/,o/A*))o it follows that 

-Loqo + XG(o; e) -Lo + An()o/A*)go > 0 

and so (o is a subsolution of 

(7) Lv = AnG(v; En), v(O) = v(l) = 0. 

Hence by Lemma 3.1 there exists a unique positive solution Wn of (7) and wn > 0o. 
Now, vn := enun + g(un) is also a positive solution of (7) and so by uniqueness 
vn Wn. But since vn = AnKun and un -- 0 in CO as n -oo, it follows that 
Vn - 0 in C2. In particular, by Hopf's boundary point lemma [12] applied to o0, 
there exists an n1 > no such that vn < qo in Q for all n > nl, a contradiction. 
This proves the result for j = 0. The result for - 

(en) is a trivial consequence of 
the symmetry of g. 

Now suppose that j > 1. If , (i = 0, ...,j + 1) denote the zeros of un in Q in 
increasing order, let 6n = 4+1 -t (i 0, ...j). Then vn := enu +g(un) (suitably 
restricted) is a constant sign solution of 

(8) Lv = AnG(V; En), V(Sn) = v(n+1) - 0. 

Since =0 A = 1, we can assume for some i that 6n (=: 5n) remains uniformly 
bounded away from zero. Passing to a subsequence if necessary we may assume that 
6n - 6,oo (0, 1] as n -> oo. Now rescale the spatial variable x in (8) according to 
x ~-+ (x - n+l)/6n and, without loss of generality by the symmetry of g, we obtain 
a sequence vn of positive solutions of 

(9) LnvAnG(v; En), v(0) = v(l) = 0, 
with vn -- 0 in C2, where LnV := -62(a(x)vx)x + b(x)v. If we denote by {/,, oq} 
the principal eigenpair of the operator Ln, then spectral perturbation results for 
simple eigenvalues [7] show that /n --> /u, the principal eigenvalue of Loo, and 
) -* O0 in C2, where q0 is the corresponding principal eigenfunction. 

Note that there is a V > 0 (independent of n) and an n2 > no such that 
G(v; En) > (/o + l)v/A, for all v E [0, V] and n > n2. If q0 is normalised so that 
l nll- =V, then 

(10) -Lnon + AnG(on; En) > -Ln 4 + An(i4 + 1)jo /A* > (C0 + 1 - n)?n > 0, 
for all n > n2 and so o is a positive subsolution of (9) for all such n. An identical 
argument to the j = 0 case then leads to a contradiction as before. O 

We can now prove the following existence result for (3). 

Theorem 3.3. Let A > 0 and j E No be given. Then there exist (?uj, A) E SE; 
that is, EI (Z5)- (0,oo). 

Proof. Let En -- 0 be any positive sequence. From Lemma 2.2 and Proposition 3.2 
with An A, there is a sequence un of C2 solutions of (4) which is CO-bounded and 
bounded away from zero in C?. Since Kun is therefore C2-bounded we may pass to 
a subsequence if necessary and assume that there is a z E C1 such that Kun -- z 
in C1. Hence, it follows that EnUn + g(un) -A Xz in C1, from where Enun -* 0 in 
C?, so that g(Un) -> Az in C?. Consequently, un -? g- (Az) =: u in C?. Therefore, 

g() -AKuj = 11(g(u) - g(un)) + (g(n) -AKn) + (AKUn- Ku)l 
< 11g(u) - g(un) I + En jUnl I + A|IIKI| lln -- 0. 
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Hence u is a solution of (3). Since z is a C1-limit of functions with exactly j 
transverse zeros we have ((z) = j, whence ((u) = ((g(u)) = ((Az) = j. O 

3.2. Sequential and continuum bifurcations. We may now establish the exis- 
tence of an unbounded interval of sequential bifurcation points. 

Theorem 3.4. For each A > 0 there exists a sequence (uj,A) E S such that 

((uj) = j and uj -+ 0 in Co as j -4 oo. In particular, every A > 0 is a sequential 
bifurcation point for (3). 

Proof. Clearly, for each fixed A > 0 there are infinitely many solutions of (3), uj, 
parameterised by the number of zeros j E No. Recall that the corresponding zeros 
of g(uj) are transverse. We claim that limj,, uj = 0 in C?. Using the bound 

IIuj ?I < M(A) from Lemma 2.2, we may assume (on passing to a subsequence) that 
there is a z E C1 such that Kuj -+ z in C1, so that g(uj) -* Az in C1 and therefore 

uj -- g-(Az) in C?. If u := g-1(Az), then u is a solution of (3). Since ((g(uj)) = j, 
g(u) cannot have finitely many zeros in Q. Hence by Theorem 2.4 g(u) = 0, from 
where z = 0. Hence g(uj) -+ 0 in C1 and therefore uj -+ 0 in C?. 

In turn, this implies that A = 0 is a sequential bifurcation point, simply by 
setting An = 1/n and choosing any (Un, An) E S with IIUnll < 1/n. 0 

Next we examine the question of which A > 0 are continuum bifurcation points. 

Lemma 3.5. If C C E is connected and (u, A), (u', A') E C, then ((u) = ((u'). 

Proof. Let (u,A) E C and suppose that (un, An) E C satisfies (un, A) -- (u,A) 
as n - oo. Using g(un) XAKun we find that g(un) - g(u) in C1 and because 
g(u) has finitely many transverse zeros, ((un)((g(un)) = ((g(u)) = ((u) for all n 
sufficiently large. This shows that ((.) is an integer-valued continuous function on 
C and is therefore constant on C. O 

Corollary 3.6. For all A > O, A is not a continuum bifurcation point. 

Proof. If A > 0 is a continuum bifurcation point, then there exists a connected set 
C C S and a sequence (un, An) E C such that (un, An) - (0, A) in E. By Lemma 3.5 
there exists a j E No such that (un, An) E Ej for all n. Passing to a subsequence if 

necessary, we may assume without loss of generality that (un, An) E E+ for all n. 
By Proposition 3.2 with En = 0 it follows that A = 0, a contradiction. O 

Theorem 3.7. A = 0 is a continuum bifurcation point for (3). 

Proof. For each A > 0 there is a unique (u+,X) E E+ by Theorem 3.3 and 
Lemma 3.1. We prove that the map A u+ (A) (with u+(0) = 0) from [0, oo) ~ CO 
is continuous. 

Fix A > 0 and let An > 0 be any sequence satisfying An -- A as n 0 oo. 
Let u+ := u+(An). Suppose that u+(-) is not continuous at A; then there is a 
6 > 0 such that lu+ - u+(XA)l > 3 for all n. By Lemma 2.2, u+ is bounded in 
C?. From u+ = AnKg-1(u+) and the compactness of K, there exists a convergent 
subsequence, say u+ -+ u* in C?. Hence u* is a solution of Lu* = Ag-(u*). By 
Proposition 3.2, if A > 0, then u* = u+(A), while if A = 0, then u* = 0. Either way 
this contradicts the above 3-bound. CI 

We now utilise a theorem from topological analysis to obtain connectedness 
results for the sets of non-trivial sign-changing solutions. 
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Definition 3.8. Suppose that (Z, d) is a complete metric space and that {Sn})=o 
is a family of connected subsets of Z. For S C Z define d(z, S) := inf d(s, z), 

sES 

Sinf := {Z C Z: lim d(z,Sn) =0}, n---oo 

S,up : {z E Z: lim inf d(z, Sn) = 0}. 
n-- oo 

Theorem 3.9 (see [17]). Suppose that U?=O Sn is relatively compact in Z. If 
Sinf 5 0, then Ssup is a non-empty, closed and connected subset of Z. 

Theorem 3.10. Let j e No be given. There exist unbounded, closed and connected 
sets Ct C Et U {(0, O)} such that (0, O) E Cj . In particular, II (Cj) = [0, oo). 

Proof. Let ?n --) 0 be any positive sequence. For fixed v > 0 let S+'j (v) be the max- 
imal connected component of C+(en)n((C? x [0, v]) which contains (u, A) = (0, en,j) 
in its closure, where Cj(e) is defined in Theorem 2.3. Note that by Theorem 2.3, 
S+, (v) contains non-trivial elements of the form (u, A) for all A E [en,j, v], pro- 
vided n is sufficiently large and (0, e,nj) E S+'j(v). By the compactness of [0, v] 
and of the operator K: CO - C?) it follows that UJn=0 S+i (v) is relatively compact 
in E. Clearly (0,0) c S+ (v) and so Si+j (v) is non-empty. Hence by Theorem 3.9 
S+j (v) is non-empty, closed and connected in E. 

Now, by the construction of solutions in Theorem 3.3 it follows that 

{(j, A) E E : A E (0,v]} U {(0, )} C Ss( (V). 

Moreover, if (u, A) E Sl+j(v) there exists a sequence (un, An) E S+ j(v) such that 
(un, An) - (u, A) in E. Then, 

[jg(u) - AKull < g(u) - g(un) 1 + An - AIIjKun I 
+ AXJK(un - u))j + EnjUn 1-) 0, 

so that (u,A) is a solution of (3). By Proposition 3.2 and Theorem 2.4 either 
(u, A) = (0, 0) or (u, A) E S+ for some j E N0. 

Clearly, S (v) C Ss+ (v') if v < v' and it follows that C+ : U>0 sts+ () has 
the stated properties. The result for C~ follows similarly. D 

Example 1. Consider a semi-linear, degenerate elliptic equation Aop(v)+Af(v) = 0 
with Dirichlet boundary conditions on an annulus R1 < IyI < R2 in IRn [8]. Suppose 
that 9p and f are strictly increasing, odd functions satisfying 9o(0) = f(O) = 0. 
Setting u = f(v) one obtains Ag(u) + Au = 0, where g(u) := 9p(f-l(u)). Suppose 
that 9p and f are such that g satisfies G1-G3. Now, radially symmetric solutions 
satisfy (rn-lg(u)r)r + Arn-lu = 0, where r = lyl. Setting x = rn/n then yields 
the equivalent problem -(a(x)g(u)x)x = Au for x E (R /n, Rn/n), where a(x) 
(nx)2(1-1/n), to which the results of this section apply. Such a situation occurs 
when 'p(v) = vvlvm-l and f(v) = vivip-1 for m > p > 0. 

4. APPLICATIONS 

4.1. Non-monotone eigenvalue problems. Here we apply our main results to 
problems where g is only locally monotonic near zero. We still obtain infinitely many 
solution sets in E parameterised by zeros together with an unbounded interval of 
sequential (but not continuum) bifurcation points. 
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Lemma 4.1. Let 6 > 0 and suppose that g : [0, ] - [0, oo) is a strictly increasing 
C1 function which is C2 on (0, 6] with g(0) = g'(0) = 0 and g"(6) > O. If y(u) = 
g(u)/u satisfies y'(u) > 0 on (0, 6], then there exists an odd, strictly increasing C1 
extension g: R - R such that g9[0,6] = gl[,O6] Moreover, if (u) :=g(u)/u, then 

7'(u) > 0 for all u > 0 and y(u) - oo as lul - oo. 

Proof. Since u2y'(u) = ug'(u)- g(u) we have g'(6) > 0. Now define 9 to be the 
odd extension of the function 

g(u) : 0<u <6, 
g(6) + (u - 6)g'() + (U- (a) : u > a, 

-26)2g"(6) u>5 
and then for Jul > we have u2y'(u) = 62y(6) + 1g"(6)(u2 - 62) > 0. D 

We can now deduce the following result when g is only locally monotonic. 

Theorem 4.2. For some 6 > 0 suppose that g : [-6, 6] -* IR is a strictly increasing, 
odd, C1 function which is C2 on [-6,6]\{0} and g(0) = g'(0) = 0,g"(6) > 0. If 
Iy'(u) > 0 on (0, 6], then there exist closed, connected sets CI c Et U {(0, 0)} such 
that (0, O) c C?. At least one, but possibly both, of the following is true: 

(1) Cj is unbounded, 
(2) there exists a (u, X) E CJ such that Ilull = 6. 

Furthermore, for each A > 0 there exists a sequence uj C E such that ((uj) -> oo 
and uj -- 0 in CO as j -+ oo. In particular, every A > 0 is a sequential bifurcation 
point and A = 0 is a continuum bifurcation point for (3). 

Proof. Use Lemma 4.1 to replace (3) by g(u) = XKu to which Theorems 3.10 and 
3.4 apply. The result follows from the fact that solutions of g(u) = AKu with 
lull < 6 also satisfy (3). D 

4.2. Degenerate diffusion equations. Consider a quasi-linear parabolic equa- 
tions of the form 

(11) vt- (a(x)D(v)x)x + b(x)D(v) = Af(v), 

supplied with Dirichlet boundary conditions and given initial data. Such equations 
arise naturally in many branches of the physical and biological sciences [5, 14]. 
Upon setting u = f(v) and defining g(u) = D(F(u)) (see below) one may use 
Theorem 4.2 to obtain information on the existence of equilibrium solutions of (11) 
whenever f and D are monotonic near zero. We omit the trivial proof. 

Theorem 4.3. Suppose that D, f C Cl(IR) are odd, strictly increasing functions 
such that D(O) = D'(O) = f(O) = 0 and f'(O) > O. Let F denote the local C1 inverse 
of f near O. If there exists a 3* > 0 such that D E C2(0, 6*] and uF'(u)D'(F(u)) - 

D(F(u)) > 0 on (0, *], then the conclusions of Theorem 4.2 hold for equilibrium 
solutions of (11) for each 8 < 3* for which (D(F))"(6) > O. In particular, the latter 
conditions hold for all sufficiently small 6 > 0 whenever D, f C3((R), D"(0) = 0 
and D"'(O) > 0. 

Example 2. Theorem 4.3 applies to a degenerate form of the Chaf6e-Infante prob- 
lem (see [6]) 

vt - (vlvm)xx = Av(1 - v2), m > 0. 
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Example 3. Consider the slow diffusion problem 

ut - (a(x)[exp(-1/u)]x)x = Au 

with Dirichlet boundary conditions, where g(u) :=[exp(-1/u)] denotes the odd 
extension of exp (-l/u) for u > 0. Theorem 4.3 applies to the associated steady- 
state problem. Note however, that the global results of Section 3 do not apply even 
though g is globally monotonic due to the failure of the coercivity condition G3. 
Due to the flat nature of g at u = 0, the results of [1] do not apply to this equation. 
4.3. Boundary value differential-algebraic equations. We can also use the 
above results to find steady-states of parabolic systems 

ut +Lu = AF(u,v), u(0, t) = u(l,t) =0, 

Vt = G(u,v), 
or equivalently, the boundary value differential-algebraic equation (DAE) 

(12) Lu = AF(u, v), G(u, v) = 0, (0O) = u(l) = 0. 

Problems of this nature are considered in [10], motivated by interactions between 
diffusive and non-diffusive species. We have the following theorem regarding solu- 
tions of (12). 
Theorem 4.4. Suppose that F and G are Cr functions with r > 4 such that 
F(0,0) = G(0,0) = 0, Gv(0,0) = GvV(0,0) = 0, F(-u,-v) = -F(u,v) and 
G(u,-v) = -G(-u,v). If GuFvGvvv < 0 at (0,0), then A = 0 is a continuum 
bifurcation point to a branch of positive solutions of (12). There are countably 
many sets of non-trivial solutions Cj C C2(Q) x C?(Q) x R such that Cj U {(0, 0, 0)} 
is connected, and if (u, v, A) E Cj, then u and v have j zeros in Q. Every A c (0, oo) 
is a sequential bifurcation point, but no element of (0, oo) is a continuum bifurcation 
point. 

Proof. Apply the implicit function theorem to G(u, v) = 0 and solve this constraint 
as u = U(v), where U(O) = U'(0) = U"(O) = 0 and U"'(O) = -Gvv(0, 0)/Gu(O,O) 
= 0. Then (12) is reduced to LU(v) = AF(U(v), v), so now set w = F(U(v), v). 

This can be solved by the inverse function theorem for v = V(w) such that 
V(0) = 0,V'(0) = 1/Fv(0,0) and V"(0) = -Fvv(0,0)/Fv(0,0)3. Now, (12) is 
locally equivalent to LU(V(w)) = Aw, so we set g(w) = U(V(w)). 

Now, the hypotheses on F and G ensure that U and V are odd functions, so 
that g(w) is also odd; now set y(w) = g(w)/w. Differentiating, we see that g(w) = 

w3 +o(w3) where = -GvvvGuFv/(G2 F4) > 0 and where each of these derivatives 
is evaluated at (u, v) = (0, 0). Hence there is a 6 > 0 such that g(w) > 0, y'(w) > 0 
on (0, 6] and g"(6) > 0. One can now apply Theorem 4.2 to Lg(w) = Aw. D 

Example 4. The hypotheses of Theorem 4.4 are satisfied by the steady-state prob- 
lem for the reaction-diffusion system 

Ut-Uxx = Asinv, u(0,t) = u(l,t) = 0, 

Vt = U+U2V-V3. 

Remark 2. Fully non-linear elliptic equations of the form 

(13) Lu = f(u, Lu), u(0) =u(l) = 0, 
can be written as a boundary value DAE by setting v = Lu, F(u,v) = v and 
G(u, v) - f(u, v) - v. Problems of this type are studied, for instance, in [16]. A 
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solution of (12) when A = 1 provides a solution of (13) and these can be obtained 
using Theorem 4.4 with suitable restrictions on f. 
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